Skip to main content

Induction of Crassulacean Acid Metabolism—Molecular Aspects

  • Chapter
Photosynthesis

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 9))

Summary

Crassulacean acid metabolism (CAM) represents a notable adaptation to photosynthetic CO2 fixation that affords plants a competitive advantage in CO2−or water-limiting environments. The physiological and biochemical characteristics of CAM are well understood, as are the ecophysiological implications of the pathway. As our knowledge expands, it has become increasingly evident that the CAM adaptation exhibits an enormous degree of metabolic plasticity, especially in the extent to which CAM is influenced by environmental and developmental factors. In many species, CAM is induced in response to environmental stress conditions or as part of a developmental progression towards maturity. Our current understanding of induction, relationship to environmental factors, and regulation of the CAM cycle at the molecular genetic level will be reviewed. Since 1989, with the characterization of the first genes from a CAM plant, mechanisms have been uncovered which reveal the dependence of CAM gene regulation on a host of factors including plant growth regulators, various abiotic stresses, light, and circadian rhythms. The regulation of CAM gene expression occurs predominantly at the transcriptional level; however, posttranscriptional, translational, and posttranslational regulatory events play additional roles in fine-tuning the expression of the pathway in response to environmental changes and in synchrony with plant development. One of the most captivating areas of CAM research, for the foreseeable future, is centered around understanding perception and signal transduction mechanisms that induce CAM and control circadian rhythm. Finally, development of genetic models and new approaches using transgenic CAM plants promise to enhance our understanding of the molecular basis of CAM induction in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 509.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 649.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 649.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

ABA:

abscisic acid

6-BAP:

6-benzylaminopurine

CAM:

Crassulacean Acid Metabolism

CaM:

calmodulin

cGMP:

cyclic guanosine 3′-5′-cyclic monophosphate

enolase:

2-phospho-D-glycerate hydrolase

EGTA:

Ethylene glycol-bis (β-aminoethyl ether) N,N,N’,N’-tetraacetic acid

EMS:

ethyl methane sulfonate

ER:

endoplasmic reticulum

EST:

expressed sequence tag

FBP:

fructore-1, 6-bisphosphatase

GAPDH:

glyceraldehyde-3-phosphate dehydrogenase

HMG:

high mobility group

MAL:

malate

MDH:

malate dehydrogenase

IP3:

inositol 1, 4, 5-triphosphate

MAPK:

mitogen activated protein kinase

ME:

malic enzyme

MJA:

methyl jasmonate

MYB:

myeloblastosis proto-oncogene product

NAD:

nicotinamide adenine dinucleotide, oxidized

NADP:

nicotinamide adenine dinucleotide phosphate, oxidized

OAA:

oxaloacetate

Pi:

inorganic orthophosphate

PEP:

phosphoenolpyruvate

PEPC:

phosphoenolpyruvate carboxylase

PEPCK:

PEP carboxykinase

PGM:

phosphoglyceromutase

PP1:

protein phosphatase 1

PP2A:

protein phosphatase 2A

PP2B:

protein phosphatase 2B (calcineurin)

PPDK:

pyruvate orthophosphate dikinase

RPK:

receptor protein kinase

Rubisco:

ribulose 1,5-bisphosphate carboxylase/oxygenase

T-DNA:

transferred DNA

V-ATPase:

V-type H1-translocating ATPase

References

  • Adams P, Nelson DE, Yamada S, Chmara W, Jensen RG, Griffiths H and Bohnert HJ (1998) Growth and development of Mesembryanthemum crystallinum (Aizoaceae). New Phytol 138: 171–190

    Article  CAS  Google Scholar 

  • Aida R and Shibata M (1996) Transformation of Kalanchoë blossfeldiana mediated by Agrobacterium tumefaciens and transgene silencing. Plant Sci 121: 175–185

    Article  CAS  Google Scholar 

  • Altmann T, Felix G, Jessop A, Kauschman A, Uwer U, Penacortes H and Willmitzer L (1995) Ac/Ds transposon mutagenesis in Arabidopsis thaliana: Mutantspectrum and frequency of Ds insertion mutants. Mol Gen Genet 247: 646–652

    Article  PubMed  CAS  Google Scholar 

  • Anderson CM and Wilkins MB (1989a) Period and phase control by temperatures in the circadian rhythm of CO2 exchange in illuminated leaves of Bryophyllum fedtschenkoi. Planta 177: 456–69

    CAS  Google Scholar 

  • Anderson CM and Wilkins MB (1989b) Control of the circadian rhythm of carbon dioxide assimilation in Bryophyllum leaves by exposure to darkness and high carbon dioxide concentrations. Planta 177: 401–408

    CAS  Google Scholar 

  • Anderson CM and Wilkins MB (1989c) Phase resetting of the circadian rhythm of carbon dioxide assimilation Bryophyllum fedtschenkoi leaves in relation to their malate content following briefexposure to high and low temperatures, darkness, and 5% carbon dioxide. Planta 180: 61–73

    CAS  Google Scholar 

  • Anderson LE, Li D, Parakeet N and Stevens FJ (1995) Identification of potential redox-sensitive cysteines in cytosolic forms of fructosebisphosphatase and glyceraldehyde-3-phosphate dehydrogenase. Planta 196: 118–124

    PubMed  CAS  Google Scholar 

  • Anderson SL and Kay SA (1996) Illuminating the mechanism of the circadian clock in plants. Trends Plant Sci 1: 51–57

    Article  Google Scholar 

  • Andolfatto R, Bornhouser A, Bohnert HJ and Thomas JC (1994) Transformed hairy roots of Mesembryanthemum crystallinum: Gene expression patterns upon salt stress. Physiol Plant 90: 708–714

    Article  Google Scholar 

  • Barbier-Brygoo H, Joyard J, Pugin A and Ranjeva R (1997) Intracellular compartmentation and plant cell signalling. Trends Plant Sci 2: 214–222

    Article  Google Scholar 

  • Barkla BJ, Zingarelli L, Blumwald E and Smith JAC (1995) Tonoplast Na2/H antiport activity and its energization by the vacuolar H1-ATPase in the halophytic plant Mesembryanthemum crystallinum L. Plant Physiol 109: 549–556

    PubMed  CAS  Google Scholar 

  • Bartholomew DM, Rees DJG, Rambaut A and Smith JAC (1996) Isolation and sequence analysis of a cDNA encoding the c subunit of a vacuolar-type H1-ATPase from the CAM plant Kalanchoë diagremontiana. Plant MolecBiol 31: 435–442

    CAS  Google Scholar 

  • Bastide B, Sipes D, Hann J and Ting IP (1993) Effect of severe water stress on aspects of Crassulacean acid metabolism in Xerosicyos. Plant Physiol 103: 1089–1096

    PubMed  CAS  Google Scholar 

  • Baur B, Dietz KJ and Winter K (1992) Regulatory protein phosphorylation of phosphoenolpuruvate carboxylase in the facultative Crassulacean-acid-metabolism plant Mesembryanthemum crystallinum L. Eur J Biochem 209: 95 101

    Article  PubMed  CAS  Google Scholar 

  • Baur B, Fisher K, Winter K and Dietz KJ (1994) cDNA sequences of a protein kinase from the halophyte Mesembryanthemum crystallinum L., encoding a SNF-1 homologue. Plant Physiol 106: 1225–1226

    Article  PubMed  CAS  Google Scholar 

  • Becker A, Canut H, Lüttge U, Maeshima M, Marigo G and Ratajczak R (1995) Purification and immunological comparison of the tonoplast H1-pyrophosphatase from cells of Catharanthus roseus and leaves from Mesembryanthemum crystallinum performing C3-photosynthesis and the obligate CAM-plant Kalanchoë daigremontiana. J Plant Physiol 146: 88–94

    CAS  Google Scholar 

  • Bethke PC, Gilroy S and Jones RL (1995) Calcium and plant hormone action. In: Davies PJ (ed) Plant Hormones: Physiology, Biochemistry and Molecular Biology, pp 298–317. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Binns AN (1994) Cytokinin accumulation and action: Biochemical, genetic, and molecular approaches. Annu Rev Plant Physiol Plant Mol Biol 45: 173–196

    Article  CAS  Google Scholar 

  • Blackwell RD, Murray AJS, Lea PJ, Kendall AC, Hall NP, Turner JC and Wallsgrove RM (1988) The value of mutants unable to carry out photorespiration. Photosynth Res 16: 155–176.

    Article  Google Scholar 

  • Bohnert HJ and Jensen RG (1996) Strategies for engineering water-stress tolerance in plants. Trends Biotech 14: 89–97

    CAS  Google Scholar 

  • Bohnert HJ, Thomas JC, DeRocher EJ, Michalowski CB, Breiteneder H, Vernon DM, Deng W, Yamada S and Jensen RG (1994) Responses to salt stress in the halophyte Mesembryanthemum crystallinum. In: Cherry JH (ed) Biochemical and Cellular Mechanisms of Stress Tolerance in Plants, pp 415–428. Springer-Verlag, Berlin

    Google Scholar 

  • Bohnert HJ, DeRocher EJ, Michalowski CB and Jensen RG (1999) Environmental stress and chloroplast metabolism. In: Bansal KC (ed) Recent Advances in Plant Molecular Biology. Oxford and IBH Publishers, New Delhi, in press

    Google Scholar 

  • Borland AM and Griffiths H (1996) Variations in the phases of Crassulacean acid metabolism and regulation of carboxylation patterns determined by carbon-isotope-discrimination techniques. In: Winter K and Smith JAC (eds) Crassulacean Acid Metabolism. Biochemistry, Ecophysiology and Evolution, Vol 114, pp 230–249. Springer-Verlag, Berlin

    Google Scholar 

  • Boulanger F, Berkaloff A and Richaud F (1986) Identification of hairy root loci in the T-regions of Agrobacterium rhizogenes Ri plasmids. Plant Mol Biol 6: 271–279

    Article  CAS  Google Scholar 

  • Bowler C, Neuhaus G, Yamagata H and Chua NH (1994a) Cyclic GMP and calcium mediated phytochrome phototransduction. Cell 77: 73–81

    Article  PubMed  CAS  Google Scholar 

  • Bowler C, Yamagata H, Neuhaus G and Chua NH (1994b) Phytochrome signal transduction pathways are regulated by reciprocal control mechanisms. Genes Dev 8: 2188–2202

    PubMed  CAS  Google Scholar 

  • Braun DM and Walker JC (1996) Plant transmembrane receptors: New pieces in the signaling puzzle. Trends Biochem Sci 21: 70–73

    Article  PubMed  CAS  Google Scholar 

  • Braun DM, Stone JM and Walker JC (1997) Interaction of the maize and Arabidopsis kinase interaction domains with a subset of receptor-like protein kinases: Implications for transmembrane signaling in plants. Plant J 12: 83–95

    Article  PubMed  CAS  Google Scholar 

  • Bray (1997) Plant responses to water deficit. Trends Plant Sci 2: 48–54

    Article  Google Scholar 

  • Breiteneder H, Michalosski CB and Bohnert HJ (1994) Environmental stress-mediated differential 3’ end formation of chloroplast RNA-binding protein transcripts. Plant Molec Biol 26: 833–849

    CAS  Google Scholar 

  • Brulfert J, Guerrier D and Queiroz O (1975) Photoperiodism and enzyme rhythms: Kinetic characteristics of the photoperiodic induction of Crassulacean acid metabolism. Planta 125: 33–44

    Article  CAS  Google Scholar 

  • Brulfert J, Müller D, Kluge M and Queiroz O (1982a) Photoperiodism and Crassulacean acid metabolism I. Immunological and kinetic evidences for different patterns of phosphoenolpyruvate carboxylase isoforms in photoperiodically inducible and non-inducible Crassulacean acid metabolism plants. Planta 154: 326–331

    CAS  Google Scholar 

  • Brulfert J, Guerrier D and Queiroz O (1982b) Photoperiodism and Crassulacean acid metabolism II. Relations between lead aging and photoperiod in Crassulacean acid metabolism induction. Planta 154: 332–338

    CAS  Google Scholar 

  • Brulfert J, Vidal J, Keryer E, Thomas M, Gadal P and Queiroz O (1985) Phytochrome control of phosphoenolpyruvate carboxylase synthesis and specific RNA level during photoperiodic induction in a CAM plant and during greening in a C4 plant. Physiol Vég 23: 921–928

    CAS  Google Scholar 

  • Brulfert J, Vidal J, Le Marechal P, Gadal P, Queiroz Q, Kluge M and Krüger (1986) Phosphorylation-dephosphorylation process as a probable mechanism for the diurnal regulatory changes of phosphoenolpyruvate carboxylase in CAM plants. Biochem Biophys Res Commun 136: 151–159

    Article  PubMed  CAS  Google Scholar 

  • Brulfert J, Mricha A, Sossountzov L and Queiroz Q (1987) CAM induction by photoperiodism in green callus cultures from a CAM plant. Plant Cell Environ 10: 443–449

    CAS  Google Scholar 

  • Brulfert J, Kluge M, Güclü S and Queiroz O (1988) Interaction of photoperiod and drought as CAM inducing factors in Kalanchoë blossfeldiana Poelln., cv. Tom Thumb. J Plant Physiol 133: 222–227

    CAS  Google Scholar 

  • Brulfert J, Güclü S, Taybi T and Pierre JN (1993) Enzymatic responses to water stress in detached leaves of the CAM plant Kalanchoë blossfeldiana Poelln. Plant Physiol Biochem 31: 491–197

    CAS  Google Scholar 

  • Buchanan-Bollig IC and Smith JAC (1984a) Circadian rhythms in Kalanchoë: Effects of the irradiance and temperature on gas exchange and carbon metabolism. Planta 160: 264–271

    Article  CAS  Google Scholar 

  • Buchanan-Bollig IC and Smith JAC (1984b) Circadian rhythms in Crassulacean acid metabolism: Phase relationships between gas exchange, leaf water relations and malate metabolism in Kalanchoë daigremontiana. Planta 160: 314–319

    Article  Google Scholar 

  • Bush DS (1995) Calcium regulation in plant cells and its role in signaling. Ann Rev Plant Physiol Plant Mol Biol 46: 95–122

    CAS  Google Scholar 

  • Carter PJ, Nimmo HG, Fewson CA and Wilkins MB (1990) Bryophyllum fedtschenkoi protein phosphatase 2A can dephosphorylate phosphoenolpyruvate carboxylase. FEBS Lett 263: 233–236

    Article  CAS  Google Scholar 

  • Carter PJ, Nimmo HG, Fewson CA and Wilkins MB (1991) Circadian rhythms in the activity of a plant protein kinase. EMBO J 10: 2063–2068

    PubMed  CAS  Google Scholar 

  • Carter PJ, Wilkins MB, Nimmo HG and Fewson CA (1995a) The role of temperature in the regulation of the circadian rhythm of CO2 fixation in Bryophyllum fedtschenkoi. Planta 196: 381–386

    CAS  Google Scholar 

  • Carter PJ, Wilkins MB, Nimmo HG and Fewson CA (1995b) Effects of temperature on the activity of phosphoenolpyruvate carboxylase and on the control of fixation in Bryophyllum fedtschenkoi. Planta 196: 375–380

    CAS  Google Scholar 

  • Carter PJ, Fewson CA, Nimmo GA, Nimmo HG and Wilkins MB. (1996) Role of circadian rhythms, light and temperature in the regulation of phosphoenolpyruvate carboxylase in Crassulacean acid metabolism. In: Winter K and Smith JAC (eds) Crassulacean Acid Metabolism. Biochemistry, Ecophysiology and Evolution, Vol 114, pp 46–52. Springer-Verlag, Berlin

    Google Scholar 

  • Caspar T, Huber SC and Somerville C (1985) Alterations in growth, photosynthesis and respiration in a starchless mutant of Arabidopsis thaliana (L.) deficient in chloroplast phosphoglucomutase activity. Plant Physiol 79: 11–7

    CAS  Google Scholar 

  • Cheng S-H and Edwards GE (1991) Influence of long photoperiods on plant development and expression of Crassulacean acid metabolism in Mesembryanthemum crystallinum. Plant Cell Environ 14: 271–278

    CAS  Google Scholar 

  • Chollet R, Vidal J and O’Leary MH (1996) Phosphoenolpyruvate carboxylase: A ubiquitous, highly regulated enzyme in plants. Annu Rev Plant Physiol Plant Mol Biol 47: 273–298

    Article  PubMed  CAS  Google Scholar 

  • Chu C, Dai Z, Ku MSB and Edwards GE (1990) Induction of Crassulacean acid metabolism in the facultative halophyte Mesembryanthemum crystallinum by abscisic acid. Plant Physiol 93: 1253–1260

    CAS  Google Scholar 

  • Cockburn W (1985) Variations in photosynthetic acid metabolism in vascular plants: CAM and related phenomena. New Phytol 101: 3–24

    CAS  Google Scholar 

  • Cockburn W, Whitelam GC, Broad A and Smith J (1996) The participation of phytochrome in the signal transduction pathway of salt stress responses in Mesembryanthemum crystallinum L. J Exp Bot 47: 647–653

    CAS  Google Scholar 

  • Comolli J, Taylor W, Rehman J and Hastings JW (1996) Inhibitors of serine/threonine phosphoprotein phosphatases alter circadian properties in Gonyaulax polyedra. Plant Physiol 111: 285–291

    Article  PubMed  CAS  Google Scholar 

  • Cook RM, Lindsay JG, Wilkins MB and Nimmo HG (1995) Decarboxylation of malate in the Crassulacean acid metabolism plant Bryophyllum (Kalanchoë) fedtschenkoi. Plant Physiol 109: 1301–1307

    PubMed  CAS  Google Scholar 

  • Cooke R, Raynal M, Laudié M, Grellet R, Delseny M, Morris P-C, Guerrier D, Giraudat J, Quigley F, Clabault G, Li Y-F, Mache R, Krivitzky M, Gy IJ-J, Kreis M, Lecharny A, Parmentier Y, Marbach J, Fleck J, Clément B, Philipps G, Hervé C, Bardet C, Tremousaygue D, Lescure B, Lacomme C, Roby D, Jourjon M-F, Chabrier P, Charpenteau J-L, Desprez T, Amselem J, Chiapello H and Höfte H (1996) Further progress towards a catalogue of all Arabidopsis genes: Analysis of a set of 5000 non-redundant ESTs. Plant J 9: 101–124

    Article  PubMed  CAS  Google Scholar 

  • Cotelle V, Forestier C and Vavasseur A (1996) A reassessment of the intervention of calmodulin in the regulation of stomatal movement. Physiol Plant 98: 619–628

    Article  CAS  Google Scholar 

  • Cushman JC (1992) Characterization and expression of a NADP-malic enzyme cDNA induced by salt stress from the facultative CAM plant, Mesembryanthemum crystallinum. Eur J Biochem 208: 259–266

    Article  PubMed  CAS  Google Scholar 

  • Cushman JC (1993) Molecular cloning and expression of chloroplast NAD P-malate dehydrogenase during Crassulacean acid metabolism induction by salt stress. Photosynth Res 35: 15–27

    Article  CAS  Google Scholar 

  • Cushman JC and Bohnert HJ (1992). Salt stress alters A/T-rich DNA-binding factor interactions within the phosphoenolpyruvate carboxylase promoter from Mesembryanthemum crystallinum. Plant Mol Biol 20: 411–424

    Article  PubMed  CAS  Google Scholar 

  • Cushman JC and Bohnert HJ (1996) Transcriptional activation of CAM genes during development and environmental stress. In: Winter K and Smith JAC (eds) Crassulacean Acid Metabolism. Biochemistry, Ecophysiology and Evolution, Vol 114, pp 135–158. Springer-Verlag, Berlin

    Google Scholar 

  • Cushman JC and Bohnert HJ (1997) Molecular genetics of Crassulacean acid metabolism. Plant Physiol 113: 667–676

    PubMed  CAS  Google Scholar 

  • Cushman JC, Meyer G, Michalowski CB, Schmitt JM and Bohnert HJ (1989) Salt stress leads to the differential expression of two isogenes of phosphoenolpyruvate carboxylase during Crassulacean acid metabolism induction in the common ice plant. Plant Cell 1: 715–725

    Article  PubMed  CAS  Google Scholar 

  • Cushman JC, Michalowski CB and Bohnert HJ (1990) Developmental control of Crassulacean acid metabolism inducibility by salt stress in the common ice plant. Plant Physiol 94: 1137–1142

    CAS  Google Scholar 

  • Cushman JC, Vernon DM and Bohnert HJ (1993) ABA and the transcriptional control of CAM induction during salt stress in the common ice plant. In: Verma DPS (ed) Control of Plant Gene Expression, pp 287–300. CRC Press, Boca Raton

    Google Scholar 

  • Dai Z, Ku MSB, Zhang Z and Edwards GE (1994) Effects of growth regulators on the induction of Crassulacean acid metabolism in the facultative halophyte Mesembryanthemum crystallinum L. Planta 192: 287–294

    Article  CAS  Google Scholar 

  • DeRocher EJ and Bohnert HJ (1993) Developmental and environmental stress employ different mechanisms in the expression of a plant gene family. Plant Cell 5: 1611–1625

    Google Scholar 

  • DeRocher EJ, Harkins KR, Galbraith DW and Bohnert HJ (1990) Developmentally regulated systemic endopolyploidy in succulents with small genomes. Science 250: 99–101

    Google Scholar 

  • De Santo AV and Bartoli G (1996) Crassulacean acid metabolism in leaves and stems of Cissus quadrangularis. In: Winter K and Smith JAC (eds) Crassulacean Acid Metabolism. Biochemistry, Ecophysiology and Evolution, Vol 114, pp 216–229. Springer-Verlag, Berlin

    Google Scholar 

  • Dever LV, Blackwell RD, Fullwood NJ, Lacuestra M, Leegood RC, Onek LA, Pearson M and Lea PJ (1995) The isolation and characterization of mutants of the C4 photosynthetic pathway. J Exp Bot 46: 1363–1376

    CAS  Google Scholar 

  • Dietz KJ and Arbinger B (1996) cDNA sequence and expression of subunit E of the vacuolar H(+)-ATPase in the inducible Crassulacean acid metabolism plant Mesembryanthemum crystallinum. Bioch Biophys Acta Gene Struct Funct 1281: 134–138

    Google Scholar 

  • Earnshaw MJ, Carver KA and Charlton WA (1987) Leafy anatomy, water relations, and Crassulacean acid metabolism in the chlorenchyma and colourless internal water-storing tissue of Carpobrotus edulis and Senecio mandraliscae. Planta 170: 421–432

    Article  CAS  Google Scholar 

  • Eastmond PJ and Ross JD (1997) Evidence that the induction of Crassulacean acid metabolism by water stress in Mesembryanthemum crystallinum (L.) involves root signalling. Plant Cell Environ 20: 1559–1565

    Article  CAS  Google Scholar 

  • Edwards GE, Dai Z, Cheng SH and Ku MSB (1996) Factors affecting the induction of Crassulacean acid metabolism in Mesembyanthemum crystallinum. In: Winter K and Smith JAC (eds) Crassulacean Acid Metabolism. Biochemistry, Ecophysiology and Evolution, Vol 114, pp 119–134. Springer-Verlag, Berlin

    Google Scholar 

  • Ehleringer JR and Monson RK (1993) Evolutionary and ecological aspects of photosynthetic pathway variation. Annu Rev Ecol Syst 24: 411–439

    Article  Google Scholar 

  • Feldman KA (1991) T-DNA insertion mutagenesis in Arabidopsis: mutational spectrum. Plant J 1:71–82

    Google Scholar 

  • Fißlthaler B, Meyer G, Bohnert HJ and Schmitt JM (1995) Age-dependent induction of pyruvate, orthophosphate dikinase in Mesembryanthemum crystallinum L. Planta 196: 492–500

    PubMed  Google Scholar 

  • Forsthoefel NR, Cushman MA and Cushman JC (1995a) Posttranscriptional and posttranslational control of enolase expression in the faculative Crassulacean acid metabolism plant Mesembryanthemu crystallinum L. Plant Physiol 108: 1185–1195

    Article  PubMed  CAS  Google Scholar 

  • Forsthoefel NR, Vernon DM and Cushman JC (1995b) A salinity-induced gene from the halophyte M. crystallinum encodes a glycolytic enzymes, cofactor-independent phosphoglycero-mutase. Plant Mol Biol 29: 213–226

    Article  PubMed  CAS  Google Scholar 

  • Forsthoefel NR, Cushman MAF and Cushman JC (1998) Characterization and expression of cDNA encoding a novel cysteine protease from the halophytic, facultative CAM plant, Mesembryanthmemum crystallinum L. Plant Science 136: 195–206

    Article  CAS  Google Scholar 

  • Foster JC, Edwards GE and Winter K (1982) Changes in the levels of phosphoenolpyruvate carboxylase with induction of CAM in M. crystallinum L. Plant Cell Physiol 23: 585–594

    CAS  Google Scholar 

  • Furbank RT and Taylor WC (1995) Regulation of photosynthesis in C3 and C4 plants: A molecular approach. Plant Cell 7: 797–807

    Article  PubMed  CAS  Google Scholar 

  • Garfinkel DJ and Nester EW (1980) Agrobacterium tumefaciens mutants affected in crown gall tumorigenesis and octopine catabolism. J Bacteriol 144: 732–743

    PubMed  CAS  Google Scholar 

  • Gehrig H, Taybi T, Kluge M and Brulfert J (1995) Identification of multiple PEPC isogenes in leaves of the facultative Crassulacean acid metabolism (CAM) plant Kalanchoë blossfeldiana Poelln. cv. Tom Thumb. FEBS Lett 377: 399–402

    CAS  Google Scholar 

  • Giglioli-Guivarc’h N, Pierre JC, Brown S, Chollet R, Vidal J and Gadal P (1996) The light-dependent transduction pathway controlling the regulatory phosphorylation of C4 phosphoenolpyruvate carboxylase in protoplasts from Digitaria sanguinalis. Plant Cell 8: 573–586

    Google Scholar 

  • Giraudat J (1995) Abscisic acid signaling. Curr Opin Cell Biol 7: 232–238

    Article  PubMed  CAS  Google Scholar 

  • Grams TEE, Beck F and Lüttge U (1996) Generation of rhythmic and arrhythmic behaviour of Crassulacean acid metabolism in Kalanchoë daigremontiana under continuous light by varying the irradiance or temperature: Measurements in vivo and model simulations. Planta 198: 110–117

    Article  CAS  Google Scholar 

  • Grams TEE, Borland AM, Roberts A, Griffiths H, Beck F and Lüttge U (1997) On the mechanism of reinitiation of endogenous Crassulacean acid metabolism rhythm by temperature changes. Plant Physiol 113: 1309–1317

    PubMed  CAS  Google Scholar 

  • Grasser KD (1995) Plant chromosomal high mobility group (HMG) proteins. Plant J 7: 185–192

    Article  PubMed  CAS  Google Scholar 

  • Gregory FG, Spear I and Thimann KV (1954) The interrelation between CO2 metabolism and photoperiodism in Kalanchoë. Plant Physiol 29: 220–259

    CAS  Google Scholar 

  • Griffiths H (1988) Crassulacean acid metabolism: A re-appraisal of physiological plasticity in form and function. Adv Bot Res 15: 42–92

    Google Scholar 

  • Griffiths H (1989) Carbon dioxide concentrating mechanisms and the evolution of CAM in vascular epiphytes. In: Lüttge U (ed) Vascular Plants as Epiphytes:Evolution and Ecophysiology, pp 42–86. Springer-Verlag, Berlin

    Google Scholar 

  • Griffiths H (1992) Carbon isotope discrimination and the integration of carbon assimilation pathways in terrestrial CAM plants. Plant Cell Environ 15: 1051–1062

    CAS  Google Scholar 

  • Harding SA and Smigocki AC(1994) Cytokinins modulate stress response genes in isopentenyl transferase-transformed Nicotiana plumbaginifolia plants. Physiol Plant 90: 327–333

    Article  CAS  Google Scholar 

  • Harris PJC and Wilkins MB (1978a) Evidence for phytochrome involvement in the entrainment of the circadian rhythm of CO2 metabolism in Bryophyllum. Planta 138: 271–272

    Article  CAS  Google Scholar 

  • Harris PJC and Wilkins MB (1978b) The circadian rhythm in Bryophyllum leaves: Phase control by radiant energy. Planta 143:323–328

    Article  Google Scholar 

  • Hartwell J, Smith LH, Wilkins MB, Jenkins GI and Nimmo HG (1996) Higher plant phosphoenolpyruvate carboxylase kinase is regulated at the level of translatable mRNA in response to light or a circadian rhythm. Plant J 10: 1071–1078

    Article  CAS  Google Scholar 

  • Hattori T, Vasil V, Rosenkrans L, Hannah LC, McCarty DR and Vasil IK (1992) The viviparous-1 gene and abscisic acid activate the C1 regulatory gene for anthocyanin biosynthesis during seed maturation in maize. Genes Devel 6: 609–618.

    PubMed  CAS  Google Scholar 

  • Herppich W, Herppich M and von Willert DJ (1992) The irreversible C3 to CAM shift in well-watered and salt-stressed plants of Mesembryanthemum crystallinum is under strict ontogenetic control. Bot Acta 105: 34–40

    CAS  Google Scholar 

  • Herppich W, Herppich M and von Willert DJ (1998) Ecophysiological investigations on plants of the genus Plectranthus (Lamiaceae). Influence of environment and leaf age on CAM, gas exchange and leaf water relations in Plectranthus marrubiodes Benth. Flora 193: 99–109

    Google Scholar 

  • Heun AM, Gorham J, Lüttge U and Wyn Jones RG (1981) Changes of water-relation characteristics and levels of organic solutes during salinity induced transition of Mesembryanthemum crystallinum from C3-photosynthesis to Crassulacean acid metabolism. Oecologia 50: 66–72

    Article  Google Scholar 

  • Höfner R, Vasquez-Moreno L, Winter K, Bohnert HJ and Schmitt JM (1987) Induction of Crassulacean acid metabolism in Mesembryanthemum crystallinum by high salinity: Mass increase and de novo synthesis of PEP carboxylase. Plant Physiol 83:915–919

    Google Scholar 

  • Holappa LD and Walker-Simmons MK (1995) A wheat ABA-responsive protein kinase mRNA, PKABA1, is upregulated by dehydration, cold temperature, and osmotic stress. Plant Physiol 108: 1203–1210

    PubMed  CAS  Google Scholar 

  • Holthe PA, Sternberg LSL and Ting IP (1987) Developmental control of CAM in Peperomia scandens. Plant Physiol 84: 743–747

    CAS  Google Scholar 

  • Holthe PA, Patel A and Ting IP (1992) The occurrence of CAM in Peperomia. Selbyana 13: 77–87

    Google Scholar 

  • Holtum JAM and Winter K (1982) Activities of enzymes of carbon metabolism during the induction of Crassulacean acid metabolism in Mesembryanthemum crystallinum. Planta 155: 8–16

    Article  CAS  Google Scholar 

  • Hong SW, Jon JH, Kwak JM and Nam HG (1997) Identification of a receptor-like kinase gene rapidly induced by abscisic acid, dehydration, high salt, and cold treatments in Arabidopsis thaliana. Plant Physiol 113: 1203–1212

    Article  PubMed  CAS  Google Scholar 

  • Huber SC, Bachmann M and Huber JL (1996) Post-translational regulation of nitrate reductase activity: A rolefor Ca2+ and 14-3-3 proteins. Trends Plant Sci 1: 432–438

    Article  Google Scholar 

  • Ishitani M, Majumder AL, Bornhouser A, Michalowski CB, Jensen RG and Bohnert HJ (1996) Coordinate transcriptional induction of myo-inositol metabolism during environmental stress. Plant J 9: 537–548

    Article  PubMed  CAS  Google Scholar 

  • Jang J-C and Sheen J (1997) Sugar sensor in higher plants. Trends Plant Sci 2: 208–214

    Article  Google Scholar 

  • Jang J-C, Leon P, Zhou L and Sheen J (1997) Hexokinase as a sugar sensor in higher plants. Plant Cell 9: 5–19

    Article  PubMed  CAS  Google Scholar 

  • Jia S-R, Yang M-Z, Ott R and Chua N-H (1989) High frequency transformation of kalanchoë laciniata. Plant Cell Rep 8: 336–340

    Article  CAS  Google Scholar 

  • Jiang R and Carlson M (1996) Glucose regulates protein interactions within the yeast SNF1 protein kinase complex. Genes Devi 10:3105–3115

    CAS  Google Scholar 

  • Jiao J-A and Chollet R (1991) Posttranslational regulation of phosphoenolpyruvate carboxylase in C4 and Crassulacean acid metabolism plants. Plant Physiol 95: 981–985

    CAS  Google Scholar 

  • Johnson CH, Knight MR, Kondo T, Masson P, Sedbrook J, Haley A and Trewavas A (1995) Circadian oscillations of cytosolic and chloroplastic free calcium in transgenic luminous plants. Science 269: 1863–1865

    PubMed  CAS  Google Scholar 

  • Jonak C, Kiegerl S, Ligterink W, Barker PJ, Huskisson NS and Hirt H (1996) Stress signaling in plants: A mitogen-activated protein kinase pathway is activated by cold and drought. Proc Natl Acad Sci USA 93: 11274–11279

    Article  PubMed  CAS  Google Scholar 

  • Kakimoto T (1996) CKI1, a histidine kinase homolog implicated in cytokinin signal transduction. Science 274: 982–985

    Article  PubMed  CAS  Google Scholar 

  • Keeley JE (1996) Aquatic CAM photosynthesis. In: Winter K and Smith JAC (eds) Crassulacean Acid Metabolism. Biochemistry, Ecophysiology and Evolution, pp 281–295. Springer-Verlag, Berlin

    Google Scholar 

  • Keith CS, Hoang DO, Barret BM, Feigelman B, Nelson MC, Thai H and Baysdorfer C (1993) Partial sequence analysis of 130 randomly selected maize cDNA clones. Plant Physiol 101: 329–332

    Article  PubMed  CAS  Google Scholar 

  • Kloeckener-Gruissem B and Freeling M (1995) Transposon-induced promoter scrambling: A mechanism for the evolution of new alleles. Proc Natl Acad Sci USA 92: 1836–1840

    PubMed  CAS  Google Scholar 

  • Kluge M and Brulfert J (1996) Crassulacean acid metabolism in the genus Kalanchoë: Ecological, physiological and biochemical aspects. In K. Winter and J.A.C. Smith, eds, Crassulacean Acid Metabolism. Biochemistry, Ecophysiology and Evolution, Springer-Verlag, Berlin, pp 324–335

    Google Scholar 

  • Kluge M and Ting IP (1978) Crassulacean Acid Metabolism. Analysis of an Ecological Adaptation. Springer-Verlag, Berlin

    Google Scholar 

  • Kluge M, Hell R, Pfeffer A and Kramer D (1987) Structural and metabolic properties of green tissue cultures from a CAM plant, Kalanchoë blossfeldiana hybr. Montezuma. Plant Cell Environ 10: 451–462

    CAS  Google Scholar 

  • Knight H, Trewavas AJ and Knight MR (1996) Cold calcium signaling in Arabidopsis involves two cellular pools and a change in calcium signature after acclimation. Plant Cell 8: 489–503

    Article  PubMed  CAS  Google Scholar 

  • Koch KE (1996) Carbohydrate-modulated gene expression in plants. Annu Rev Plant Physiol Plant Mol Biol 47: 509–540

    Article  PubMed  CAS  Google Scholar 

  • Kore-eda S, Yamashita T and Kanai R (1996) Induction of light dependent pyruvate transport into chloroplasts of Mesembiyanthemum crystallinum by salt stress. Plant Cell Physiol 37: 257–262

    CAS  Google Scholar 

  • Kraybill AA and Martin CE (1996) Crassulacean acid metabolism in three species of the C4 genus Portulaca. Int J Plant Sci 157: 103–109

    Article  CAS  Google Scholar 

  • Ku MSB, Kano-Murakami Y and Matsuoka M (1996) Evolution and expression of C4 photosynthesis genes. Plant Physiol 111: 949–957

    Article  PubMed  CAS  Google Scholar 

  • Kusumi K, Arata H, Iwasaki I and Nishimura M (1994) Regulation of PEP-carboxylase by biological clock in a CAM plant. Plant Cell Physiol 35: 233–242

    CAS  Google Scholar 

  • Langdale JA and Kidner CA (1994) bundle sheath defective, a mutation that disrupts cellular differentiation in maize leaves. Development 120: 673–681

    Google Scholar 

  • Langdale JA, Hall LN and Roth R (1995) Control of cellular differentiation in maize leaves. Philos Trans R Soc Lond (Biol.) 350: 53–57

    Google Scholar 

  • Lea PJ and Forde BG (1994) The use of mutants and transgenic plants to study amino acid metabolism. Plant Cell Env 17: 541–556

    CAS  Google Scholar 

  • Lee DM and Assmann SM (1992) Stomatal responses to light in the facultative Crassulacean acid metabolism species, Portulacaria afra. Physiol Plant 85: 35–42

    Article  CAS  Google Scholar 

  • Leegood RC and Osmond CB (1990) The flux of metabolites in C4 and CAM plants. In: Dennis DT and Turpin DH (eds) Plant Physiology, Biochemistry and Molecular Biology, pp 274–298. Longman, Harlow

    Google Scholar 

  • Li B and Chollet R (1994) Salt induction and the partial purification/characterization of phosphoenolpyruvate carboxylaseprotein-serine kinase from an inducible Crassulacean-acid-metabolism (CAM) plant, Mesembryanthemum crystallinum L. Arch Bioch Biophys 314: 247–254

    Article  CAS  Google Scholar 

  • Li J, Lee Y-RJ and Assmann SM (1998) Guard cells possess a calcium-dependent protein kinase that phosphorylates the KAT1 potassium channel. Plant Physiol 116: 785–795

    PubMed  CAS  Google Scholar 

  • Lillo C, Smith LH, Nimmo HG and Wilkins MB (1996) Rhythms in magnesium ion inhibition and hysteretic properties of nitrate reductase in the CAM plant Bryophyllum fedtschenkoi. Physiol Plant 98: 140–146

    Article  CAS  Google Scholar 

  • Löw R, Rockel B, Kirsch M, Ratajczak R, Hörntensteiner, Martinoia E, Lüttge U and Rausch T (1996) Early salt stress effects on the differential expression of vacuolar H1-ATPase genes in roots and leaves of Mesembryanthemum crystallinum. Plant Physiol 110: 259–265

    PubMed  Google Scholar 

  • Lüttge U (1987) Carbon dioxide and water demand; Crassulacean acid metabolism (CAM), a versatile ecological adaptation exemplifying the need for integration in ecophysiological work. New Phytol 106: 593–629

    Google Scholar 

  • Lüttge U (1993) The role of Crassulacean acid metabolism (CAM) in the adaptation of plants to salinity. New Phytol 125: 59–71

    Google Scholar 

  • Lüttge U (1996) Clusia: Plasticity and diversity in a genus of C3/CAM intermediate tropical trees. In: Winter K and Smith JAC (eds) Crassulacean Acid Metabolism. Biochemistry, Ecophysiology and Evolution, Vol 114, pp 296–311. Springer-Verlag, Berlin

    Google Scholar 

  • Lüttge U and Beck F (1992) Endogenous rhythms and chaos in Crassulacean acid metabolism. Planta 188: 28–38

    Google Scholar 

  • Lüttge U, Fischer-Schliebs E, Ratajczak R, Kramer D, Berndt E and Kluge M (1995) Functioning of the tonoplast in vacuolar C-storage and remobilization in Crassulacean acid metabolism. J Exp Bot 46: 1377–1388

    Google Scholar 

  • Lüttge U, Grams TEE, Hechler B, Blasius B and Beck F (1996) Frequency resonances of the circadian rhythm of CAM under external temperature rhythms of varied period lengths in continuous light. Bot Acta 109: 422–426

    Google Scholar 

  • Mawson BT and Zaugg MW (1994) Modulation of light-dependent stomatal opening in isolated epidermis following induction of Crassulacean acid metabolism in Mesembryanthemum crystallinum. J Plant Physiol 144: 740–746

    CAS  Google Scholar 

  • Mazen AMA (1996) Changes in levels of phosphoenolpyruvate carboxylase with induction of Crassulacean acid metabolism (CAM)-like behaviour in the C4 plant Portulaca oleracea. Physiol Plant 98: 111–116

    Article  CAS  Google Scholar 

  • McElwain EF, Bohnert HJ and Thomas JC (1992) Light moderates the induction of phosphoenolpyruvate carboxylase by NaCl and abscisic acid in Mesembryanthemum crystallinum. Plant Physiol 99: 1261–1264

    CAS  Google Scholar 

  • Meiners MS, Thomas JC, Bohnert HJ and Cushman JC (1991) Regeneration of multiple shoots and plants from Mesembryanthemum crystallinum. Plant Cell Rep 9: 563–566

    Article  Google Scholar 

  • Meyer G, Schmitt JM and Bohnert HJ (1990) Direct screening of a small genome: Estimation of the magnitude of plant gene expression changes during adaptation to high salt. Mol Gen Genet 224: 347–356

    Article  PubMed  CAS  Google Scholar 

  • Meyerowitz EM and Somerville CR (eds) (1994) Arabidopsis. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Michalowski CB, Olson SW, Piepenbrock M, Schmitt JM and Bohnert HJ (1989) Time course of mRNA induction elicited by salt stress in the common ice plant (M. crystallinum). Plant Physiol 89: 811–816

    CAS  Google Scholar 

  • Millar AJ, McGrath RB and Chua N-H (1994) Phytochrome phototransduction pathways. Annu Rev Genet 28: 325–349

    Article  PubMed  CAS  Google Scholar 

  • Mizoguchi T, Ichimura K and Shinozaki K (1997) Environmental stress response in plants: The role of mitogen-acti vated protein kinases. Trends Biotechnol 15: 15–19

    Article  PubMed  CAS  Google Scholar 

  • Monson RK (1989) On the evolutionary pathways resultingin C4 photosynthesis and Crassulacean acid metabolism (CAM). Adv Ecol Res 19:57–92

    Google Scholar 

  • Mricha A, Brulfert J, Pierre JN and Queiroz O (1990) Phytochrome-mediated responses of cells and protoplasts of green calli obtained from leaves of a CAM plant. Plant Cell Rep 8: 664–666

    Article  CAS  Google Scholar 

  • Nelson D, Salamini F and Bartels D (1994) Abscisic acid promotes novel DNA-binding activity to a desiccation-related promoter of Craterostig map Iantagineum. Plant J 5: 451–458

    PubMed  CAS  Google Scholar 

  • Neuffer MG, Coe EH and Wessler ST (eds) (1996) Mutants of Maize. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Neuhaus E and Schulte N (1996) Starch degradation in chloroplasts isolated from C3 or CAM (Crassulacean acid metabolism)-induced Mesembryanthemum crystallinum L. Biochem J 318: 945–953

    PubMed  CAS  Google Scholar 

  • Neuhaus G, Bowler C, Kern R and Chua NH (1993) Calcium/caimodulin-dependent and-independent phytochrome signal transduction pathways. Cell 73: 937–952

    Article  PubMed  CAS  Google Scholar 

  • Neuhaus G, Bowler C, Hiratsuka K, Yamagata H and Chua NH (1997) Photochrome-regulated repression of gene expression requires calcium and cGMP. EMBO J 16: 2554–2564

    Article  PubMed  CAS  Google Scholar 

  • Nimmo GA, Nimmo HG, Fewson CA and Wilkins MB (1984) Diurnal changes in the properties of phosphoenolpyruvate carboxylase in Bryophyllum leaves: A possible covalent modification. FEBS Lett 178: 199–203

    Article  CAS  Google Scholar 

  • Nimmo GA, Nimmo HG, Hamilton ID, Fewson CA and Wilkins MB (1986) Purification of the phosphorylated night form and dephosphorylated day form of phosphoenolpyruvate carboxylase from Bryophyllum fedtschenkoi. Biochem J 239: 213–220

    PubMed  CAS  Google Scholar 

  • Nimmo GA, Nimmo HG, Hamilton ID, Fewson CA and Wilkins MB (1987) Persistant circadian rhythms in the phosphorylation state of phosphoenolpyruvate carboxylase from Bryophyllum fedtschenkoi leaves and in its sensitivity to inhibition by malate. Planta 170: 408–15

    Article  CAS  Google Scholar 

  • Nimmo HG (1993) The regulation of phosphoenolpyruvate carboxylase by, reversible phosphorylation. In: Battey NH, Dickinson HG, and Hetherington AM (eds) Post-Translational Modifications in Plants, Society for Experimental Biology Seminar Series No 53, pp 161–170. Cambridge University Press, Cambridge

    Google Scholar 

  • Nishio JN and Ting IP (1987) Carbon flow and metabolic specialization in the tissue layers of the Crassulacean acid metabolism plant, Peperomia camptotricha. Plant Physiol 84: 600–604

    CAS  Google Scholar 

  • Nishio JN and Ting IP (1993) Photosynthetic characteristics of the palisade mesophyll and spongy mesophyll in the CAM/C4 intermediate plant, Peperomia camptotricha. Bot Acta 106: 120–125

    CAS  Google Scholar 

  • Noble PS (1988) Environmental Biology of Agaves and Cacti. Cambridge University Press, New York

    Google Scholar 

  • Osmond CB (1978) Crassulacean acid metabolism: A curiosity in context. Annu Rev Plant Physiol 29: 379–414

    Article  CAS  Google Scholar 

  • Osmond CB and Holtum JAM (1981) Crassulacean acid metabolism. In: Hatch MD and Boardman NK. (eds) The Biochemistry of Plants, Vol 8, Photosynthesis, pp 283–328. Academic Press, New York

    Google Scholar 

  • Ostrem JA, Olsen SW, Schmitt JM and Bohnert HJ (1987) Salt stress increases the level of translatable mRNA for PEPC in Mesembryanthemum crystallinum. Plant Physiol 84: 1270–1275

    CAS  Google Scholar 

  • Ostrem JA, Vernon DM and Bohnert HJ (1990) Increased expression of a gene coding for NAD-glyceraldehyde-3-phosphate dehydrogenase during the transition from C3 photosynthesis to Crassulacean acid metabolism in Mesembryanthemum crystallinum. J Biol Chem 265: 3497–3502

    PubMed  CAS  Google Scholar 

  • Park YS, Kwak JM, Kim YS, Lee DS, Cho MJ, Lee HH and Nam HG (1993) Generation of expressed sequence tags of random root cDNA clones of Brassica napus by single-run partial sequencing. Plant Physiol 103: 359–370

    Article  PubMed  CAS  Google Scholar 

  • Patel A and Ting IP (1987) Relationship between CAM and respiration in Peperomia camptotricha. Plant Physiol 84: 640–642

    Google Scholar 

  • Paul MJ, Loos K, Stitt M and Ziegler P (1993) Starch-degrading enzymes during the induction of CAM in Mesembryanthemum crystallinum. Plant Cell Environ 16: 531–538

    CAS  Google Scholar 

  • Peters W, Beck E, Piepenbrock M, Lenz B and Schmitt JM (1997) Cytokinin as a negative effector of phosphoenolpyruvate carboxylate induction in Mesembryanthemum crystallinum. J Plant Physiol 151: 362–367

    CAS  Google Scholar 

  • Piepenbrock M and Schmitt JM (1991) Environmental control of phosphoenolpyruvate carboxylase induction in mature Mesembryanthemum crystallinum L. Plant Physiol 97: 998–1003

    CAS  Google Scholar 

  • Piepenbrock M and Schmitt JM (1992) Environmental control of phosphoenolpyruvate carboxylase induction in mature Mesembryanthemum crystallinum L. Plant Physiol 97: 998–1003

    Google Scholar 

  • Piepenbrock M, von Albert C and Schmitt JM (1994) Decreasing leaf water content induces Crassulacean acid metabolism in well-irrigated Mesembryanthemum crystallinum. Photosynthetica 30: 623–628

    CAS  Google Scholar 

  • Poovaiah BW and Reddy ASN (1993) Calcium and signal transduction in plants. CRC Crit Rev Plant Sci 12: 185–211

    PubMed  CAS  Google Scholar 

  • Quail PH, Boylan MT, Parks BM, Short TW, Xu Y and Wagner D (1995) Phytochromes: Photosensory perception and signal transduction. Science 268: 675–680

    PubMed  CAS  Google Scholar 

  • Queiroz O (1968) Sur le métabolisme acide des Crassulacées. II. Variations ďactivité enzymatique sous ľaction du photopériodisme et du thermopériodisme. Physiol Vég 6: 117–136

    CAS  Google Scholar 

  • Queiroz O and Brulfert J (1982) Photoperiod-controlled induction and enhancement of seasonal adaptation to drought. In: Ting IP and Gibbs M (eds) Crassulacean Acid Metabolism, pp 208–230. Waverly Press, Baltimore

    Google Scholar 

  • Ratajczak R, Richter J and Lüttge U (1994) Adaptation of the tonoplast V-type H+-ATPase of Mesembryanthemum crystallinum to salt stress, C3-CAM transition and plant age. Plant Cell Environ 17: 1101–1112

    CAS  Google Scholar 

  • Raven JA and Spicer RA (1996) The evolution of Crassulacean acid metabolism. In: Winter K and Smith JAC (eds) Crassulacean Acid Metabolism. Biochemistry, Ecophysiology and Evolution, Vol 114, pp 360–385. Springer-Verlag, Berlin

    Google Scholar 

  • Reinbothe S, Reinbothe C and Parthier B (1993a) Methyl jasmonate represses translational initiation of a specific sort of mRNAs in barley. Plant J 4: 459–467

    Article  CAS  Google Scholar 

  • Reinbothe S, Reinbothe C and Parthier B (1993b) A methyl jasmonate-induced shift in the length of the 5’ untranslated region impairs translation of the plastid rbcL transcript in barley. EMBO J 12: 1505–1512

    PubMed  CAS  Google Scholar 

  • Reinbothe S, Reinbothe C and Parthier B (1994) JIPs and RIPS: The regulation of plant gene expression by jasmonates in response to environmental cues and pathogens. Plant J 6: 1197–1209

    CAS  Google Scholar 

  • Rippmann JF, Michalowski CB, Nelson DE and Bohnert HJ (1997) Induction of a ribosome inactivating protein following environmental stress. Plant Mol Biol 35: 701–709

    Article  PubMed  CAS  Google Scholar 

  • Robe WE and Griffiths H (1990) Photosynthesis of Littorella uniflora grown under two PAR regimes: C3 and CAM gas exchange and the regulation of internal CO2 and O2 concentrations. Oecologia 85: 128–136

    Article  Google Scholar 

  • Rogers JC, Lanahan MC and Rogers SW (1994) The cis-acting gibberellin response complex in high-pi alpha-amylase gene promoters. Plant Physiol 105: 151–158

    Article  PubMed  CAS  Google Scholar 

  • Roth R, Hall LN, Brutnell TB and Langdale JA (1996) bundle sheath defective 2, a mutation that disrupts the co-ordinate development of bundle sheath and mesophyll cells in maize. Plant Cell 8: 915–927

    Article  PubMed  CAS  Google Scholar 

  • Rygol J, Büchner K-H, Winter K and Zimmermann U (1986) Day/Night variations in turgor pressure in individual cells of Mesembryanthemum crystallinum L. Oecologia 69: 171–175

    Article  Google Scholar 

  • Saitou K, Agata W, Masui Y, Asakura M, and Kubota F (1994) Isoforms of NADP-malic enzyme from Mesembryanthemum crystallinum L. that are involved in C3 photosynthesis and Crassulacean acid metabolism. Plant Cell Physiol 35: 1165–1171

    CAS  Google Scholar 

  • Saitou K, Agata W, Kawarabata T, Yamamoto Y, and Kubota F (1995) Purification and properties of NAD-malate dehydrogenase from Mesembryanthemum crystallinum L. exhibiting Crassulacean acid metabolism. Jpn J Crop Sci 64: 760–766

    CAS  Google Scholar 

  • Sano H and Youssefian S (1994) Light and nutritional regulation of transcripts encoding a wheat protein kinase homolog is mediated by cytokinins. Proc Natl Acad Sci USA 91: 2582–2586

    PubMed  CAS  Google Scholar 

  • Sasaki T, Song J, Koga-Ban Y, Matsui E, Fang F, Higo H, Nagasaki H, Hori M, Miya M, Murayama-Kayano E, Takiguchi T, Takasuga A, Niki T, Ishimaru K, Ikeda H, Yamamoto Y, Mukai Y, Ohta I, Mihadera N, Havukkala I and Minobe Y (1994) Toward cataloguing all rice genes: Large-scale sequencing of randomly chosen rice cDNAs from a callus cDNA library. Plant J 6: 615–624

    Article  PubMed  CAS  Google Scholar 

  • Schaeffer HJ, Forsthoefel NR and Cushman JC (1995) Identification of enhancer and silencer regions involved in salt-responsive expression of Crassulacean acid metabolism (CAM) genes in the facultative halophyte Mesembryanthemum crytallinum. Plant Mol Biol 28: 205–218

    Article  PubMed  CAS  Google Scholar 

  • Schmitt JM (1990) Rapid concentration changes of phosphoenolpyruvate carboxylase mRNA in detached leaves of Mesembryanthemum crystallinum. Plant Cell Environ 13: 845–850

    CAS  Google Scholar 

  • Schmitt JM and Piepenbrock M (1992a) Induction of mRNA for phosphoenolpyruvate carboxylase is correlated with a decrease in shoot water content in well-irrigated Mesembryanthemum crystallinum. Plant Physiol 99: 759–761

    CAS  Google Scholar 

  • Schmitt JM and Piepenbrock M (1992b) Regulation of phosphoenolpyruvate carboxylase Crassulacean acid metabolism induction in Mesembryanthemum crystallinum L. by cytokinin: Modulation of leaf gene expression by roots? Plant Physiol 99: 1664–1669

    CAS  Google Scholar 

  • Schmitt JM, Fiβlthaler B, Sheriff A, Lenz B, Büβ ler M and Meyer G (1996) Environmental control of CAM induction in Mesembryanthemum crystallinum — a role for cytokinin, abscisic acid and jasmonate? In: Winter K and Smith JAC (eds) Crassulacean Acid Metabolism. Biochemistry, Ecophysiology and Evolution, Vol 114, pp 159–175. Springer-Verlag, Berlin

    Google Scholar 

  • Sembdner G and Parthier B (1993) Biochemistry, physiological and molecular actions of jasmonates. Annu Rev Plant Physiol Plant Mol Biol 44: 569–589

    Article  CAS  Google Scholar 

  • Sheen J (1990) Metabolic repression of transcription in higher plants. Plant Cell 2: 1027–1038

    Article  PubMed  CAS  Google Scholar 

  • Sheen J (1994) Feedback control of gene expression. Photosynth Res 39: 427 438

    Article  Google Scholar 

  • Sheen J (1996) Ca2+-dependent protein kinases and stress signal transduction in plants. Science 274: 1900–1902

    Article  PubMed  CAS  Google Scholar 

  • Shen Q and Ho T-HD (1995) Functional dissection of an abscisic acid (ABA)-inducible gene reveals two independent ABA-responsive complexes each containing a G-box and a novel cis-activating element. Plant Cell 7: 295–307

    Article  PubMed  CAS  Google Scholar 

  • Shinozaki K and Yamaguchi-Shinozaki K (1996) Molecular responses to drought and cold stress. Current Opin Biotech 7: 161–167

    CAS  Google Scholar 

  • Sipes D and Ting IP (1985) Crassuacean acid metabolism and Crassulacean acid metabolism modifications in Peperomia camptotricha. Plant Physiol 77: 59–63

    CAS  Google Scholar 

  • Smirnoff N (1996) Regulation of Crassulacean acid metabolism by water stress in the C3/CAM intermediate Sedum telephium. In: Winter K and Smith JAC (eds) Crassulacean Acid Metabolism. Biochemistry, Ecophysiology and Evolution, Vol 114, pp 176–191. Springer-Verlag, Berlin

    Google Scholar 

  • Smith DL and Fedoroff NV (1995) A gene expressed in lateral and adventitious root primordia of Arabidopsis. Plant Cell 7: 735–745

    Article  PubMed  CAS  Google Scholar 

  • Smith JAC and Bryce JH (1992) Metabolite compartmentation and transport in CAM plants. In: Tobin AK (ed) Plant Organelles, pp 141–167. Cambridge University Press, Cambridge

    Google Scholar 

  • Smith JAC and Winter K (1996) Taxonomic distribution of Crassulacean acid metabolism. In: Winter K and Smith JAC (eds) Crassulacean Acid Metabolism. Biochemistry, Ecophysiology and Evolution, Vol 114, pp 427–436. Springer-Verlag, Berlin

    Google Scholar 

  • Smith RD and Walker JC (1996) Plant protein phosphatases. Annu Rev Plant Physiol Plant Mol Biol 47: 101–125

    Article  PubMed  CAS  Google Scholar 

  • Sommerville CR (1984) The analysis of photosynthetic carbon dioxide fixation and photorespiration by mutant selection. Oxford Surveys Plant Mol Cell Biol 1: 103–131

    Google Scholar 

  • Sommerville CR (1986) Analysis of photosynthesis with mutants of higher plants and algae. Ann Rev Plant Physiol 37: 467–507

    Google Scholar 

  • Springer SA and Outlaw WH (1988) Histochemical compartmentation of photosynthesis in the Crassulacean acid metabolism plant Crassula falcata. Plant Physiol 88: 633–638

    CAS  Google Scholar 

  • Stenlid G (1982) Cytokinins as inhibitors of root growth. Physiol Plant 56: 500–506

    CAS  Google Scholar 

  • Stipe F, Barvieri L, Gorini P, Valbonesi P, Bolognesi A and Polito L (1996) Activities associated with the presence of ribosome-inactivating proteins increase in senescent and stress leaves FEBS Lett 382: 309–312

    Google Scholar 

  • Stone JM and Walker JC (1995) Plant protein kinase families and signal transduction. Plant Physiol 108: 451–457

    Article  PubMed  CAS  Google Scholar 

  • Su WP and Howell SH (1992) A single genetic locus, ckr1, defines Arabidopsis mutants in which root growth is resistant to low concentration of cytokinin. Plant Physiol 99: 1569–1574

    CAS  Google Scholar 

  • Tallman G, Zhu J, Mawson BT, Amodeo G, Nouhi Z, Levy K and Zeiger E (1997) Induction of CAM in Mesembryanthemum crystallinum abolishes the stomatal response to blue light and light-dependent zeaxanthin formation in guard cell chloroplasts. Plant Cell Physiol 38: 236–242

    CAS  Google Scholar 

  • Taybi T (1995) Induction du métabolism acide crassulacéen et synthéses enzymatiques dans les feuilles détachées du kalanchoë blossfeldiana: Controle par ľacide abscissique. Ph.D. Thesis. Pierre and Marie Curie, Univerite Paris 6

    Google Scholar 

  • Taybi T and Cushman JC (1998) Signal transcution events leading to Crassulacean acid metabolism (CAM) induction in the common ice plant, Mesembryanthemum crystallinum. Plant Physiol 117S: 47

    Google Scholar 

  • Taybi T, Sotta B, Gehrig H, Güclü S, Kluge M and Brulfert J (1995) Differential effects of abscisic acid on phosphoenolpyruvate carboxylase and CAM operation in kalanchoë blossfeldiana. Bot Acta 198: 2340–246

    Google Scholar 

  • Terzaghi WB and Cashmore AR (1995) Light-regulated transcription. Annu Rev Plant Physiol Plant Mol Biol 46: 445–474

    Article  CAS  Google Scholar 

  • Thomas JC and Bohnert HJ (1993) Salt stress perception and plant growth regulators in the halophyte, Mesembryanthemum crystallinum. Plant Physiol 103: 1299–1304

    PubMed  CAS  Google Scholar 

  • Thomas JC, De Armond R and Bohnert HJ (1992a) Influence of NaCl on growth, proline, and phosphoenolpyruvate carboxylase levels in Mesembryanthemum crystallinum suspension cultures. Plant Physiol 98: 626–631

    CAS  Google Scholar 

  • Thomas JC, McElwain EF and Bohnert HJ (1992b) Convergent induction of osmotic stress-responses: Abscisic acid, cytokinin, and the effect of NaCl. Plant Physiol 100: 416–423

    CAS  Google Scholar 

  • Thomas JC, Smigocki AC and Bohnert HJ (1995) Light-induced expression of ipt from Agrobacterimum tumefaciens results in cytokinin accumulation and osmotic stress symptoms in transgenic tobacco. Plant Mol Biol 27: 225–235

    PubMed  CAS  Google Scholar 

  • Ting IP (1981) Effects of ABA on CAM in Portulacaria afra. Photosynth Res 2: 39–48

    Article  CAS  Google Scholar 

  • Ting IP (1985) Crassulacean acid metabolism. Annu Rev Plant Physiol 36: 595–622

    Article  CAS  Google Scholar 

  • Ting IP (1987) Stomata in plants with Crassulacean acid metabolism. In: Zeigler E, Farquhar GD and Cowan IR (eds) Stomatal Function, pp 353–366. Stanford University Press, Stanford

    Google Scholar 

  • Ting IP, Hann J, Sipes DL, Patel A and Walling LL (1993) Expression of P-enolpyruvate carboxylase and other aspects of CAM during the development of Peperomia camptotricha leaves. Bot Acta 106: 313–319

    CAS  Google Scholar 

  • Ting IP, Patel A, Sipes DL, Reid PD and Walling LL (1994) Differential expression of photosynthesis genes in leaf tissue layers of Peperomia as revealed by tissue printing. Amer J Bot 81: 414–422

    Google Scholar 

  • Ting IP, Patel A, Kaur S, Hann J and Walling LL (1996) Ontogenetic development of Crassulacean acid metabolism as modified by water stress in Peperomia. In: Winter K and Smith JAC (eds) Crassulacean Acid Metabolism. Biochemistry, Ecophysiology and Evolution, Vol 114, pp 204–215. Springer-Verlag, Berlin

    Google Scholar 

  • Treichel S, Hettfleisch H, Eilhardt S, Faist K and Kluge M (1988) A possible induction of CAM by NaCl-stress in heterotrophic cell suspension cultures of Mesembryanthemum crystallinum. J Plant Physiol 133: 419–424

    CAS  Google Scholar 

  • Tsiantis MS (1996) Regulation of V-ATPase gene expression by ionic stress in higher plants. D. Phil thesis, University of Oxford, Oxford

    Google Scholar 

  • Tsiantis MS, Bartholomew DM and Smith JAC (1996) Salt regulation of transcript levels for the c subunit of a leaf vacuolar H+-ATPase inthe halophyte Mesembryanthemum crystallinum. Plant J 9: 729–736

    Article  PubMed  CAS  Google Scholar 

  • Uchimiya H, Kidou S-I, Shimazaki T, Aotsuka S, Takamatsu S, Nishi R, Hashimoto H, Matsubayashi Y, Kidou N, Umeda M and Kata A (1992) Random sequencing of cDNA libraries reveals a variety of expressed genes in cultured cells of rice (Oryza sativa L.). Plant J 2: 1005–1009

    Article  CAS  Google Scholar 

  • Urao T, Yamaguchi-Shinozaki K, Urao S and Shinozaki K (1993) An Arabidopsis myb homolog is induced by dehydration stress and its gene product binds to the conserved MYB recognition sequence. Plant Cell 5: 1529–1539

    Article  PubMed  CAS  Google Scholar 

  • Vidal J and Chollet R (1997) Regulatory phosphorylation of C4 PEP carboxylase. Trends Plant Sci 2: 230–237

    Article  Google Scholar 

  • von Willert DJ, Kirst GO, Treichel S and von Willert K (1976a) The effect of leaf age and salt stress on malate accumulation and phosphoenolpyruvate carboxylase activity in Mesembryanthemum crystallinum. Plant Sci Lett 7: 341–346

    Google Scholar 

  • von Willert DJ, Treichel S, Kirst GO and Curdts E (1976b) Environmentally controlled changes of phosphoenolpyruvate carboxylases in Mesembryanthemum. Phytochemistry 15: 1435–1436

    Google Scholar 

  • Vernon DM and Bohnert HJ (1992) A novel methyl transferase induced byosmotic stress in the facultative halophyte M. crystallinum. EMBO J 11: 2077–2085

    PubMed  CAS  Google Scholar 

  • Vernon DM, Ostrem JA and Bohnert HJ (1993) Stress perception and response in a faculatative halophyte: The regulation of salinity-induced genes in Mesembryanthemum crystallinum. Plant Cell Environ 16: 437–444

    CAS  Google Scholar 

  • Walker RP and Leegood, RC (1996) Phosphorylation of phosphoenolpyruvate carboxykinase in plants. Studies in plants with C4 photosynthesis and Crassulacean metabolism and in germinating seeds. Biochem J 317: 653–658

    PubMed  CAS  Google Scholar 

  • Wang B and Lüttge U (1994) Induction and subculture of callus and regeneration of fertile plants of Mesembryanthemum crystallinum L. Polish J Environ Studies 3: 55–57

    Google Scholar 

  • Webb AAR, McAinsh MR, Mansfield TA and Hetherington AM (1996) Carbon dioxide induces increases in guard cell cytosolic free calcium. Plant J 9: 297–304

    Article  CAS  Google Scholar 

  • Weigend M (1994) Invivo phosphorylation of phosphoenolpyruvate carboxylase from the facultative CAM plant Mesembryanthemum crystallinum. J Plant Physiol. 144: 654–660

    CAS  Google Scholar 

  • Whitehouse DG, Rogers JW and Tobin AK (1991) Photorespiratory enzyme activities in C3 and CAM forms of the facultative CAM plant, Mesembryanthemum crystallinum L. J Exp Bot 42: 485–492

    CAS  Google Scholar 

  • Wilkins MB (1984) A rapid circadian rhythm of carbon dioxide metabolism in Bryophyllum fedtschenkoi. Planta 161: 381–384

    Article  CAS  Google Scholar 

  • Wilkins MB (1992) Circadian rhythms: Their origin and control. New Phytol 121: 347–375

    CAS  Google Scholar 

  • Willenbrink ME and Huesemann W (1995) Photoautotrophic cell suspension cultures from Mesembryanthemum crystallinum and their response to salt stress. Bot Acta 108: 497–504

    Google Scholar 

  • Winter K (1973a) Zum Problem der Ausbildung des Crassulalceensäurestoffwechsels bei Mesembryathemum crystallinum unter NaCl-Einfluß. Planta 109: 135–145

    Article  CAS  Google Scholar 

  • Winter K (1973b) CO2-fixierungsreaktionen bei der Salzpflanze Mesembryathemum crystallinum unter variierten Außenbedingungen. Planta 114: 75–85

    Article  CAS  Google Scholar 

  • Winter K (1985) Crassulacean acid metabolism. In: Barber J and Baker NR (eds) Photosynthetic Mechanisms and the Environment, pp 329–387. Elsevier, Amsterdam

    Google Scholar 

  • Winter K (1987) Gradient in the degree of Crassulacean acid metabolism within leaves of Kalanchoë daigremontiana. Planta 172: 88–90

    Article  CAS  Google Scholar 

  • Winter K and Gademann R (1991) Daily changes in CO2 and water vapor exchange, chlorophyll fluorescence, and leaf water relations in the halophyte Mesembryanthemum crystallinum during the in duction of Crassulacean acid metabolism in response to high NaCl salinity. Plant Physiol 95: 768–776

    CAS  Google Scholar 

  • Winter K and Smith JAC (1996) An introduction to Crassulacean acidmetabolism. Biochemical principles and ecological diversity. In: Winter K and Smith JAC (eds) Crassulacean Acid Metabolism. Biochemistry, Ecophysiology and Evolution, Vol 114, pp 1–13. Springer-Verlag, Berlin

    Google Scholar 

  • Winter K and von Willert DJ (1972) NaCl-induzierter Crassulaceensäurestoffwechsel bei Mesembryanthemum crystallinum. Z Pflanzenphsiol 67: 166–170

    CAS  Google Scholar 

  • Winter K, Osmond B and Pate JS (1981) Coping with salinity. In: Pate JS and McComb AF (eds) The Biology of Australian Plants, pp 88–113. University of Western Australia Press, Nedlands

    Google Scholar 

  • Winter K, Foster JG, Edwards GE and Holtum JAM (1982) Intracellular localization of enzymes of carbon metabolism in Mesembryanthemum crystallinum exhibiting C3 photosynthetic characteristics or performing Crassulacean acid metabolism. Plant Physiol 69: 300–307

    CAS  Google Scholar 

  • Winter K, Wallace BJ, Stacker GC and Rodsandic Z (1983) Crassulacean acid metabolism in Australian vascular epiphytes and some related species. Oecologia 57: 129–141

    Article  Google Scholar 

  • Xu R, Goldman S, Coupe S and Deikman J (1996) Ethylene control of E4 transcription during tomato fruit ripening involves two cooperative cis elements. Plant Mol Biol 31: 1117–1127

    Article  PubMed  CAS  Google Scholar 

  • Yen HE, Edwards GE and Grimes HD (1994) Characterization of asalt-responsive 24-kilodalton glycoprotein in Mesembryanthemum crystallinum. Plant Physiol 105: 1179–1187

    Article  PubMed  CAS  Google Scholar 

  • Yen HE, Grimes HD and Edwards GE (1995) The effects of high salinity, water deficit, and abscisic acid on phosphoenolpyruvate carboxylase activity and proline accumulation in Mesembryanthemum crystallinum cell cultures. J Plant Physiol 145:557–564

    CAS  Google Scholar 

  • Zotz G and Winter K (1996) Seasonal changes in daytime versus nighttime CO2 fixation of Clusia uvitana in situ. In: Winter K and Smith JAC (eds) Crassulacean Acid Metabolism. Biochemistry, Ecophysiology and Evolution, Vol 114, pp 312–323. Springer-Verlag, Berlin

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Kluwer Academic Publishers

About this chapter

Cite this chapter

Cushman, J.C., Taybi, T., Bohnert, H.J. (2000). Induction of Crassulacean Acid Metabolism—Molecular Aspects. In: Leegood, R.C., Sharkey, T.D., von Caemmerer, S. (eds) Photosynthesis. Advances in Photosynthesis and Respiration, vol 9. Springer, Dordrecht. https://doi.org/10.1007/0-306-48137-5_23

Download citation

  • DOI: https://doi.org/10.1007/0-306-48137-5_23

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6143-5

  • Online ISBN: 978-0-306-48137-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics