Skip to main content

Regulation of Carbon Fluxes in the Cytosol: Coordination of Sucrose Synthesis, Nitrate Reduction and Organic Acid and Amino Acid Biosynthesis

  • Chapter
Photosynthesis

Summary

Sugars and amino acids fuel plant growth, development and biomass production. They are required in different amounts and stoichiometries according to developmental stage and environmental challenges and constraints. Extensive interdependence of C and N assimilation operates at several levels, necessitating a complex array of reciprocal controls. Export of amino acids occurs in response to active loading and transport of sucrose in the phloem. Sucrose is the currency of energy exchange between organs and provides ATP for transport processes. Coordination of C and N flow into amino acids and carbohydrates is achieved by regulation of crucial enzyme activities. Nitrate reductase (NR), phosphoenolpyruvate carboxylase (PEPC) and sucrose phosphate synthase (SPS) are key enzymes in N assimilation, anaplerotic C flow and sucrose synthesis, respectively. Their activities are coordinated by several mechanisms, the most important of which is protein phosphorylation. Intermediates and products of these pathways regulate gene expression, thereby transmitting information on metabolism to orchestrate C/N flow. A number of putative signal metabolites have been characterized. N metabolites are required for synthesis and activation of enzymes involved in C metabolism (especially for PEPC and SPS). C metabolites are necessary for the synthesis and activation of enzymes catalyzing the assimilation of N (for example, sugars promote NR gene expression). The ‘signals’ involved include nitrate per se, as well as intermediates and products of C and N assimilation such as amino acids, organic acids and sugars.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 509.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 649.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 649.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

ADPGlc PPase:

ADPglucosepyrophosphorylase

C:

carbon

CAM:

Crassulacean acid metabolism

CaMV:

cauliflower mosaic virus

CHX:

cycohexamide

cIDH:

cytosolic isocitrate dehydrogenase

CoA:

coenzyme A

DHAP:

dihydroxyacetone phosphate

FC:

fusicoccin

Fd:

ferredoxin

FNR:

ferredoxin NADP reductase

G6PDH:

glucose 6-phosphate dehydrogenase

GDH:

glutamate dehydrogenase

Glc 6-P:

glucose 6-phosphate

GOGAT:

glutamate synthase

GS:

glutamine synthetase

N:

nitrogen

NiR:

nitrate reductase

NR:

nitrate reductase

2-OG:

2-oxoglutarate

OAA:

oxaloacetate

PEP:

phosphoenolpyruvate

PEPC:

phosphoenolpyruvate carboxylase

PGA:

3 phosphoglycerate

Pi:

inorganic phosphate

PK:

protein kinase

PM-NR:

plasmamembrane bound nitrate reductase

PP:

protein phosphatase

rbcS:

ribulose 1,5-bisphosphate carboxylase oxygenase small subunit

RPPP:

reductive pentose phosphate pathway

Ru5P:

ribulose 5 phosphate

RubP:

ribulose 1,5 bisphosphate

SPS:

sucrose phosphate synthase

Susy:

sucrose synthase

TCA:

tricarboxylic acid

TP:

triose phosphate

References

  • Atkinson MR, Kamberov ES, Weiss RJ and Ninfa AJ (1994) Reversible uridylation of the Escherichia coli PII signal transduction protein regulates its ability to stimulate the dephosphorylation of the transcription factor nitrogen regulator (NR or NrtC). J Biol Chem 269: 28288–28293

    CAS  PubMed  Google Scholar 

  • Bachmann M, Huber JL, Liao P-C, Gage DA and Huber SC (1996) The inhibitor protein of phosphorylated nitrate reductase from spinach (Spinacia oleracea L.) leaves is a 14-3-3 protein. FEBS Lett 387: 127–131

    Article  CAS  PubMed  Google Scholar 

  • Blackwell RD, Murray AJS and Lea PJ (1987) Inhibition of photosynthesis in barley with decreased levels of chloroplastic glutamine synthetase activity. J Exp Bot 38: 1799–1809

    CAS  Google Scholar 

  • Blackwell RD, Murray AJS, Lea PJ, Kendall AC, Hall NP, Turner JC and Wallsgrove RM (1988a) The value of mutants unable to carry out photorespiration. Photosynth Res 16: 155–176

    Article  Google Scholar 

  • Blackwell RD, Murray AJS, Lea PJ and Joy KW (1988b) Photorespiratory amino donors, sucrose synthesis and the induction of CO2 fixation in barley deficient in glutamine synthetase and glutatmate synthase. J Exp Bot 39: 845–858

    CAS  Google Scholar 

  • Brears T, Walker EL and Coruzzi GM (1991) A promoter sequence involved in cell-specific expression of the pea glutamine synthetase gene GS3A in organs of transgenic tobacco and alfalfa. Plant J 1: 235–240

    CAS  PubMed  Google Scholar 

  • Champigny ML and Foyer CH (1992) Nitrate activation of cytosolic protein kinases diverts photosynthetic carbon from sucrose to amino acid biosynthesis. Plant Physiol 100: 7–12

    CAS  Google Scholar 

  • Champigny ML, Brauer M, Bismuth E, ThiManh C, Siegl G, Van Quy L and Stitt M (1992) The short term effect of NO3 and NH 14 assimilation on sucrose synthesis in leaves. J Plant Physiol 139: 361–368

    CAS  Google Scholar 

  • Cheng CL, Dewdney J, Kleinhofs A and Goodman HM (1986) Cloning and nitrate induction of nitrate reductase mRNA. Proc Natl Acad Sci USA 83: 6825–6828

    CAS  Google Scholar 

  • Cheng CL, Acedo GN, Christinsin M and Conkling MA (1992) Sucrose mimics the light induction of Arabidopsis nitrate reductase gene transcription. Proc Natl Acad Sci USA 89: 1861–1864

    CAS  PubMed  Google Scholar 

  • Chollet R, Vidal J and O’Leary MH (1996) Phosphoenolpyruvate carboxylase: A ubiquitous, highly regulated enzyme in plants. Annu Rev Plant Physiol Plant Mol Biol 47: 273–298

    Article  CAS  PubMed  Google Scholar 

  • Cock JM, Hemon P and Cullimore JV (1992) Characterization of the gene encoding the plastid-located glutamine synthetase of Phaseolus vulgaris: regulation of β-glucuronidase gene fusions in transgenic tobacco. Plant Mol Biol 18: 1141–1149

    Article  CAS  PubMed  Google Scholar 

  • Coschigano KT, Melo-Oliveira R, Lim J and Coruzzi GM (1998) Arabidopsis gls mutants and distinct Fd-GOGAT genes: Implications for photorespiration and primary nitrogen assimilation. Plant Cell 10: 741–752

    Article  CAS  PubMed  Google Scholar 

  • Cushman JC, Meiners MS and Bohnert HJ (1993) Expression of a phosphoenolpyruvate carboxylase promoter from Mesembryanthemum crystallinum is not salt-inducible in mature transgenic tobacco. Plant Mol Biol 21: 561–566

    Article  CAS  PubMed  Google Scholar 

  • Daniel-Vedele F, Filleur S and Caboche M (1998) Nitrate transport: A key step in nitrate assimilation. Curr Opinion Plant Biol 1: 235–239

    Article  CAS  Google Scholar 

  • De Boer B (1997) Fusicoccin — a key to multiple 14-3-3 locks? Trends Plant Sci 2: 60–66

    Google Scholar 

  • De la Torre A, Delgado B and Lara C (1991) Nitrate-dependent O2 evolution in intact leaves. Plant Physiol 96: 898–901

    Google Scholar 

  • Deng M-D, Moureaux T, Cherel I, Boutin JP and Caboche M (1991) Effects of nitrogen metabolites on the regulation and circadian expression of tobacco nitrate reductase. Plant Physiol Biochem 29: 239–247

    CAS  Google Scholar 

  • Dorbe MF, Caboche M, Daniel-Vedele F (1992) The tomato nia gene complements a Nicotiana plumbag inifolia nitrate reductase deficient mutant and is properly regulated. Plant Mol Biol 18: 363–375

    Article  CAS  PubMed  Google Scholar 

  • Douglas P, Pigaglio E, Ferrier A, Halford NG and MacKintosh C (1996) Three spinach leaf nitratereductase-3-hydroxy-3-methylglutaryl-CoA reductase kinases that are regulated by reversible phosphorylation and/or Ca2+ ions. Biochem J 325: 101–109

    Google Scholar 

  • Duff SMG and Chollet R (1995) In vivo regulation of wheat-leaf phosphoenolpyruvate carboxylase by reversible phosphorylation. Plant Physiol 107: 775–782

    CAS  PubMed  Google Scholar 

  • Dzuibany C, Haupt S, Fock H, Biehler K, Migge A and Becker TW (1998) Regulation of nitrate reductase transcript levels by glutamine accumulating in the leaves of a ferredoxin-dependent flutamate synthase deficient gluS mutant of Arabidopsisz thaliana and by glutamine provided via the roots. Planta 206: 515–522

    Article  CAS  PubMed  Google Scholar 

  • Eckes P, Schmitt P, Daub W and Wengenmayer F (1989) Overproduction of alfalfa glutamine synthetase in transgenic tobacco plants. Mol Gen Genet 217: 263–268

    CAS  PubMed  Google Scholar 

  • Edwards JW, Walker EL and Coruzzi GM (1990) Cell specific expression in transgenic plants reveals non-overlapping roles for chloroplast and cytosolic glutamine synthetase. Proc Natl Acad Sci USA 87: 3459–3463

    CAS  PubMed  Google Scholar 

  • Evans JR (1983) Nitrogen and photosynthesis in the flag leaf of wheat (Triticum aestivum L.). Plant Physiol 72: 279–302

    Google Scholar 

  • Evans JR (1989) Photosynthesis and nitrogen relationships in leaves of C3 plants. Oecologia 78: 9–19

    Google Scholar 

  • Evans JR and Terashima I (1987) Effects of nitrogen nutrition on electron transport components and photosynthesis in spinach. Aus J Plant Physiol 14: 59–68

    CAS  Google Scholar 

  • Ferrario-Méry S, Murchie E, Hirel B, Galtier N, Quick WP and Foyer CH (1997) Manipulation of the pathways of sucrose biosynthesis on nitrogen assimilation in transformed plants to improve photosynthesis and productivity. In: Foyer CH and Quick WP (eds) A Molecular Approach to Primary Metabolism in Higher Plants, pp 125–153. Taylor and Francis Publishers, London

    Google Scholar 

  • Ferrario-Méry S, Valadier MH and Foyer CH (1996) Short-term modulation of nitrate reductase activity by exogenous nitrate in Nicotiana plumbag inifolia and Zea mays leaves. Planta 199: 366–371

    Google Scholar 

  • Ferrario-Méry S, Valadier MH and Foyer CH (1998) Overexpression of nitrate reductase in tobacco delays drought-induced decreases in nitrate reductase activity and mRNA. Plant Physiol 117: 293–302

    PubMed  Google Scholar 

  • Ferrario S, Valadier M-H, Morot-Gaudry J-F and Foyer CH (1995) Effects of constitutive expression of nitrate reductase in transgenic Nicotiana plumbaginifolia L. in response to varying nitrogen supply. Planta 196: 288–294

    Article  CAS  Google Scholar 

  • Fichtner K and Schulze E-D (1992) The effect of nitrogen nutrition on annuals originating from habitats of different nitrogen availability. Oecologia 92: 236–241

    Article  Google Scholar 

  • Flora LL and Madore MA (1993) Stachyose and mannitol transport in olive (Olea europaea L.). Planta 189: 484–490

    Article  CAS  Google Scholar 

  • Foyer CH and Ferrario S (1994) Modulation of carbon and nitrogen metabolism in transgenic plants with a view to improved biomass production. Biochem Soc Trans 22: 909–915

    CAS  PubMed  Google Scholar 

  • Foyer CH and Galtier N (1996) Source-sink interaction and communication in leaves. In: Samski E, Schaffer AA (eds) Photoassimilate Distribution in Plants and Crops, pp 311–340. Marcel Dekker Inc., New York, Basel, Hong Kong

    Google Scholar 

  • Foyer CH, Lefebvre C, Provot M, Vincentz M and Vaucheret H (1993) Modulation of nitrogen and carbon metabolism in transformed Nicotiana plumbaginifolia mutant E23 lines expressing either increased or decreased nitrate reductase activity. In: White E, Kettlewell PS, Parry MA and Ellis RP (eds) Aspects of Applied Biology, pp 137–145. Association of Applied Biologists, Wellesbourn, Warwick

    Google Scholar 

  • Foyer CH, Noctor G, Lelandais M, Lescure JC, Valadier MH, Boutin JP and Horton P (1994) Short-term effects of nitrate, nitrite and ammonium assimilation on photosynthesis, carbon partitioning and protein phosphorylation in maize. Plant Physiol 192: 211–220

    CAS  Google Scholar 

  • Foyer CH, Valadier M-H, Migge A and Becker TW (1998) Drought-induced effects on nitrate reductase activity and mRNA and on the coordination of nitrogen and carbon metabolism in maize leaves. Plant Physiol 117: 283–292

    Article  CAS  PubMed  Google Scholar 

  • Galangau F, Daniel-Vedèle F, Moureaux T, Dorbe MF, Leydecker MT and Caboche M (1988) Expression of leaf nitrate reductase genes from tomato and tobacco in relation to light dark regimes and nitrate supply. Plant Physiol 88: 383–388

    CAS  Google Scholar 

  • Galtier N, Foyer CH, Huber J, Voelker TA and Huber SC (1993) Effects of elevated sucrose-phosphate synthase activity on photosynthesis, assimilate partitioning, and growth in tomato (Lycopersicon esculentum var UC82B). Plant Physiol 101: 535–543

    CAS  PubMed  Google Scholar 

  • Galtier N, Foyer CH, Murchie E, Alred R, Quick P, Voelker T, Thépenier C, Laseve G and Betsche T (1995) Effects of light and atmospheric carbon dioxide enrichment on photosynthesis and carbon partitioning in leaves of tomato (Lycopersicon esculentum) plants overexpressing sucrose phosphate synthase. J Exp Bot 46: 1335–1344

    CAS  Google Scholar 

  • Gehlen J, Panstruga R, Smets H, Merkelbach S, Kleines M, Porsch P, Fladung M, Becker I, Rademacher T, Hausler RE and Hirsch HJ (1996) Effects of altered phosphoenolpyruvate carboxylase activities on transgenic C3 plant Solanum tuberosum. Plant Mol Biol 32(5): 831–848

    Article  CAS  PubMed  Google Scholar 

  • Geiger M, Walch-Liu P, Engels C, Harnecker J, Schulze E-D, Ludewig F, Sonnewald U, Scheible W-R and Stitt M (1998) Enhanced carbon dioxide leads to a modified diurnal rhythm of nitrate reductase activity in older plants, and a large stimulation of nitrate reductase activity and higher levels of amino acids in young tobacco plants. Plant Cell Environ 21: 253–268

    Article  CAS  Google Scholar 

  • Gojon A and Touraine B (1995) Effects of NR gene overexpression on 15NO 3 uptake and reduction in transgenic tobacco, p. 49. 4th Intl Symposium on Inorganic Nitrogen Assimilation, Darmstadt, Germany

    Google Scholar 

  • Halford NG and Hardie DG (1998) SNF1-related protein kinases: Global regulators of carbon metabolism in plants? Plant Mol Biol 37: 735–748

    Article  CAS  PubMed  Google Scholar 

  • Hartwell J, Smith LH, Wilkins MB, Jenkins GI and Nimmo HG (1996) Higher plant phosphoenolpyruvate carboxylase kinase is regulated at the level of translatable mRNA in response to light or a circadian rhythm. Plant J 10: 1071–1078

    Article  CAS  Google Scholar 

  • Häusler RE, Blackwell RD, Lea PJ and Leegood RC (1994a) Control of photosynthesis in barley leaves with reduced activities of glutamine synthetase or glutamate synthase. I. Plant characteristics and changes in nitrate, ammonium and amino acids. Planta 194: 406–417

    Google Scholar 

  • Häusler RE, Lea PJ and Leegood RC (1994b) Control of photosynthesis in barley leaves with reduced activities of glutamine synthetase or glutamate synthase. II. Control of electron transport and CO2 assimilation. Planta 194: 418–435

    Google Scholar 

  • Häusler RE, Bailey KJ, Lea PJ and Leegood RC (1996) Control of photosynthesis in barley leaves with reduced activities of glutamine synthetase or glutamate synthase. III. Aspects of glyoxylate metabolism and effects of glyoxylate on the activation state of ribulose 1,5-bisphosphate carboxylase-oxygenase. Planta 2000: 388–396

    Google Scholar 

  • Heckathorn SA, De Lucia EH and Zielinski RE (1997) The contribution of drought-related decreases in foliar nitrogen concentration to decreases in photosynthetic capacity during and after drought in prairie grasses. Physiol Plant 101: 173–182

    Article  CAS  Google Scholar 

  • Heldt HW (1997) Pflanzenbiochemie, pp 274–306. Spektrum Akademisches Verlag, Heidelberg

    Google Scholar 

  • Hirel B, Marsolier MC, Hoarau A, Hoarau J, Brangeon J, Schafer R and Verma DPS (1992) Forcing expression of a soybean root glutamine synthetase gene in tobacco leaves induces a native gene encoding cytosolic enzyme. Plant Mol Biol 20: 207–218

    Article  CAS  PubMed  Google Scholar 

  • Hirel B, Phillipson B, Murchie E, Suzuki A, Kunz C, Ferrario-Méry S, Limani A, Chaillou S, Deleens E, Brugière N, Chaumont-Bonnet M, Foyer CH and Morot-Gaudry J-F (1997) Manipulating the pathway of ammonia assimilation in transgenic legumes and non-legumes. J Plant Nutrition and Soil Science. Z. Pflanzenernähr Bodenk 160: 283–290

    CAS  Google Scholar 

  • Hoff T, Truong H-N and Caboche M (1994) The use of mutants and transgenic plants to study nitrate assimilation. Plant Cell Environ 17: 489–506

    CAS  Google Scholar 

  • Huber JL and Huber SC (1992) Site-specific serine phosphorylation of spinach leaf sucrose-phosphate synthase. Biochem J 283: 877–882

    CAS  PubMed  Google Scholar 

  • Huber JL, Redinbaugh MG, Huber SC and Campbell WH (1994) Regulation of maize leaf nitrate reductase activity involves both gene expression and protein phosphorylation. Plant Physiol. 106: 1667–1674

    CAS  PubMed  Google Scholar 

  • Huber SC and Huber JL (1995) Metabolic activators of spinach leaf nitrate reductase: Effects on enzyme activity and dephosphorylation by endogenous phosphatases. Planta 196: 180–189

    Article  CAS  Google Scholar 

  • Huber SC and Huber JL (1996) Role and regulation of sucrosephosphate synthase in higher plants. Annu Rev Plant Physiol 47: 431–444

    CAS  Google Scholar 

  • Huber SC and Kaiser WM (1996) Regulation of C/N interactions in higher plants by protein phosphorylation. In: Verma DPS (ed) Signal Transduction in Plant Growth and Development, pp 87–112, Springer-Verlag, New York

    Google Scholar 

  • Huber SC, McMichael RW and Huber JL (1994) Control of plant enzyme activity by reversible protein phosphorylation. Intl Rev of Cytol 149: 47–98

    CAS  Google Scholar 

  • Huber SC, McMichael RW Jr, Bachmann M, Huber JL, Schannon JC, Kang K-K and Paul MJ (1996) Regulation of leaf sucrosephosphate synthase and nitrate reductase by reversible protein phosphorylation. In: Shewry PR, Halford NG and Hooley R (eds) Protein Phosphorylation in Plants, pp 20–34. Clarendon Press, Oxford

    Google Scholar 

  • Hudspeth RL, Grula JW, Kai Z, Edwards GE and Ku MSB (1992) Expression of maize phosphoenolpyruvate carboxylase in transgenic tobacco: Effects on biochemistry and physiology. Plant Physiol 98: 458–464

    CAS  Google Scholar 

  • Huppe HC and Turpin DH (1994) Integration of carbon and nitrogen metabolism in plant and algal cells. Annu Rev Plant Physiol Plant Mol Biol 45: 577–607

    Article  CAS  Google Scholar 

  • Huppe HC, Vanlerberghe GC and Turpin DH (1992) Evidence for activation of the oxideative pentose phosphate pathway during photosynthetic assimilation of NO3 but not NH +4 by a green algae. Plant Physiol 100: 2096–2099

    CAS  Google Scholar 

  • Huppe HC, Farr TJ and Turpin DH (1994) Coordination of chloroplastic metabolism in N limited Chlamydomonas reinhardtii by redox modulation. II. Redox modulation activates the oxidative pentose phosphate pathway during photosynthetic nitrate assimilation. Plant Physiol 105: 1043–1048

    CAS  PubMed  Google Scholar 

  • Ireland R (1997) Amino acid and ureide metabolism. In: Dennis DT, Turpin DH, Lefebvre DD and Layzell DB (eds) Plant Metabolism, pp 509–524. Addison Wesley Longman Limited, Harlow

    Google Scholar 

  • Jang JC, Leon P, Zhou L and Sheen J (1997) Hexokinase as a sugar sensor in higher plants. Plant Cell 9: 5–19

    Article  CAS  PubMed  Google Scholar 

  • Jiao J-A and Chollet R (1991) Posttranslational regulation of phosphoenolpyruvate carboxylase in C4 and Crassulacean acid metabolism plants. Plant Physiol 95: 981–985

    CAS  Google Scholar 

  • Joy KW, Blackwell RD and Lea PJ (1992) Assimilation of nitrogen in mutants lacking enzymes of the glutamate synthase cycle. J Exp Bot 43: 139–145

    CAS  Google Scholar 

  • Kaiser WM and Forster J (1989) Low CO2 prevents nitrate reduction in leaves. Plant Physiol 91: 970–974

    CAS  Google Scholar 

  • Kaiser WM and Huber SC (1994) Post-translational regulation of nitrate reductase in higher plants. Plant Physiol. 106: 817–821

    CAS  PubMed  Google Scholar 

  • Kaiser WM and Huber SC (1997) Correlation between apparent phosphorylation state of nitrate reductase (NR), NR hysteresis and degradation of NR protein. J Exp Bot 48: 1367–74

    Article  CAS  Google Scholar 

  • Kaiser WM and Spill D (1991) Rapid modulation of spinach leaf nitrate reductase by photosynthesis, II: In vitro modulation by ATP and AMP. Plant Physiol. 96: 368–375

    CAS  Google Scholar 

  • Kendall AC, Wallsgrove RM, Hall NP, Turner JC and Lea PJ (1986) Carbon and nitrogen metabolism in barley (Hordeum vulgare L.) mutants lacking ferredoxin-dependent glutamate synthase. Planta 168: 316–323

    Article  CAS  Google Scholar 

  • Kogami H, Shono M, Koike T, Yanagisawa S, Izui K, Sentoku N, Tanifuji S, Uchimiya H and Toki S (1994) Molecular and physiological evaluation of transgenic tobacco plants expressing a maize phosphoenolpyruvate carboxylase gene under the control of the cauliflower mosaic virus 35S promoter. Transgenic Res 3: 287–296

    Article  CAS  Google Scholar 

  • Krömer S (1995) Respiration during photosynthesis. Ann Rev Plant Physiol Plant Mol Biol 46: 45–70

    Google Scholar 

  • Krömer S and Heldt HW (1991) On the role of mitochondrial oxidative phosphorylation in photosynthesis metabolism as studied by the effect of oligomycin on photosynthesis in protoplasts and leaves of barley (Hordeum vulgare). Plant Physiol 95: 1270–1276

    Google Scholar 

  • Krömer S, Stitt M and Heldt HW (1988) Mitochondrial oxidative phosphorylation participating in photosynthetic metabolism of a leaf cell. FEBS Lett 226: 352–356

    Google Scholar 

  • Lam H-M, Coshigano K, Oliveira I, Melo-Oliveira R and Coruzzi G (1996) The molecular genetics of nitrogen assimilation into amino acids in higher plants. Annu Rev Plant Physiol Plant Mol Biol 47: 569–593

    Article  CAS  PubMed  Google Scholar 

  • Lam HM, Peng, SS-Y and Coruzzi GM (1994) Metabolic regulation of the gene encoding glutamine-dependent asparagine synthetase in Arabidopsis thaliana. Plant Physiol 106: 1347–1357

    Article  CAS  PubMed  Google Scholar 

  • Lam H-M, Coschigano K, Schultz C, Melo-Oliveira R, Tjaden G, Oliveira I, Ngai N, Hsieh M-H and Coruzzi G (1995) Use of Arabidopsis mutants and genes to study amide amino acid biosynthesis. Plant Cell 7: 887–898

    Article  CAS  PubMed  Google Scholar 

  • Lea PJ and Miflin BJ (1974) An alternative route for nitrogen assimilation in higher plants. Nature 251: 614–616

    Article  CAS  PubMed  Google Scholar 

  • Lea PJ, Blackwell RD and Joy KW (1992) Ammonia assimilation. In: Mengel K and Pillbean DJ (eds) Nitrogen Metabolism in Plants, pp 153–186. Clarendon Press, Oxford

    Google Scholar 

  • Leegood RC, Lea PJ, Adcock MD and Hausler E (1995) The regulation and control of photorespiration. J Exp Bot 46: 1397–1414

    CAS  Google Scholar 

  • Leegood RC, Lea PJ and Hausler RE (1996) Use of barley mutants to study the control of photorespiratory metabolism. Biochem Soc Trans 24: 757–762

    CAS  PubMed  Google Scholar 

  • Li B, Zhang X-Q and Chollet R (1996) Phosphoenolpyruvate carboxylase kinase in tobacco leaves is activated by light in a similar but not identical way as in maize. Plant Physiol 111: 497–505

    CAS  PubMed  Google Scholar 

  • Lillo C and Ruoff P (1992) Hysteretic behavior of nitrate reductase. Evidence of an allosteric binding site for reduced pyridine nucleotide. J Biol Chem 267: 13456–13459

    CAS  PubMed  Google Scholar 

  • Loescher WH and Everard JD (1996) Sugar alcohol metabolism in sinks and sources. In: Zamski E and Schaffer AA (eds) Photoassimilate Distribution in Plants and Crops: Source-Sink Relationships, pp 185–207. Marcel Dekker, New York

    Google Scholar 

  • Makino A, Mae T and Ohira K (1984) Changes in photosynthetic capacity in rice leaves from emergence through senescence. Analysis of ribulose-1, 5-bisphosphate carboxylase and leaf conductance. Plant Cell Physiol 25: 511–521

    CAS  Google Scholar 

  • Matsuoka M, Kyosuka J, Shimamoto K and Kano-Murakami Y (1994) The promoters of two carboxylases in a C4 plant (maize) direct cell-specific, light-regulated expression in a C3 plant (rice). Plant J 6: 311–319

    Article  CAS  PubMed  Google Scholar 

  • McMichael RW Jr, Bachmann M and Huber SC (1995) Spinach leaf sucrose-phosphate synthase and nitrate reductase are phosphorylated/inactivated by multiple protein kinases in vitro. Plant Physiol 108: 1077–1082

    CAS  PubMed  Google Scholar 

  • Mendel RR and Schwarz G (1999) Molybdoenzymes and molybdenum cofactor in plants. Crit Rev in Plant Sci 18: 33–69

    CAS  Google Scholar 

  • Miao GH, Hirel B, Marsolier MC, Ridge RW and Verma DPS (1991) Ammonia-regulated expression of a soybean gene encoding cytosolic glutamine synthetase in transgenic Lotus corniculatus. Plant Cell 3: 11–22

    Article  CAS  PubMed  Google Scholar 

  • Micallef BJ, Haskins KA, Vanderveer PJ, Roh KS, Shewmaker CK and Sharkey TD (1995) Altered photosynthesis, flowering, and fruiting in transgenic tomato plants that have an increased capacity for sucrose synthesis. Planta 196: 327–334

    Article  CAS  Google Scholar 

  • Millar AH and Day DA (1996) Nitric oxide inhibits the cytochrome oxidase but not the alternative oxidase of plant mitochondria. FEBS Lett 398: 155–158

    Article  CAS  PubMed  Google Scholar 

  • Millar AH and Day DA (1997) Alternative solutions to radical problems. Trends Plant Sci 8: 289–290

    Google Scholar 

  • Moorhead G, Douglas P, Morrice N, Scarabel M, Aitken A and MacKintosh C (1996) Phosphorylated nitrate reductase from spinach leaves is inhibited by 14-3-3 proteins and activated by fusicoccin. Curr Biol 6: 1104–1113

    Article  CAS  PubMed  Google Scholar 

  • Morcuende R, Krapp A, Hurry V and Stitt M (1998) Sucrose-feeding leads to increased rates of nitrate assimilation, increased rates of α-oxoglutarate synthesis and increased synthesis of a wide spectrum of amino acids in tobacco leaves. Planta 206: 394–409

    Article  CAS  Google Scholar 

  • Morris PF, Layzell DB and Canvin DT (1989) Photorespiratory ammonia does not inhibit photosynthesis in glutamate synthase mutants of Arabidopsis. Plant Physiol 89: 498–500

    CAS  Google Scholar 

  • Müller A and Mendel R (1989) Biochemical and somatic cell genetics of nitrate reduction in Nicotiana. In: Wray JL and Kinghorn JL (eds) Molecular and Genetic Aspects of Nitrate Assimilation, pp 166–185. Oxford Science Publications, Oxford

    Google Scholar 

  • Muslin AJ, Tanner JW, Allen PM and Shaw AS (1996) Interaction of 14-3-3 with signaling proteins is mediated by the recognition of phosphoserine. Cell 84: 889–897

    Article  CAS  PubMed  Google Scholar 

  • Navarro MT, Preito R, Fernandez E and Galvan A (1996) Constitutive expression of nitrate reductase changes the regulation of nitrate and nitrite transporters in Chlamydomonas reinhardtii. Plant J 9: 819–827

    Article  CAS  Google Scholar 

  • Nguyen-Quoc B, N’tchobo H, Foyer CH and Yelle S (1999) Overexpression of sucrose phosphate synthase increases sucrose unloading in transformed tomato fruit. J Exp Bot 50: 785–791

    CAS  Google Scholar 

  • Noctor G and Foyer CH (1998) A re-evaluation of the ATP: NADPH budget during C3 photosynthesis. A contribution from nitrate assimilation and its associated respiratory activity? J Exp Bot 49: 1895–1908

    CAS  Google Scholar 

  • Nusaumme L, Vincentz M, Meyer C, Boutin J-P and Caboche M (1995) Post-transcriptional regulation of nitrate reductase by light is abolished by an N-terminal deletion. Plant Cell 7: 611–621

    Google Scholar 

  • O’Leary MH (1982) Phosphoenolpyruvate carboxylase: An enzymologist’s view. Annu Rev Plant Physiol 33: 297–315

    Google Scholar 

  • Ozcan S, Dover J, Rosenwald AG, Wolfi S and Johnston M (1996) Two glucose transporters in Saccharomyces cerevisiae are glucose sensors that generate a signal for the induction of gene expression. Proc Natl Acad Sci, USA 93: 12428–12432

    Article  CAS  PubMed  Google Scholar 

  • Pace GH, Volk RJ and Jackson WA (1990) Nitrate reduction in response to CO2-limited photosynthesis. Relationship to carbohydrate supply and nitrate reductase activity in maize seedlings. Plant Physiol 92: 286–292

    CAS  Google Scholar 

  • Pacquit V, Santi S, Cretin C, Bui VL, Vidal J and Gadal P (1993) Production and properties of recombinant C3-type phosphoenolpyruvate carboxylase from Sorghum vulgare: In vitro phosphorylation by leaf and root PyrPC protein serine kinases. Biochem Biophys Res Comm 197: 1415–1423

    Article  CAS  PubMed  Google Scholar 

  • Pathirana MS, Samac DA, Roeven R, Yoshioka H, Vance CP and Gantt JS (1997) Analyses of phosphoenolpyruvate carboxylase gene structure and expression in alfalfa nodules. Plant J 12(2): 293–304

    Article  CAS  PubMed  Google Scholar 

  • Quilleré I, Dufossé C, Roux Y, Foyer CH, Caboche M and Morot-Gaudry JF (1994) The effects of the deregulation of NR gene expression on growth and nitrogen metabolism of winter-grown Nicotiana plumbaginifolia. J Exp Box 45: 1205–1212

    Google Scholar 

  • Reins B, Lohaus G, Winter H and Heldt HW (1994) Production and diurnal utilization of assimilates in leaves of spinach (Spinacia oleracea L.) and barley (Hordeum vulgare L.) Planta 192: 497–501

    Google Scholar 

  • Rennenberg H, Kreutzer K, Papen H and Weber P (1998) Consequences of high loads of nitrogen for spruce (Picea abies) and beech (Fagus sylvatica) forests. New Phytol 139: 71–86

    Article  CAS  Google Scholar 

  • Scheible W-R, Lauerer M, Schulze E-D, Caboche M and Stitt M (1997a) Accumulation of nitrate in the shoots acts as a signal to regulate shoot to root allocation in tobacco. Plant J 11: 671–691

    Article  CAS  Google Scholar 

  • Scheible W-R, González-Fontes A, Morcuende R, Lauerer M, Geiger M, Glaab J, Gojon A, Schulze E-D, Caboche M and Stitt M (1997b) Tobacco mutants with a decreased number of functional nia-genes compensate by modifying the diurnal regulation of transcription, post-translational modification and turnover of nitrate reductase. Planta 203: 304–319

    Article  CAS  PubMed  Google Scholar 

  • Scheible W-R, González-Fontes A, Lauerer M, Müller-Röber B, Caboche M and Stitt M (1997c) Nitrate acts as a signal to induce organic acid metabolism and repress starch metabolism in tobacco. Plant Cell 9: 783–798

    Article  CAS  PubMed  Google Scholar 

  • Signora L, Galtier N, Skøt L, Lucas H and Foyer CH (1998) Overexpression of sucrose phosphate synthase in Arabidopsis thaliana results in increased foliar sucrose/starch ratios and favours decreased foliar carbohydrate accumulation in plants after prolonged growth with CO2 enrichment. J Exp Bot 49: 669–680

    Article  CAS  Google Scholar 

  • Smeekens S and Rook F (1997) Sugar sensing and sugar-mediated signal transduction in plants. Plant Physiol 115: 7–13

    CAS  PubMed  Google Scholar 

  • Somerville CR (1986) Analysis of photosynthesis and photorespiration using mutants of higher plants and algae. Annu Rev Plant Physiol 37: 467–507

    Article  CAS  Google Scholar 

  • Somerville CR and Ogren WL (1980) Inhibition of photosynthesis in Arabidopsis lacking leaf glutamate synthase activity. Nature 286: 257–260

    Article  CAS  Google Scholar 

  • Stitt M (1986) Limitation of photosynthesis by carbon metabolism. I. Evidence for excess electron transport capacity in leaves carrying out photosynthesis in saturating light and CO2. Plant Physiol 81: 1115–1122

    CAS  Google Scholar 

  • Stitt M and Schulze E-D. (1994) Does Rubisco control the rate of photosynthesis and plant growth? An exercise in molecular ecophysiology. Plant Cell Environ 17: 518–552

    Google Scholar 

  • Stockhaus J, Poetsch W, Steinmuller K and Westhoff P (1994) Evolution of the C4 phosphoenolpyruvate carboxylase promoter of the C4 dicot Flaveria trinerva: An expression analysis in the C3 plant tobacco. Mol Gen Genet 245: 286–293

    Article  CAS  PubMed  Google Scholar 

  • Stöhr C, Tischner R and Ward M R (1993) Characterisation of the plasma membrane-bound nitrate reductase in Chlorella saccharophila (Krüger) Nadson. Planta 191: 79–85

    Google Scholar 

  • Stöhr C and Ullrich WR (1997) A succinate-oxidising nitrate reductase is located at the plasma membrane of plant roots. Planta 203: 129–132

    Google Scholar 

  • Su W, Huber SC and Crawford NM (1996) Identification in vitro of a post-transcriptional regulatory site in the hinge 1 region of Arabidopsis nitrate reductase. Plant Cell 8: 519–527

    Article  CAS  PubMed  Google Scholar 

  • Tagu D, Cretin C, Bergounioux C, Lepiniec L and Gadal P (1991) Transcription of a sorghum phosphoenolpyruvate carboxylase gene in transgenic tobacco leaves: Maturation of monocot PRE-mRNA by dicot cells. Plant Cell Reports 9: 688–690

    Article  CAS  Google Scholar 

  • Temple SJ, Knight TJ, Unkefer PJ and Sengupta-Gopalan C (1993) Modulation of glutamine synthetase gene expression in tobacco by the introduction of an alfalfa glutamine synthetase gene in sense and antisense orientation: Molecular and biochemical analysis. Mol Gen Genet 236: 315–325

    Article  CAS  PubMed  Google Scholar 

  • Temple SJ and Sengupta-Gopalan C (1997) Manipulating amino acid biosynthesis. In: Foyer CH and Quick WP (eds) Molecular approach to Primary Metabolism in Higher Plants, pp 155–177, Taylor and Francis, London

    Google Scholar 

  • Tjaden G and Coruzzi GM (1994) A novel AT-rich DNA binding protein that combines an HMG I like DNA binding domain with a putative transcription domain. Plant Cell 6: 107–118

    Article  CAS  PubMed  Google Scholar 

  • Toroser D and Huber SC (1997) Protein phosphorylation as a mechanism for osmotic-stress activation of sucrose-phosphate synthase in spinach (Spinacia oleracea L.) leaves. Plant Physiol 114: 947–955

    Article  CAS  PubMed  Google Scholar 

  • Turpin DH, Weger HG and Huppe HC (1997) Interactions between photosynthesis, respiration and nitrogen assimilation. In: Dennis DT, Turpin DH, Lefebvre DD and Layzeel DB (eds) Plant Metabolism, pp 509–524, Longman, Singapore

    Google Scholar 

  • Vanlerberghe GC, Huppe HC, Vlossak KDM and Turpin DH (1991) Activation of respiration to support dark NO +3 and NH +4 assimilation in the green alga Selenastrum minutum. Plant Physiol 99: 495–500

    Google Scholar 

  • Vaucheret H, Chabaud M, Kronenberger J and Caboche M (1990) Functional complementation of tobacco and Nicotiana plumbaginifolia nitrate reductase deficient mutants by transformation with the wild-type alleles of the tobacco structural genes. Mol Gen Genet 220: 468–474

    Article  CAS  Google Scholar 

  • Vincent R, Fraisier V, Chaillou S, Limami MA, Deleens E, Phillipson B, Douat C, Boutin J-P and Hirel B (1997) Overexpression of a soybean gene encoding cytosolic glutamine synthetase in shoots of transgenic Lotus corniculatus L. plants triggers changes in ammonium assimilation and plant development. Planta 201: 424–433

    Article  CAS  PubMed  Google Scholar 

  • Vincentz M and Caboche M (1991) Constitutive expression of nitrate reductase allows normal growth and development of Nicotiana plumbaginifolia plants. EMBO J 10: 1027–1035

    CAS  PubMed  Google Scholar 

  • Vincentz M, Moureaux T, Leydecker M-T, Vauchere H and Caboche M (1993) Regulation of nitrate and nitrite reductase expression in Nicotiana plumbaginifolia leaves by nitrogen and carbon metabolites. Plant J 3: 315–324

    Article  CAS  PubMed  Google Scholar 

  • Wallsgrove RM, Turner JC, Hall NP, Kendall AC and Bright SWJ (1987) Barley mutants lacking chloroplast glutamine synthetase—biochemical and genetic analysis. Plant Physiol 83: 155–158

    CAS  Google Scholar 

  • Waring RH, McDonald AJS, Larsson S, Ericsson T, Wiren A, Arwidsson E, Ericsson A and Lohammar T (1985) Differences in chemical composition of plants grown at constant relative growth rates with stable mineral nutrition. Oecologia 66: 157–160

    Article  Google Scholar 

  • Warner RL and Huffaker RC (1989) Nitrate transport is independent of NADH and NAD(P)H nitrate reductases in barley seedlings. Plant Physiol 91: 947–953

    CAS  PubMed  Google Scholar 

  • Warner RL and Kleinhofs A (1981) Nitrate utilization by nitrate reductase-deficient barley mutants. Plant Physiol 67: 740–743

    CAS  Google Scholar 

  • Weber H, Buchner P, Borisjuk L and Wobus U (1996) Sucrose metabolism during cotyledon development of Vicia faba L. is controlled by the concerted action of both sucrose-phosphate synthase and sucrose synthase: Expression patterns, metabolic regulation and implications for seed development. Plant J 9: 841–850

    Article  CAS  PubMed  Google Scholar 

  • Weiner H (1997) Protein phosphatase 2A in spinach leaves: A sensor for the metabolic phosphate and sugar status? In: Gadal P, Kreis M, Dron M, Brulfert J, Bergounioux D and Vidal J (eds) Protein Phosphorylation in Plants, pp 136–139, University of Paris-Sud, Orsay, France

    Google Scholar 

  • Weiner H, McMichael RW Jr and Huber SC (1992) Identification of factors regulating the phosphorylation status of sucrose-phosphate synthase in vivo. Plant Physiol 99: 1435–1442

    CAS  Google Scholar 

  • Wilkinson JQ and Crawford NM (1993) Identification and characterisation of a chlorate-resistant mutant of Arabidopsis thaliana with mutations in both nitrate reductase structural genes NIA1 and NIA2. Mol Gen Genet 239: 289–297

    CAS  PubMed  Google Scholar 

  • Worrell AC, Bruneau JM, Summerfelt K, Boersig M and Voelker TA (1991) Expression of a maize sucrose-phosphate synthase in tomato alters leaf carbohydrate partitioning. Plant Cell 3: 1121–1130

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Kluwer Academic Publishers

About this chapter

Cite this chapter

Foyer, C.H., Ferrario-Méry, S., Huber, S.C. (2000). Regulation of Carbon Fluxes in the Cytosol: Coordination of Sucrose Synthesis, Nitrate Reduction and Organic Acid and Amino Acid Biosynthesis. In: Leegood, R.C., Sharkey, T.D., von Caemmerer, S. (eds) Photosynthesis. Advances in Photosynthesis and Respiration, vol 9. Springer, Dordrecht. https://doi.org/10.1007/0-306-48137-5_8

Download citation

  • DOI: https://doi.org/10.1007/0-306-48137-5_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6143-5

  • Online ISBN: 978-0-306-48137-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics