Skip to main content

Intercellular Transport and Phloem Loading of Sucrose, Oligosaccharides and Amino Acids

  • Chapter

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 9))

Summary

Photoassimilate export from the mesophyll and the processes underlying phloem loading are central to the efficient growth, competitive ability, and reproductive success of a plant. The assimilate flux out of the leaf is regulated on a number of levels. For example, structural aspects including the spatial organization of individual cell types within the leaf and the extent of the symplasmic connections between these cell types control these fluxes at the cellular level. Phloem loading can follow a symplasmic route, or involve an apoplasmic step within the vicinity of the companion cell-sieve element (CC-SE) complex. In the latter case, apoplasmic transfer is regulated by the capacity of the individual cell types to engage in efflux or uptake (retrieval) of photoassimilates. Within the autotrophic tissues of the leaf, photoassimilate flow may be regulated through feed-back mechanisms that can modify biochemical pathways, plasmodesmal conductivity, and membrane transport properties. At the membrane transport level, molecular techniques have led to the isolation and characterization of transporters operating at the site of phloem loading. These studies allowed for the molecular manipulation of such transport systems and now offer a powerful method to advance our understanding of the events that underlie both phloem loading and photoassimilate allocation. The recent discovery that plasmodesmata can mediate the cell-to-cell transport of macromolecules suggests that these unique structures may play a role not only in assimilate transport, but also in the integration of cellular processes. A model is proposed where regulatory macromolecules move cell to cell, within the leaf, as well as long-distance, via the phloem, to serve in the coordination and regulation of physiological events taking place in source and sink tissues.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   509.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   649.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   649.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

BS:

bundlesheath

CC-SE:

companion cell-sieve element complex

EM:

electron microscopy

PCMBS:

p-chloromercuri-benzenesulfonic acid

SEL:

size exclusion limit

SER:

sieve element reticulum

TMV-MP:

tobacco mosaic virus movement protein

VP:

vascular parenchyma

References

  • Andrews M (1986) The partitioning of nitrateas similation between root and shoot of higher plants. Plant Cell Environ 9: 511–519

    CAS  Google Scholar 

  • Balachandran S, Hull RJ, Vaadia Y, Wolf S and Lucas WJ (1995) Tobacco mosaic virus movement protein-induced change in carbon partitioning originates from the mesophyll and is independent of changes in plasmodesmal size exclusion limit. Plant Cell Environ 18: 1301–1310

    CAS  Google Scholar 

  • Balachandran S, Xiang Y, Schobert C, Thompson GA and Lucas WJ (1997) Phloem sap proteins from Cucurbita maxima and Ricinus communis have the capacity to traffic cell to cell through plasmodesmata. Proc Natl Acad Sci USA 94: 14150–14155

    Article  CAS  PubMed  Google Scholar 

  • Beck EH (1996) Regulation of shoot-root ratio by cytokinins from roots in Urtica dioica: Opinion. Plant Soil 185: 3–12

    Article  CAS  Google Scholar 

  • Beebe DU and Evert RF (1992) Photoassimilate pathway(s) and phloem loading in the leaf of Moricandia arvensis (L.) DC. (Brassicaceae). Int J Plant Sci 153: 61–77

    Article  Google Scholar 

  • Beebe DU and Turgeon R (1991) Galactinol synthase is sequestered in intermediary cells (companion cells) of Cucurbita leaf phloem. Plant Physiol 96S: 100

    Google Scholar 

  • Bennett MJ, Marchant A, Green HG, May ST, Ward SP, Millner PA, Walker AR, Schulz B and Feldmann KA (1996) The Arabidopsis AUX1 gene: A permease-like regulator of root gravitropism. Science 273: 948–950

    CAS  PubMed  Google Scholar 

  • Bent AF (1996) Plant disease resistance genes: Function meets structure. Plant Cell 8: 1757–1771

    Article  CAS  PubMed  Google Scholar 

  • Boorer KJ and Fischer WN (1997) Specificity and stoichiometry of the Arabidopsis H+/amino acid transporter AAP5. J Biol Chem: 272, 13040–13046

    Article  CAS  PubMed  Google Scholar 

  • Boorer KJ, Loo DDF, Frommer WB and Wright EM (1996) Transport mechanism of the cloned potato H+-sucrose cotransporter StSUT1. J Biol Chem 271:25139–25144

    CAS  PubMed  Google Scholar 

  • Bostwick DE, Dannenhoffer JM, Skaggs MI, Lister RM, Larkins BA and Thompson GA (1992) Pumpkin phloem lectin genes are specifically expressed in companion cells. Plant Cell 4: 1539–1548

    Article  CAS  PubMed  Google Scholar 

  • Botha CEJ (1992) Plasmodesmatal distribution, structure and frequency in relation to assimilation in C3 and C4 grasses in southern Africa. Planta 187: 348–358

    CAS  Google Scholar 

  • Bouche-Pillon S, Fleurat-Lessard P, Fromont JC, Serrano R and Bonnemain JL (1994) Immunolocalization of the plasma membrane H+-ATPase in minor veins of Vicia faba in relation to phloem loading. Plant Physiol 105: 691–697

    CAS  PubMed  Google Scholar 

  • Boyer JS (1985) Water transport. Annu Rev Plant Physiol 36: 473–516

    Article  Google Scholar 

  • Buckhout TJ (1994) Kinetics analysis of the plasma membrane sucrose-H+ symporter from sugar beet (Beta vulgaris L.) leaves. Plant Physiol 106: 991–998

    CAS  PubMed  Google Scholar 

  • Burns IG (1994) A mechanistic theory for the relationship between growth rate and the concentration of nitrate-N or organic-N in young plants derived from nutrient interruption experiments. Ann Bot 74: 159–172

    Google Scholar 

  • Bush DR (1989) Proton-coupled sucrose transport in plasma-lemma vesicles isolated from sugar beet (Beta vulgaris cultivar Great Western) leaves. Plant Physiol 89: 1318–1323

    CAS  Google Scholar 

  • Bush DR (1993) Proton-coupled sugar and amino acid transporters in plants. Annu Rev Plant Physiol Plant Mol Biol 44: 513–542

    Article  CAS  Google Scholar 

  • Canny MJ (1990) Rates of apoplastic diffusion in wheat leaves. New Phytol 116: 263–268

    Google Scholar 

  • Canny MJ (1993) The transpiration stream in the leaf apoplast-water and solutes. Phil Trans Royal Soc Lond, Ser B-Biol Sci 341:87–100

    Google Scholar 

  • Chen L and Bush DR (1997) LHT1, a lysine and histidine specific amino acid transporter in Arabidopsis. Plant Physiol 115: 1127–1134

    Article  CAS  PubMed  Google Scholar 

  • Daie J (1989) Turgor-regulated sugar release from the source leaves of sugar beet (Beta vulgaris L.). Plant Cell Physiol 30: 1115–1122

    CAS  Google Scholar 

  • Dangl JL, Dietrich, RA and Richberg MH (1996) Death don’t have no mercy: Cell death programs in plant-microbe interactions. Plant Cell 8: 1793–1807

    Article  CAS  PubMed  Google Scholar 

  • Delrot S (1987) Phloem loading: Apoplastic or symplastic? Plant Physiol Biochem 25: 667–676

    CAS  Google Scholar 

  • Dewitt ND and Sussman MR (1995) Immunocytological localization of an epitope-tagged plasma membrane proton pump (H+-ATPase) in phloem companion cells. Plant Cell 7: 2053–2067

    Article  CAS  PubMed  Google Scholar 

  • Dewitt ND, Hong B, Sussman MR and Harper JF (1996) Targeting of two Arabidopsis H+-ATPase isoforms to the plasma membrane. Plant Physiol 112: 833–844

    Article  CAS  PubMed  Google Scholar 

  • Dickinson CD, Altabella T and Chrispeels MJ (1991) Slow-growth phenotype of transgenic tomato expressing apoplastic invertase. Plant Physiol 95: 420–425

    CAS  Google Scholar 

  • Ding B (1997) Cell-to-cell transport of macromolecules through plasmodesmata: A novel signalling pathway in plants. Trends Cell Biol 7: 5–9

    Article  CAS  Google Scholar 

  • Ding B, Haudenshield JS, Willmitzer L and Lucas WJ (1993) Correlation between arrested secondary plasmodesmal development and onset of accelerated leaf senescence in yeast acid invertase transgenic tobacco plants. Plant J 4: 179–189

    Article  CAS  PubMed  Google Scholar 

  • Epel BL (1994) Plasmodesmata: Composition, structure and trafficking. Plant Mol Biol 26: 1343–1356

    Article  CAS  PubMed  Google Scholar 

  • Esau K and Thorsch J (1985) Sieve plate pores and plasmodesmata, the communication channels of the symplast: Ultrastructural aspects and developmental relations. Am J Bot 72: 1641–1653

    Google Scholar 

  • Evert RF (1990) Dicotyledons. In: Behnke HD and Sjölund RD (eds) Sieve Elements, pp 103–137. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Evert RF, Russin WA and Bosabalidis AM (1996) Anatomical and ultrastructural changes associated with sink-to-source transition in developing maize leaves. Int J Plant Sci 157:247–261

    Article  Google Scholar 

  • Fischer WN, Kwart M, Hummel S and Frommer WB (1995) Substrate specificity and expression profile of amino acid transporters (AAPs) in Arabidopsis. J Biol Chem 270: 16315–16320

    CAS  PubMed  Google Scholar 

  • Fischer WN, André B, Rentsch D, Krolkiewicz S, Tegeder M, Breitkreuz K and Frommer WB (1998) Plant amino acid transporters. Trends Plant Sci 3: 188–195

    Article  Google Scholar 

  • Fisher DB (1967) An unusual layer of cells in the mesophyll of soybean leaf. Bot Gaz 138: 215–218

    Google Scholar 

  • Fisher DB and Macnicol PIC (1986) Amino acid composition along the transport pathway during grain filling in wheat. Plant Physiol 82: 1019–1023

    CAS  Google Scholar 

  • Fisher DB, Wu Y and Ku MSB (1992) Turnover of soluble proteins in the wheat sieve tube. Plant Physiol 100: 1433–1441

    CAS  Google Scholar 

  • Flora, LL and Madore MA (1993) Stachyose and mannitol transport in olive Olea-Europaea L. Planta 189: 484–490

    Article  CAS  Google Scholar 

  • Flora LL and Madore MA (1996) Significance of minor-vein anatomy to carbohydrate transport. Planta 198: 171–178

    Article  CAS  Google Scholar 

  • Franceschi VR and Giaquinta RT (1983a) The paraveinal mesophyll of soybean leaves in relation to assimilate transfer and compartmentation. I. Ultrastructure and histochemistry during vegetative development. Planta 157: 411–421

    Google Scholar 

  • Franceschi VR and Giaquinta RT (1983b) Specialized cellular arrangements in legume leaves in relation to assimilate transport: Comparison of the paraveinal mesophyll. Planta 159: 415–422

    Article  Google Scholar 

  • Franceschi VR and Giaquinta RT (1983c) The paraveinal mesophyll of soybean leaves in relation to assimilate transfer and compartmentation. II. Structural, metabolic and compartmental changes during reproductive growth. Planta 157: 422–431

    CAS  Google Scholar 

  • Franceschi VR, Wittenbach VA and Giaquinta RT (1983) The paraveinal mesophyll of soybean leaves in relation to assimilate transfer and compartmentation. III. Immunohistochemical localization of specific glycopeptides in the vacuole after depodding. Plant Physiol 72: 586–589

    CAS  Google Scholar 

  • Franceschi VR, Ku MSB and Wittenbach VA (1984) Isolation of mesophyll and paraveinal mesophyll protoplasts from soybean leaves. Plant Sci Lett 36: 181–186

    Google Scholar 

  • Frommer WB, Hummel S and Riesmeier JW (1993) Expression cloning in yeast of a cDNA encoding a broad specificity amino acid permease from Arabidopsis thaliana, Proc Natl Acad Sci USA 90: 5944–5948

    CAS  PubMed  Google Scholar 

  • Frommer WB, Kwart M, Hirner B, Fischer WN, Hummel S and Ninnemann O (1994) Transporters for nitrogenous compounds in plants. Plant Mol Biol 26: 1651–1670

    Article  CAS  PubMed  Google Scholar 

  • Frommer WB, Hummel S, Unseld M and Ninnemann O (1995) Seed and vascular expression of a high affinity transporter for cationic amino acids in Arabidopsis. Proc Natl Acad Sci USA 92:12036–12040

    CAS  PubMed  Google Scholar 

  • Fujiwara T, Giesman-Cookmeyer D, Ding B, Lommel SA and Lucas WJ (1993) Cell-to-cell trafficking of macromolecules through plasmodesmata potentiated by the red clover necrotic mosaic virus movement protein. Plant Cell 5: 1783–1794

    Article  CAS  PubMed  Google Scholar 

  • Fukumorita T and Chino M (1982) Sugar, amino acid and inorganic contents in rice phloem sap. Plant Cell Physiol 23: 273–283

    CAS  Google Scholar 

  • Gahrtz M, Stolz J and Sauer N (1994) A phloem-specific sucrose-H+ symporter from Plantago major L. supports the model of apoplastic phloem loading. Plant J 6: 697–706

    Article  CAS  PubMed  Google Scholar 

  • Gallet O, Lemoine R, Larsson C and Delrot S (1989) The sucrose carrier of the plant plasma membrane: I. Differential affinity labeling. Biochim Biophys Acta 978: 56–64

    CAS  Google Scholar 

  • Gamalei Y (1988) The structural and functional evolution of minor veins of the leaf. Botanicheskii Zhurnal 73: 1513–1522

    Google Scholar 

  • Gamalei Y (1991) Phloem loading and its development related to plant evolution from trees to herbs. Trees 5: 50–64

    Article  Google Scholar 

  • Geiger DR (1975) Phloem loading. In: Zimmermann MH and Milburn JA (eds) Transport in Plants I. Phloem Transport, Encycl Plant Physiol, New Series, Vol. 1, pp 395–431. Springer-Verlag, Berlin Heidelberg New York

    Google Scholar 

  • Ghoshroy S, Lartey R, Sheng JS and Citovsky V (1997) Transport of proteins and nucleic acids through plasmodesmata. Annu Rev Plant Physiol Plant Mol Biol 48: 25–48

    Article  Google Scholar 

  • Gilbertson RL and Lucas WJ (1996) How do plant viruses traffic on the ‘vascular highway’? Trends Plant Sci 1: 260–268

    Article  Google Scholar 

  • Grabski S, de Feijter AW and Schindler M (1993) Endoplasmic reticulum forms a dynamic continuum for lipid diffusion between contiguous soybean root cells. Plant Cell 5: 25–38

    Article  CAS  PubMed  Google Scholar 

  • Grimes HD, Overvoorde PJ, Ripp K, Franceschi VR and Hitz WD (1992) A 62-kD sucrose binding protein is expressed and localized in tissues actively engaged in sucrose transport. Plant Cell 4: 1561–1574

    Article  CAS  PubMed  Google Scholar 

  • Grusak MA, Beebe DU and Turgeon R (1996) Phloem loading. In: Zamsky E and Schaffer AA (eds) Photoassimilate Distribution in Plants and Crops: Source-Sink Relationships, pp 209–227. Marcel Dekker Inc. Publishers, New York

    Google Scholar 

  • Haberlandt G (1914) Physiological Anatomy (English translation). Today and Tomorrow’s Book Agency, New Delhi

    Google Scholar 

  • Haritatos E, Keller F and Turgeon R (1996) Raffinose oligosaccharide concentrations measured in individual cell and tissue types in Cucumis melo L leaves—implications for phloem loading. Planta 198: 614–622

    Article  CAS  Google Scholar 

  • Heineke D, Sonnewald U, Buessis D, Guenter G, Leidreiter K, Wilke I, Raschke K, Willmitzer L and Heldt HW (1992) Apoplastic expression of yeast-derived invertase in potato effects on photosynthesis leaf solute composition water relations and tuber composition. Plant Physiol 100: 301–308

    CAS  Google Scholar 

  • Hocking PJ (1980) The composition of phloem exudate and xylem sap from tree tobacco. Ann Bot 45: 633–643

    CAS  Google Scholar 

  • Hsu LC, Chiou TJ, Chen L and Bush DR (1993) Cloning a plant amino acid transporter by functional complementation of a yeast amino acid transport mutant. Proc Natl Acad Sci USA 90: 7441–7445

    CAS  PubMed  Google Scholar 

  • Ishiwatari Y, Fujiwara T, McFarland KC, Nemoto K, Hayashi H, Chino M and Lucas WJ (1997) Rice phloem thioredoxin h has the capacity to mediate its own cell-to-cell transport through plasmodesmata. Planta 205: 12–22

    Google Scholar 

  • Ishiwatari Y, Honda C, Kawashima I, Nakamura SI, Hirano H, Mori S, Fujiwara T, Hayashi H and Chino M (1995) Thioredoxin h is one of the major proteins in rice phloem sap. Planta 195: 456–463

    Article  CAS  PubMed  Google Scholar 

  • Jackson AO and Taylor CB (1996) Plant-microbe interactions: Life and death at the interface. Plant Cell 8: 1651–1668

    Article  CAS  PubMed  Google Scholar 

  • Kempers R and Van Bel AJE (1997) Symplasmic connections between sieve element and companion cell in the stem phloem of Vicia faba L. have a molecular exclusion limit of at least 10 kDa. Planta 201: 195–201

    Article  CAS  Google Scholar 

  • Klauer SF, Franceschi VR, Ku MSB and Zhang D (1996) Identification and localization of vegetative storage proteins in legume leaves. Amer J Bot 83: 1–10

    CAS  Google Scholar 

  • Köckenberger W, Pope JM, Xia Y, Jeffrey KR, Komor E and Callaghan PT (1997) A non-invasive measurement of phloem and xylem water flow in castor bean seedlings by nuclear magnetic resonance microimaging. Planta 201: 53–63

    Google Scholar 

  • Komor E, Orlich G, Weig A and Köckenberger W (1996) Phloem loading-not metaphysical, only complex: Towards a unified model of phloem loading. J Exp Bot 47: 1155–1164

    CAS  Google Scholar 

  • Kühn C, Quick WP, Schulz A, Riesmeier JW, Sonnewald U and Frommer WB (1996) Companion cell-specific inhibition of the potato sucrose transporter SUT1. Plant Cell Environ 19: 1115–1123

    Google Scholar 

  • Kühn C, Franceschi VR, Schulz A, Lemoine R and Frommer WB (1997) Macromolecular trafficking indicated by localization and turnover of sucrose transporters in enucleate sieve elements. Science 275: 1298–1300

    PubMed  Google Scholar 

  • Kwart M, Hirner B, Hummel S and Frommer WB (1993) Differential expression of two related amino acid transporters with differing substrate specificity in Arabidopsis thaliana. Plant J 4: 993–1002

    Article  CAS  PubMed  Google Scholar 

  • Kwart M, Laubner M, Heineke D, Rentsch D and Frommer WB (1998) An increased C/N ratio in potato tubers due to antisense inhibition of the leaf H+/amino acid symporter StAAP1. Plant J (Submitted)

    Google Scholar 

  • Laloi M, Delrot S and M’Batchi B (1993) Characterization of sugar efflux from sugar beet leaf plasma membrane vesicles. Plant Physiol Biochem 31: 731–741

    CAS  Google Scholar 

  • Lemoine R, Delrot S, Gallet O and Larsson C (1989) The sucrose carrier of the plant membrane: II. Immunological characterization. Biochim Biophys Acta 978: 65–71

    CAS  Google Scholar 

  • Lemoine R, Külhn C, Thiele N, Delrot S and Frommer WB (1996) Antisense inhibition of the sucrose transporter in potato: Effects on amount and activity. Plant Cell Environ 19:1124–1131

    CAS  Google Scholar 

  • Lohaus G, Burba M and Heldt HW (1994) Comparison of the contents of sucrose and amino acids in the leaves, phloem sap and taproots of high and low sugar-producing hybrids of sugar beet (Beta vulgaris L.). J Exp Bot 45: 1097–1101

    CAS  Google Scholar 

  • Lohaus G, Winter H, Riens B and Heldt HW (1995) Further studies of the phloem loading process in leaves of barley and spinach. The comparison of metabolite concentrations in the apoplastic compartment with those in the cytosolic compartment and the sieve tubes. Bot Acta 108: 270–275

    CAS  Google Scholar 

  • Lucas WJ (1995) Plasmodesmata: Intercellular channels for macromolecular transport in plants. Curr Opinion Cell Biol 7: 673–680

    Article  CAS  PubMed  Google Scholar 

  • Lucas WJ and Gilbertson RL (1994) Plasmodesmata in relation to viral movement within leaf tissues. Annu Rev Phytopathol 32:387–411

    Article  CAS  Google Scholar 

  • Lucas WJ and Wolf S (1993) Plasmodesmata: The intercellular organelle of green plants. Trend Cell Biol 3: 308–315

    CAS  Google Scholar 

  • Lucas WJ, Ding B and Van Der Schoot C (1993a) Plasmodesmata and the supracellular nature of plants. New Phytol 125: 435–476

    Google Scholar 

  • Lucas WJ, Olesinski A, Hull RJ, Haudenshield JS, Deom CM, Beachy RN and Wolf S (1993b) Influence of the tobacco mosaic virus 30-Kda movement protein on carbon metabolism and photosynthate partitioning in transgenic tobacco plants. Planta 190: 88–96

    Article  CAS  Google Scholar 

  • Lucas WJ, Bouche-Pillon S, Jackson DP, Nguyen L, Baker L, Ding B and Hake S (1995) Selective trafficking of KNOTTED 1 homeodomain protein and its mRNA through plasmodesmata. Science 270: 1980–1983

    CAS  PubMed  Google Scholar 

  • Lucas WJ, Balachandran S, Park J and Wolf S (1996) Plasmodesmal companion cell-mesophyll communication in the control over carbon metabolism and phloem transport: Insights gained from viral movement proteins. J Exp Bot 47: 1119–1128

    CAS  Google Scholar 

  • Lunn JE and Furbank RT (1997) Localisation of sucrosephosphate synthase and starch in leaves of C4 plants. Planta 202:106–111

    Article  CAS  PubMed  Google Scholar 

  • Marger MD and Saier MH Jr (1993) A major superfamily of transmembrane facilitators that catalyse uniport symport and antiport. Trends Biochem Sci 18: 13–20

    Article  CAS  PubMed  Google Scholar 

  • Maynard, JW and Lucas WJ (1982) Sucrose and glucose uptake into Beta vulgaris leaf tissues. A case for general (apoplastic) retrieval systems. Plant Physiol 82: 432–42

    Google Scholar 

  • Metzler A, Izquierdo M, Ziegler A, Köckenberger W, Komor E, Von Kienlin M, Haase A and Decorps M (1995) Plant histochemistry by correlation peak imaging. Proc Natl Acad Sci USA 92: 11912–11915

    CAS  PubMed  Google Scholar 

  • Mezitt LA and Lucas WJ (1996) Plasmodesmal cell-to-cell transport of proteins and nucleic acids. Plant Mol Biol 32: 251–273

    Article  CAS  PubMed  Google Scholar 

  • Münch E (1930) Die Stoffbewegungen in der Pflanze. Fischer, Jena

    Google Scholar 

  • Murray C and Christeller JT (1995) Purification of a trypsin inhibitor (PFTI) from pumpkin fruit phloem exudate and isolation of putative trypsin and chymotrypsin inhibitor cDNA clones. Biol Chem Hoppe-Seyler 376: 281–287

    CAS  PubMed  Google Scholar 

  • Nakamura SI, Hayashi H, Mori S and Chino M (1993) Protein phosphorylation in the sieve tubes of rice plants. Plant Cell Physiol 34: 927–933

    CAS  Google Scholar 

  • Nakamura SI, Hayashi H, Mori S and Chino M (1995) Detection and characterization of protein kinases in rice phloem sap. Plant Cell Physiol 36: 19–27

    CAS  Google Scholar 

  • Noueiry AO, Lucas WJ and Gilbertson RL (1994) Two proteins of a plant DNA virus coordinate nuclear and plasmodesmal transport. Cell 76: 925–932

    Article  CAS  PubMed  Google Scholar 

  • Ntsika G and Delrot S (1986) Changes in apoplastic and intracellular leaf sugars induced by the blocking of export in Vicia faba. Physiol Plant 68: 145–153

    CAS  Google Scholar 

  • Olesinski AA, Lucas WJ, Galun E and Wolf S (1995) Pleiotropic effects of tobacco-mosaic-virus movement protein on carbon metabolism in transgenic tobacco plants. Planta 197: 118–126

    Article  CAS  Google Scholar 

  • Olesinski AA, Almon E, Navot N, Perl A, Galun E, Lucas WJ and Wolf S (1996) Tissue-specific expression of the tobacco mosaic virus movement protein in transgenic potatoplants alters plasmodesmal function and carbohydrate partitioning. Plant Physiol 111:541–550

    CAS  PubMed  Google Scholar 

  • Oparka KJ and Prior DAM (1992) Direct evidence for pressure-generated closure of plasmodesmata. Plant J 2: 741–750

    Google Scholar 

  • Orlich G and Komor E (1992) Phloem loading in Ricinus cotyledons: Sucrose pathways via the mesophyll and the apoplasm. Planta 187: 460–474

    Article  CAS  Google Scholar 

  • Overall RL and Blackman LM (1996) A model of the macromolecular structure of plasmodesmata. Trends Plant Sci 1: 307–311

    Google Scholar 

  • Pate JS (1980) Transport and partitioning of nitrogenous solutes. Annu Rev Plant Physiol 31: 313–340

    Article  CAS  Google Scholar 

  • Perez-Alfocea F and Larher F (1995) Sucrose and proline accumulation and sugar efflux in tomato leaf discs affected by NaCl and polyethylene glycol 6000 iso-osmotic stresses. Plant Sci 107: 9–15

    CAS  Google Scholar 

  • Preißer J, Sprügel H and Komor E (1992) Solute distribution between vacuole and cytosol of sugarcane suspension cells-sucrose is not accumulated in the vacuole. Planta 186: 203–211

    Google Scholar 

  • Rentsch D, Hirner B, Schmelzer E and Frommer WB (1996) Salt stress-induced proline transporters and salt-stress repressed broad specificity amino acid permease genes identified by suppression of amino acid transport trageting mutant. Plant Cell 8: 1437–1446

    Article  CAS  PubMed  Google Scholar 

  • Rentsch D, Boorer K and Frommer WB (1998) Molecular biology of sucrose, amino acid and oligopeptide transporters at the plasma membrane of plant cells. J Membr Biol 162: 177–190

    Article  CAS  PubMed  Google Scholar 

  • Riens B, Lohaus G, Heineke D and Heldt HW (1991) Amino acid and sucrose content determined in the cytosolic, chloroplastic, and vacuolar compartments and in the phloem sap of spinach leaves. Plant Physiol 97: 227–233

    CAS  Google Scholar 

  • Riesmeier JW, Willmitzer L and Frommer WB (1992) Isolation and characterization of a sucrose carrier cDNA from spinach by functional expression in yeast. EMBO J 11: 4705–4713

    CAS  PubMed  Google Scholar 

  • Riesmeier JW, Hirner B and Frommer WB (1993) Potato sucrose transporter expression in minor veins indicates a role in phloem loading. Plant Cell 5: 1591–1598

    Article  CAS  PubMed  Google Scholar 

  • Ripp KG, Viitanen PV, Hitz WD and Franceschi VR (1988) Identification of a membrane protein associated with sucrose transport into cells of developing soybean cotyledons. Plant Physiol 88: 1435–1445

    CAS  Google Scholar 

  • Robards AW and Lucas WJ (1990) Plasmodesmata. Annu Rev Plant Physiol Plant Mol Biol 41: 369–420

    Article  Google Scholar 

  • Robinson-Beers K and Evert RF (1991) Ultrastructure of and plasmodesmatal frequency in mature leaves of sugarcane. Planta 184: 291–306

    Google Scholar 

  • Russin WA, Evert RF, Vanderveer PJ, Sharkey TD and Briggs SP (1996) Modification of a specific class of plasmodesmata and loss of sucrose export ability in the sucrose export defective maize mutant. Plant Cell 8: 645–658

    Article  CAS  PubMed  Google Scholar 

  • Sakuth T, Schobert C, Pecsvaradi A, Eichholz A, Komor E and Orlich G (1993) Specific proteins in the sieve-tube exudate of Ricinus communis L. seedlings: Separation characterization and in-vivo labelling. Planta 191: 207–213

    Article  CAS  Google Scholar 

  • Salmon S, Lemoine R, Jamai A, Bouche-Pillon S and Fromont JC (1995) Study of sucrose and mannitol transport in plasma-membrane vesicles from phloem and non-phloem tissues of celery (Apium graveolens L.) petioles. Planta 197: 76–83

    Article  CAS  Google Scholar 

  • Sauer N and Stolz J (1994) SUC1 and SUC2: Two sucrose transporters from Arabidopsis thaliana: expression and characterization in baker’s yeast and identification of the histidine-tagged protein. Plant J 6: 67–77

    Article  CAS  PubMed  Google Scholar 

  • Sauer N, Baier K, Gahrtz M, Stadler R, Stolz J and Truernit E (1994) Sugar transport across the plasma membranes of higher plants. Plant Mol Biol 26: 1671–1679

    Article  CAS  PubMed  Google Scholar 

  • Schobert C and Komor E (1989) The differential transport of amino acids into the phloem of Ricinus communis L. seedlings as shown by the analysis of sieve-tube sap. Planta 177: 342–349

    Article  CAS  Google Scholar 

  • Schobert C and Komor E (1992) Transport of nitrate and ammonium into the phloem and the xylem of Ricinus communis seedlings. J Plant Physiol 140: 306–309

    CAS  Google Scholar 

  • Schobert C, Grossmann P, Gottschalk M, Komor E, Pecsvaradi A and Nieden UZ (1995) Sieve-tube exudate from Ricinus communis L. seedlings contains ubiquitin and chaperones. Planta 196: 205–210

    Article  CAS  Google Scholar 

  • Schobert C, Mitsusada N and Aoshima H (1997) Diverse transporters for neutral amino acids in Ricinus communis L. seedlings. Biol Plant 39: 187–196

    Article  CAS  Google Scholar 

  • Secor J and Schrader LE (1984) Characterization of amino acid efflux from isolated soybean cells. Plant Physiol 74: 26–31

    CAS  Google Scholar 

  • Shelp BJ (1987) The composition of phloem exudate and xylem sap from broccoli Brassica oleracea var italica supplied with ammonium, nitrate or ammonium nitrate. J Exp Bot 38: 1619–1636

    CAS  Google Scholar 

  • Sjölund RD (1997) The phloem sieve element: A river runs through it. Plant Cell 9: 1137–1146

    PubMed  Google Scholar 

  • Sjölund RD and Shin CY (1983) Freeze fracture analysis of phloem structure in plant tissue culture. II. The sieve element plasma membrane. J Ultrastruct Res 82: 189–197

    PubMed  Google Scholar 

  • Stadler R and Sauer N (1996) The Arabidopsis thaliana AtSUC2 gene is specifically expressed in companion cells. Bot Acta 109: 299–306

    CAS  Google Scholar 

  • Stadler R, Brandner J, Schulz A, Gahrtz M and Sauer N (1995) Phloem loading by the PmSUC2 sucrose carrier from Plantago major occurs into companion cells. Plant Cell 7: 1545–1554

    Article  CAS  PubMed  Google Scholar 

  • Stitt M (1996) Plasmodesmata play an essential role in sucrose export from leaves-a step toward an integration of metabolic biochemistry and cell biology. Plant Cell 8: 565–571

    Article  Google Scholar 

  • Szederkenyi J, Komor E and Schobert C (1997) Cloning of the cDNA for glutaredoxin, an abundant sieve-tube exudate protein from Ricinus communis L and characterisation of the glutathione-dependent thiol-reduction system in sieve tubes. Planta 202: 349–356

    CAS  PubMed  Google Scholar 

  • Tanner W and Caspari T (1996) Membrane transport carriers. Annu Rev Plant Physiol Plant Mol Biol 47: 595–626

    Article  CAS  PubMed  Google Scholar 

  • Theodoropoulos PA and Roubelakis-Angelakis KA (1991) Glucose transport in Vitis vinifera L. protoplasts. J Exp Bot 42: 477–484

    CAS  Google Scholar 

  • Truernit E and Sauer N (1995) The promoter of the Arabidopsis thaliana SUC2 surose-H+ symporter gene directs expression of beta-glucuronidase to the phloem: Evidence for phloem loading and unloading by SUC2. Planta 196: 564–570

    Article  CAS  PubMed  Google Scholar 

  • Tubbe A and Buckhout TJ (1992) In vitro analysis of the proton-hexose symporter on the plasma membrane of sugarbeets (Beta vulgaris L.). Plant Physiol 99: 945–951

    CAS  Google Scholar 

  • Turgeon R and Gowan E (1990) Phloem loading in Coleus blumei in the absence of carrier-mediated uptake of export sugar from the apoplast. Plant Physiol 94: 1244–1249

    CAS  Google Scholar 

  • Van Bel AJE and Oparka KJ (1995) On the validity of plasmodesmograms. Bot Acta 108: 174–182

    Google Scholar 

  • Van Bel AJE, Van Kesteren WJP and Papenhuijzen C (1988) Ultrastructural indications for coexistence of symplastic and apoplastic phloem loading in Commelina benghalensis leaves. Planta 176: 159–172

    Article  Google Scholar 

  • Van Bel AJE, Gamalei YV, Ammerlaan A and Bik LPM (1992) Dissimilarphloem loading in leaves with symplasmic or apoplasmic minor-vein configurations. Planta 186: 518–525

    Article  Google Scholar 

  • Van Bel AJE, Ammerlaan A and Van Dijk AA (1993) A three-step screening procedure to identify the mode of phloem loading in intact leaves: Evidence for symplasmic and apoplasmic phloem loading associated with the type of companion cell. Planta 192: 31–39

    Article  Google Scholar 

  • Van Bel AJE, Hendriks JHM, Boon EJMC, Gamalei YV and Van De Merwe AP (1996) Different ratios of sucrose-raffinose-induced membrane depolarizations in the mesophyll of species with symplasmic (Catharanthus roseus, Ocimum basilicum) or apoplasmic (Impatiens walleriana, Vicia faba) minor-vein configurations. Planta 199: 185–192

    Article  Google Scholar 

  • Van Die J and Tammes PML (1975) Phloem exudation from monocotyledonous axes. In: Zimmermann MH and Milburn JA (eds) Transport in Plants I. Phloem Transport, Encycl Plant Physiol, New Series, Vol 1, pp 196–222. Springer-Verlag, Berlin Heidelberg New York

    Google Scholar 

  • Volk GM, Turgeon R and Beebe DU (1996) Secondary plasmodesmata formation in the minor-vein phloem of Cucumis melo L. and Cucurbita pepo L. Planta 199: 425–432

    Article  Google Scholar 

  • Von Schaewen A, Stitt M, Schmidt R, Sonnewald U and Willmitzer L (1990) Expression of a yeast-derived invertase in the cell wall of tobacco and Arabidopsis plants leads to accumulation of carbohydrate and inhibition of photosynthesis and strongly influences growth and phenotype of transgenic tobacco plants. EMBO J 9: 3033–3044

    Google Scholar 

  • Waigmann E, Lucas WJ, Citovsky V and Zambryski P (1994) Direct functional assay for tobacco mosaic virus cell-to-cell movement protein and identification of a domain involved in increasing plasmodesmal permeability. Proc Natl Acad Sci USA 91: 1433–1437

    CAS  PubMed  Google Scholar 

  • Wang Q, Monroe J and Sjölund RD (1995) Identification and characterization of a phloem-specific beta-amylase. Plant Physiol 109: 743–750

    CAS  PubMed  Google Scholar 

  • Weig A and Komor E (1996) An active sucrose carrier (Scr 1) that is predominantly expressed in the seedling of Ricinus communis L. J Plant Physiol 147: 685–690

    CAS  Google Scholar 

  • Weiner H, Blechschmidt-Schneider S, Mohme H, Eschrich W and Heldt, HW (1991) Phloem transport of amino acids: Comparison of amino acid contents of maize leaves and of the sieve tube exudate. Plant Physiol Biochem 29: 19–24

    CAS  Google Scholar 

  • Weiner H, Burnell JN, Woodrow IE, Heldt HW and Hatch MD (1988) Metabolite diffusion in to bundle sheath cells from C4 plants-Relation to C4 photosynthesis and plasmodesmatal function. Plant Physiol 88: 815–822

    CAS  Google Scholar 

  • Wille AC and Lucas WJ (1984) Ultrastructural and histochemical studies on guard cells Planta 160: 129–142

    Article  Google Scholar 

  • Wilson C and Lucas WJ (1988) Wounding and the regulation of apoplasmic retrieval in source leaf tissue of Spinacia oleracea L. J Exp Bot 39: 529–542

    CAS  Google Scholar 

  • Winter H, Lohaus G and Heldt HW (1992) Phloem transport of amino acids in relation to their cytosolic levels in barley leaves. Plant Physiol 99: 996–1004

    CAS  Google Scholar 

  • Wolf S, Deom CM, Beachy RN and Lucas WJ (1989) Movement protein of tobacco mosaic virus modifies plasmodesmatal size exclusion limit. Science 246: 377–379

    CAS  Google Scholar 

  • Wolf S, Deom CM, Beachy R and Lucas WJ (1991) Plasmodesmatal function is probed using transgenic tobacco plants that express a virus movement protein. Plant Cell 3: 593–604

    Article  CAS  PubMed  Google Scholar 

  • Zimmermann MH and Ziegler H (1975) List of sugars and sugar alcohols in sieve-tube exudates. In: Zimmermann MH and Milburn JA (eds) Transport in Plants I. Phloem Transport, Encycl Plant Physiol, New Series, Vol 1, pp 480–503. Springer-Verlag, Berlin

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Kluwer Academic Publishers

About this chapter

Cite this chapter

Schobert, C., Lucas, W.J., Franceschi, V.R., Frommer, W.B. (2000). Intercellular Transport and Phloem Loading of Sucrose, Oligosaccharides and Amino Acids. In: Leegood, R.C., Sharkey, T.D., von Caemmerer, S. (eds) Photosynthesis. Advances in Photosynthesis and Respiration, vol 9. Springer, Dordrecht. https://doi.org/10.1007/0-306-48137-5_11

Download citation

  • DOI: https://doi.org/10.1007/0-306-48137-5_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6143-5

  • Online ISBN: 978-0-306-48137-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics