Skip to main content

Fructans: Synthesis and Regulation

  • Chapter

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 9))

Summary

Roughly ten percent of higher plant species possess a mechanism for reserve carbon allocation based on soluble fructose polymers (vacuolar fructan), which differs markedly in its enzymology, subcellular compartmentation and regulation from the more common starch-based carbon economy. This includes many economically important species, especially the temperate grasses and cereals. This chapter describes these novel elements associated with fructan metabolism, with particular emphasis on fructan synthesis in photosynthetic tissue.

Fructan structures, although based on variations in a few characters (polymer size, glycosidic linkage, etc.) are shown to be both varied and complex, differing markedly between species but possessing a consistency within species which argues for a biosynthetic mechanism with a high degree of specificity. The enzymological mechanisms currently thought to be involved are discussed, with particular reference to the involvement of multifunctional enzymes and the strong effects of both substrate and enzyme concentration on the chemical nature of the products in vitro. The enzymatic polymerization of authentic grass fructan has been achieved, but the conditions required in vitro do not coincide with those expected in the vacuole, the currently accepted site of synthesis. The properties of fructosyl transferases in general are shown to be unusual and we emphasize the need toreconcile the characteristics of enzymes in vitro with the patterns of metabolism and conditions observed in the tissue.

The regulation of fructan synthesis is discussed in relation to the pivotal role of sucrose as the sole substrate and as the key element in the coarse control of fructan accumulation, apparently acting at the level of gene expression and de novo enzyme synthesis. Sucrose mediated feedback inhibition of starch metabolism via phosphate transport does not apparently occur in grass leaves. This isolation of chloroplast metabolism from cytosolic sucrose accumulation indicates a fundamental difference in the fine control of centralcarbon metabolism between fructan and starch accumulators.

Recently, non-fructan, starch-accumulating plants such as maize, spinach and tobacco have been transformed with bacterial genes for fructan synthesis and shown to accumulate fructan. The current value of such transgenics is in terms of what they may tell us about the regulation of primary carbon metabolism in the recipient plants. Transgenics currently provide little insight into the nature or control of endogenous fructan metabolism. Some neglected aspects of the physiology these transgenics are considered by comparison with endogenous reserve carbon metabolism in untransformed plants.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   509.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   649.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   649.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

DP:

degree of polymerization (number of hexose moieties)

FFT:

fructan:fructan fructosyl transferase (EC 2.4.1.99)

Mr:

molecualr mass

PEG:

polyethylene glycol

SST:

sucrose:sucrose fructosyl transferase (EC 2.4.1.100)

TLC:

thin layer chromatography

References

  • Austin RB, Edrich JA, Ford MA and Blackwell RD (1977) The fate of the dry matter, carbohydrates and 14C lost from the leaves and stems of wheat during grain filling. Ann Bot 41: 1309–1321

    CAS  Google Scholar 

  • Bancal P and Triboi E (1993) Temperature effect on fructan oligomer contents and fructan-related enzyme activities in stems of wheat (Triticum oestivum L.) during grain filling. New Phytol 123: 247–253

    CAS  Google Scholar 

  • Bonnett GD and Incoll LD (1992) The potential pre-anthesis and post-anthesis contributions of stem interposed to grain yield in crops of winter barley. Ann Bot 69:219–225

    Google Scholar 

  • Bonnett GD and Simpson RJ (1993) Fructan hydrolase activities from Lolium rigidum Gaudin. New Phytol 123: 443–451

    CAS  Google Scholar 

  • Bonnett GD and Simpson RJ (1995) Fructanexo hydrolase activities from Lolium Rigidum that hydrolyze beta-2,1-glycosidic and beta-2, 6-glycosidic linkages at different rates. New Phytol 131:199–209

    CAS  Google Scholar 

  • Caimi PG, McCole LM, Klein TM and Kerr PS (1996) Fructan accumulation and sucrose metabolism in transgenic maize endosperm expressing a Bacillus amyloliquefaciens sacB gene. Plant Physiol 110: 355–363

    CAS  PubMed  Google Scholar 

  • Cairns AJ (1992a) A reconsideration of fructan biosynthesis in storage roots of Asparagus officinalis L. New Phytol 120: 463–473

    CAS  Google Scholar 

  • Cairns AJ (1992b) Fructan biosynthesis in excised leaves of Lolium temulentum L. V. Enzymatic de novo synthesis of large fructans from sucrose. New Phytol 122: 253–259

    CAS  Google Scholar 

  • Cairns AJ (1993) Evidence for the de novo synthesis of fructan by enzymes from higher plants: A reappraisal of the SST/FFT model. New Phytol 123:15–24

    CAS  Google Scholar 

  • Cairns AJ (1995) Effects of enzyme concentration of oligo fructan synthesis from sucrose. Phytochemistry 40:705–708

    Article  CAS  Google Scholar 

  • Cairns AJ and Ashton JE (1993) Species-dependent patterns of fructan synthesis by enzymes from excised leaves of oat, wheat, barley and timothy. New Phytol 124: 381–388

    CAS  Google Scholar 

  • Cairns AJ and Ashton JE (1994) Fructan biosynthesis in excised leaves of Lolium temulentum L. VI Optimisation and stability of enzymatic fructan synthesis. New Phytol 126: 3–10

    CAS  Google Scholar 

  • Cairns AJ and Pollock CJ (1988a) Fructan biosynthesis in excised leaves of Lolium temulentum L. I. Chromatographic characterisation of oligo fructans and their labelling patterns following 14CO2 feeding. New Phytol 109: 399–405

    CAS  Google Scholar 

  • Cairns AJ and Pollock CJ (1988b) Fructan biosynthesis in excised leaves of Lolium temulentum L. II. Changes in fructosyl transferase activity following excision and application of inhibitors of gene expression. New Phytol 109:407–413

    CAS  Google Scholar 

  • Cairns AJ, Winters AL and Pollock CJ (1989) Fructan biosynthesis in excised leaves of Lolium temulentum L. III A comparison of the invitro properties of fructosyl transferase activities with the characteristics of in vivo fructan accumulation. New Phytol 112: 343–352

    CAS  Google Scholar 

  • Cairns AJ, Bonnett GD, Gallagher JA, Simpson RJ and Pollock CJ (1997) Fructan biosynthesis in excised leaves of Lolium temulentum VII Sucrose and fructan hydrolysis by a fructan-polymerising enzyme preparation. New Phytol 136: 61–72

    Article  CAS  Google Scholar 

  • Cairns AJ, Nash R, Machado de Carvalho MA and Sims IM (1999) Characterisation of the enzymatic polymerisation of 2,6-linked fructan by leafextracts from timothy grass (Phleum pratense). New Phytol 142: 79–91

    Article  CAS  Google Scholar 

  • Chatterton NJ, Harrison PA, Thornley WR and Bennett JH (1993) Structures of fructan oligomers in orchard grass (Dactylis glomerata L.) J Plant Physiol 142: 552–556

    CAS  Google Scholar 

  • Collis BE. and Pollock CJ (1991) The control of sucrose synthesis in leaves of Lolium temulentum L., a fructan-accumulating grass. New Phytol 119: 483–489

    CAS  Google Scholar 

  • Collis BE and Pollock CJ (1992) Cytoplasmic carbohydrate metabolism in leaf tissues undergoing fructan synthesis and breakdown. J Plant Physiol 140:124–126

    CAS  Google Scholar 

  • Dedonder R (1966) Levansucrase from Bacillus subtilis. Meths Enzymol 8:500–505

    CAS  Google Scholar 

  • Dey PM (1980) Biochemistry of α-D-galactosidie linkages in the plant kingdom. Adv Carbohyd Chem Biochem 37: 283–372

    CAS  Google Scholar 

  • Dubois D, Winzeler M and Nösberger J (1990) Fructan accumulation and sucrose:sucrose fructosyl transferase activity in stems of spring wheat genotypes. Crop Sci 30:315–319

    CAS  Google Scholar 

  • Duchateau N, Bortlik K, Simmen U, Wiemken A and Bancal P (1995) Sucrose-fructan 6-fructosyl transferase: A key enzyme for diverting carbon from sucrose to fructan in barley leaves. Plant Physiol 107:1249–1255

    CAS  PubMed  Google Scholar 

  • Ebskamp MJM, van der Meer IM, Spronk BA, Weisbeek PJ and Smeekens SCM (1994) Accumulation of fructose polymers in transgenic tobacco. Bio/Technology 12: 272–275

    Article  CAS  PubMed  Google Scholar 

  • Edelman J and Dickerson AG (1966) The metabolism of fructose polymers in plants. Transfructosylation in tubers of Helianthus tuberosus L. Biochem J 98:787–794

    CAS  PubMed  Google Scholar 

  • Edelman J and Jefford TG (1968) The mechanism of fructosan metabolism in higher plants as exemplified in Helianthus tuberosus. New Phytol 67: 517–531

    CAS  Google Scholar 

  • Ernst M, Chatterton NJ and Harrison PA (1996) Purification and characterisation of a new fructan series from species of Asteraceae. New Phytol 132: 63–66

    CAS  Google Scholar 

  • Escalada JA and Moss DN (1976) Changes in the non-structural carbohydrate fractions of developing spring wheat kernels. Crop Sci 16: 627–631

    CAS  Google Scholar 

  • Frehner M, Keller F and Wiemken A (1984) Localisation of fructan metabolism in vacuoles isolated from protoplasts of Jerusalem artichoke tubers. J Plant Physiol 116: 197–208

    CAS  Google Scholar 

  • Fuchs A (1993a) Production and utilisation of inulin. Part I. Utilisation of inulin. In: Suzuki M and Chatterton NJ (eds) Science and Technology of Fructans, pp 320–352. CRC Press, Boca Raton

    Google Scholar 

  • Fuchs A (ed) (1993b) Inulin and Inulin-Containing Crops. Elsevier, Amsterdam

    Google Scholar 

  • Han Y (1990) Microbial Levan. Adv Appl Microbiol 35:171–194

    CAS  PubMed  Google Scholar 

  • Hendrix JE (1983) Phloem function: An integrated view. What’s New in Plant Physiology, Physiol Plant 14: 45–48

    Google Scholar 

  • Hendry GAF and Wallace RK (1993) The origin, distribution and evolutionary significance of fructans. In: Suzuki M and Chatterton NJ (eds). Science and Technology of Fructans, pp 119–139. CRC Press, Boca Raton

    Google Scholar 

  • Henson CA and Livingston DP (1996) Purification and characterization of an oat fructan exohydrolase that preferentially hydrolyzes beta-2,6-fructans. Plant Physiol 110: 639–644

    Article  CAS  PubMed  Google Scholar 

  • Housley TL and Daughtry CST (1987) Fructan content and fructosyl transferase activity during wheat seed growth. Plant Physiol 83: 4–7

    CAS  Google Scholar 

  • Housley TL and Pollock CJ (1985) Photosynthesis and carbohydrate metabolism in detached leaves of Lolium temulentum L. New Phytol 99: 499–502

    CAS  Google Scholar 

  • Housley TL and Pollock CJ (1993) The metabolism of fructan in higher plants. In Suzuki M and Chatterton NJ (eds) Science and Technology of Fructan, pp 191–225. CRC Press, Boca Raton

    Google Scholar 

  • Huber SC, Bachmann M, McMichael RW and Huber JC (1995) Regulation of sucrose phosphate synthase by reversible protein phosphorylation: Manipulation of activation and inactivation in vivo. In: Pontis H, Salerno GL and Echeverria EJ (eds) Sucrose Metabolism, Biochemistry, Physiology and Molecular Biology, pp 6–13. AmericanSociety of Plant Physiologists, Rockville

    Google Scholar 

  • Jang JC and Sheen J (1994) Sugar sensing in higher plants. Plant Cell 6: 1665–1679

    Article  CAS  PubMed  Google Scholar 

  • Jellings AJ and Leach RM (1982) The importance of quantitative anatomy in the interpretation of whole leaf biochemistry in species of triticum, hordeum and avena. New Phytol 92:39–48

    Google Scholar 

  • Kaeser W (1983) Ultrastructure of storage cells in Jerusalem artichoke tubers (Helianthus tuberosus L.). Vesicle formation during inulin synthesis. Zeit Pflanz 111: 253–260

    CAS  Google Scholar 

  • Koops AJ and Jonker HH (1996) Purification and characterisation of the enzymes of fructan biosynthesis in tubers of Helianthus tuberosus (Colombia). 2. Purification of sucrose-sucrose 1-fructosyl transferase and reconstitution of fructan synthesis in vitro with purified sucrose-sucrose 1-fructosyl transferase and fructan-fructan 1-fructosyl transferase. Plant Physiol 110: 1167–1175

    CAS  PubMed  Google Scholar 

  • Koroleva OA, Farrar JF, Tomos, AD and Pollock CJ (1997) Patterns of solute in individual mesophyll, bundle sheath and epidermal cells of barley leaves induced to accumulate carbohydrate. New Phytol 136: 97–104

    Article  CAS  Google Scholar 

  • Kingston-Smith AH and Pollock CJ (1996) Tissue level localisation of acid invertase in leaves: An hypothesis for the regulation of carbon export. New Phytol 134: 423–432

    CAS  Google Scholar 

  • Kühbauch W and Thome U (1989) Nonstructural carbohydrates of wheat stems as influenced by source-sink manipulations. J Plant Physiol 134: 243–250

    Google Scholar 

  • Lewis DH (1993) Nomenclature and diagrammatic representation of oligomericfructans: A paperfor discussion. New Phytol 123: 583–594

    Google Scholar 

  • Lüscher M, Erdin C, Sprenger N, Hochstrasser U, Boller T and Wiemken A (1996) Inulin synthesis by a combination of purified fructosyl transferases from tubers of Helianthus tuberosus. FEBS Lett 385: 39–42

    PubMed  Google Scholar 

  • MacLeod AM and McCorquodale H (1958) Water-soluble carbohydrates of seeds of the Gramineae. New Phytol 57: 168–182

    CAS  Google Scholar 

  • Marx SP, Nosberger J and Frehner M (1997) Hydrolysis of fructan in grasses: A beta-(2–6)-linkage specific fructan-beta-fructosidase from stubble of Lolium perenne. New Phytol 135: 279–290

    CAS  Google Scholar 

  • McCree KJ (1972) Test of current definitions of photosynthetically active radiation against leaf photosynthetic data. Agric Meteorol 10: 443–453

    Article  Google Scholar 

  • Milthorpe FL and Moorby J (1974) An Introduction to Crop Physiology. Cambridge University Press. Cambridge

    Google Scholar 

  • Natr L (1969) Influence of assimilate accumulation on rate of photosynthesis of barley leaf segments. Photosynthetica 3: 120–126

    Google Scholar 

  • Obenland DM, Simmen U, Boller T and Wienken A (1991) Regulation of sucrose-sucrose fructosyl transferase in barley leaves. Plant Physiol 97: 811–813

    CAS  Google Scholar 

  • Ozbun JL, Hawker JS, Greenberg E, Lammel C and Preiss J (1973) Starch synthetase, phosphorylase, ADP glucose pyrophosphorylase and UDP glucose pyrophosphorylase in developing maize kernels. Plant Physiol 51: 1–5

    CAS  Google Scholar 

  • Pearman I, Thomas SM and Thome GN (1978) Effects of nitrogen fertiliser on the distribution of photosynthate during grain growth of spring wheat. Ann Bot 42: 91–99

    CAS  Google Scholar 

  • Pilon-Smits EAH, Ebskamp MJM, Paul MJ, Jeuken MJW, Weisbeek PJ and Smeekens SCM (1995a) Improved performance of transgenic fructan-accumulating tobacco under drought stress. Plant Physiol 107: 125–130

    CAS  PubMed  Google Scholar 

  • Pilon-Smits EAH, Ebskamp MJ, Weisbeek PJ and Smeekens SCM (1995b) Frucan-accumulation in transgenic plants: Effect on growth, carbohydrate partitioning and stress resistance. In: Pontis HG, Salerno GO and Echeverria EJ (eds) Sucrose Metabolism, Biochemistry, Physiology and Molecular Biology, pp 88–99. American Society of Plant Physiologists, Rockville

    Google Scholar 

  • Pilon-Smits EAH, Ebskamp MJM, Jeuken MJW, van der Meer IM, Visser RGF, Weisbeek PJ and Smeekens SCM (1996) Microbial fructan production in transgenic potato plants and tubers. Indust Crops Prod 5: 35–46

    CAS  Google Scholar 

  • Pollock CJ (1979) Pathway of fructan synthesis in leaf bases of Dactylis glomerata. Phytochemistry 18: 777–779

    Article  CAS  Google Scholar 

  • Pollock CJ (1982) Patterns of turnover of fructans in leaves of Dactylis glomerata L. New Phytol 90: 645–650

    CAS  Google Scholar 

  • Pollock CJ and Cairns AJ (1991) Fructan metabolism in grasses and cereals. Ann Rev Plant Physiol Plant Mol Biol 42:77–101

    CAS  Google Scholar 

  • Pollock CJ and Jones T (1979) Seasonal patterns of fructan metabolism in forage grasses. New Phytol 83: 8–15

    Google Scholar 

  • Pollock CJ and Kingston-Smith AH (1997) The vacuole and carbohydrate metabolism. In: Leigh RA and Sanders D (eds) Advances in Botanical Research 25, pp 195–215. Academic Press, London

    Google Scholar 

  • Pollock CJ, Hall MA and Roberts DP (1979) Structural analysis of fructose polymers by gas-liquid chromatography and gel filtration. J Chromatogr 171: 411–415

    CAS  Google Scholar 

  • Pollock CJ, Eagles CE and Sims IM (1988) Effect of photoperiod and irradiance changes upon development of freezing tolerance and accumulation of soluble carbohydrate in seedlings of Lolium perenne grown at 2 °C. Ann Bot 62: 95–100

    Google Scholar 

  • Pollock CJ, Cairns AJ, Gallagher JA, Winters AL and Farrar J (1995) Cold affects partitioning. Does partitioning affect photosynthesis? In: Mathis P (ed) Photosynthesis: From Light to Biosphere, Vol IV, pp 783–788. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Pollock CJ, Cairns AJ, Sims IM and Housley TL (1996) Fructans as Reserve Carbohydrates in Crop Plants. In: Zamski E and Shaffer AA (eds) Photoassimilate Distribution in Plants and Crops: Source-Sink Relationships, pp 97–113. Marcel Dekker Inc, New York

    Google Scholar 

  • Pontis H (1995) A discussion on the present model of fructan biosynthesis. In: Pontis H, Salerno GL and Echeverria EJ (eds) Sucrose Metabolism, Biochemistry, Physiology and Molecular Biology, pp 190–197. American Society of Plant Physiologists, Rockville

    Google Scholar 

  • Röber M, Geider K, Muller-Röber B and Willmitzer L (1996) Synthesis of fructans in tubers of transgenic starch-deficient potato plants does not result in an increased allocation of carbohydrates. Planta 199: 528–536

    PubMed  Google Scholar 

  • Sachs J (1864) Uber die Spharokrystalle des Inulins und den mikroskopische Nachweisung in den Zellen. Botanische Zeitung 22: 77–81; 85–89

    Google Scholar 

  • Schnyder H (1986) Carbohydrate metabolism in the growth zone of tall fescue leaf blades. In: Randall DD, Miles CD, Nelson CJ, Blevins DG and Miernyk JA (eds) Current Topics in Plant Biochemistry and Physiology, pp. 47–58. University of Missouri, Columbia

    Google Scholar 

  • Schnyder H (1993) The role of carbohydrate storage and redistribution in the source-sink relations of wheat and barley during grain filling—a review. New Phytol 123: 233–245

    Google Scholar 

  • Schnyder H and Nelson CJ (1987) Growth rates and carbohydrate fluxes within the elongation zone of tall fescue leaf blades at high and low irradiance. Plant Physiol 85: 548–553

    CAS  Google Scholar 

  • Schnyder H and Nelson CJ (1989) Growth rates and assimilate partitioning in the elongation zone of tall fescue leaf blades at high and low irradiance. Plant Physiol 90: 1201–1206

    CAS  Google Scholar 

  • Schnyder H, Nelson CJ and Spollen WG (1988) Diurnal growth of tall fescue leaf blades. II. Dry matter partitioning and carbohydrate metabolism in the elongation zone and adjacent expanded tissue. Plant Physiol 86: 1077–1083

    CAS  Google Scholar 

  • Silk WK. (1984) Quantitative descriptions of development. Ann Rev Plant Physiol 35: 479–518

    Google Scholar 

  • Simmen U, Obenland D, Boller T and Wiemken A (1993) Fructan synthesis in excised barley leaves. Identification of two sucrose-sucrose fructosyl transferases induced by light and their separation from constitutive invertases. Plant Physiol 101: 459–468

    CAS  PubMed  Google Scholar 

  • Simpson RJ and Bonnett GD (1993) Fructan exohydrolese from grasses. New Phytol 123: 453–469

    CAS  Google Scholar 

  • Simpson RJ, Walker RP and Pollock CJ (1991) Fructan exohydrolase in leaves of Lolium temulentum L. New Phytol 119: 499–507

    CAS  Google Scholar 

  • Sims IM, Pollock CJ and Horgan R (1992) Structural analysis of oligomeric fructans from excised leaves of Lolium temulentum. Phytochemistry 31: 2989–2992

    Article  CAS  Google Scholar 

  • Sims IM, Horgan R and Pollock CJ (1993) The kinetic analysis of fructan biosynthesis in excised leaves of Lolium temulentum L. New Phytol 123: 25–29

    CAS  Google Scholar 

  • Slaughter LH and Livingston DP (1994) Separation of fructan isomers by high-performance anion-exchange chromatography. Carbohydr Res 253: 287–291

    Article  CAS  Google Scholar 

  • Sprenger N, Bortlik K, Brandt A, Boller T and Wiemken A (1995) Purification, cloning and functional expression of sucrose-fructan 6-transferase, a key enzyme of fructan synthesis in barley. Proc Nat Acad Sci USA 92: 11652–11656

    CAS  PubMed  Google Scholar 

  • Stitt M (1996) Metabolic regulation of photosynthesis. In: Baker NR (ed) Photosynthesis and the Environment, pp 151–190. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • St John JA, Bonnett GD, Simpson RJ and Tanner GJ (1997a) A fructan: fructan fructosyl transferase activity from Lolium rigidum. New Phytol 135: 235–247

    CAS  Google Scholar 

  • St John JA, Sims IM, Bonnett GD and Simpson RJ (1997b) The identification of products formed by a fructan: fructan fructosyl transferase activity from Lolium rigidum. New Phytol 135: 249–257

    CAS  Google Scholar 

  • Tomos AD, Leigh RA, Palta JA and Williams JHH (1992) Sucrose and cell water relations. In: Pollock CJ, Farrar, JF and Gordon AJ (eds) Carbon Partitioning Within and Between Organisms, pp 71–89. Bios, Oxford

    Google Scholar 

  • van den Ende W and van Laere, A (1996) De novo synthesis of fructans from sucrose in vitro by a combination of 2 purified enzymes (sucrose-sucrose 1-fructosyl transferase and fructan-fructan 1-frucosyl transferase from chicory roots (Cichorium intybus) L. Planta 200: 335–342

    Article  Google Scholar 

  • van der Meer IM, Ebskamp MJM, Visser RGF, Weisbeek PJ and Smeekens SCM (1994) Fructan as a new carbohydrate sink in transgenic potato plants. Plant Cell 6: 561–570

    Google Scholar 

  • Wagner W and Wiemken A (1986) Properties and subcellular localisation of fructan hydrolase in the leaves of barley (Hordeum vulgare L. cv. Gerbel). J Plant Physiol 123: 429–439

    CAS  Google Scholar 

  • Wagner W and Wiemken A(1987) Enzymology of fructan synthesis in grasses. Properties of sucrose-sucrose fructosyl transferase in barley leaves (Hordeum vulgare L. cv. Gerbel). J Plant Physiol 85: 706–710

    CAS  Google Scholar 

  • Wagner W, Keller F and Wiemken A (1983) Fructan metabolism in cereals: Induction inleaves and compartmentation in protoplasts and vacuoles. Zeit Pflanz 112: 359–372

    CAS  Google Scholar 

  • Wagner W, Wiemken A and Matile PH (1986) Regulation of fructan metabolism in leaves of barley (Hordeum vulgare L. cv. Gerbel). J Plant Physiol 81: 444–447

    CAS  Google Scholar 

  • Wiemken A, Sprenger N and Boller T (1995) Fructan—an extension of sucrose by sucrose. In: Pontis HG, Salerno GL and Echeverria E.J (eds) Sucrose Metabolism, Biochemistry, Physiology and Molecular Biology, pp 179–189. American Society of Plant Physiologists, Rockville

    Google Scholar 

  • Williams ML, Farrar JF and Pollock CJ (1989) Cell specialisation within the parenchymatous bundle sheath of barley. Plant Cell Env 12: 909–918

    Google Scholar 

  • Winter H, Robinson DG and Heldt HW (1993) Subcellular volumes and metabolite concentrations in barley leaves. Planta 191: 180–190

    Article  CAS  Google Scholar 

  • Winters AL, Williams JHH, Thomas DS and Pollock CJ (1994) Changes in gene expression in response to sucrose accumulation in leaf tissue of Lolium temulentum L. New Phytol 128: 591–600

    CAS  Google Scholar 

  • Winters AL, Gallagher JA, Pollock CJ and Farrar JF (1995) Isolation of a gene expressed during sucrose accumulation in leaves of Lolium temulentum L. J Exp Bot 46: 1345–1350

    CAS  Google Scholar 

  • Yamamoto S and Mino Y (1989) Mechanism of phleinase induction in the stem base of orchard grass after defoliation. J Plant Physiol 134: 258–260

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Kluwer Academic Publishers

About this chapter

Cite this chapter

Cairns, A.J., Pollock, C.J., Gallagher, J.A., Harrison, J. (2000). Fructans: Synthesis and Regulation. In: Leegood, R.C., Sharkey, T.D., von Caemmerer, S. (eds) Photosynthesis. Advances in Photosynthesis and Respiration, vol 9. Springer, Dordrecht. https://doi.org/10.1007/0-306-48137-5_13

Download citation

  • DOI: https://doi.org/10.1007/0-306-48137-5_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6143-5

  • Online ISBN: 978-0-306-48137-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics