Advertisement

Photosynthesis pp 147-158 | Cite as

The Green Bacteria. I. The Light-Harvesting Complex, the Chlorosomes

Part of the Advances in Photosynthesis and Respiration book series (AIPH, volume 10)

Keywords

Green Sulfur Bacterium Linear Dichroism Core Antenna Green Bacterium Antenna Chlorophyll 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

For further reading

  1. R1.
    JM Olson (1998) Chlorophyll organization and function in green photosynthetic bacteria. Photochem Photobiol 67: 61–75CrossRefGoogle Scholar
  2. R2.
    RE Blankenship, JM Olson and M Miller (1995) Antenna complexes from green photosynthetic bacteria. In: RE Blankenship, MT Madigan and CE Bauer (eds) Anoxygenic Photosynthetic Bacteria, pp 399–435. KluwerGoogle Scholar
  3. R3.
    Photosynthesis Research (1994) a special issue on Green and Heliobacteria. Vol 41 (1) November issueGoogle Scholar
  4. R4.
    BK Pierson (1994) Reflections on Chloroflexus. Photosynthesis Res 41: 7–15Google Scholar
  5. R5.
    BW Mathews, and RE Fenna (1980) Structure of a green bacteriochlorophyll protein. Accts Chem. Res. 13: 309–317.Google Scholar
  6. R6.
    JM Olson, JG Omerod, J Amesz, E Stackenbrandt, and HG Tr per [eds] (1988) Green Photosynthetic Bacteria. Plenum Press, New YorkGoogle Scholar
  7. R7.
    RC Fuller (1999) Forty years of microbial photosynthesis research: Where it came and what it led to. Photosynthesis Res 62: 1–29Google Scholar

References

  1. 1.
    KM Smith (1994) Nomenclature of the bacteriochlorophylls c, d, and e. Photosynthesis Res 41: 23–26Google Scholar
  2. 2.
    KA Schmidt and H-W Trissl (1998) Combined fluorescence and photovoltage studies on chlorosome containing bacteria. Photosynthesis Res 58: 43–55Google Scholar
  3. 3.
    AA Krasnovsky and Ml Bystrova (1980) Self-assembly of chlorophyll aggregated structures. BioSystems 12: 181–194PubMedCrossRefGoogle Scholar
  4. 4.
    KM Smith, LA Kehres and J Fajer (1983) Aggregation of the bacteriochlorophylls c, d and e. Models for the antenna chlorophylls of green and brown photosynthetic bacteria. J Am Chem Soc 105: 1387–1389Google Scholar
  5. 5.
    H Worcester, TJ Michalski and JJ Katz (1986) Small-angle neutron scattering studies of chlorophyll micelles: models for bacterial antenna chlorophylls. Proc Nat Acad Sci, USA 83: 3791–3796Google Scholar
  6. 6.
    M Hirota, T Moriyama, K Shimada, M Miller, JM Olson and K Matsuura (1992) High degree of organization of bacteriochlorophyll c in chlorosome-like aggregates spontaneously assembled in aqueous solution. Biochim Biophys Acta 1099: 271–274Google Scholar
  7. 7.
    Ml Bystrova, IN Mal gosheva and AA Krasnovsky (1979) Study of molecular mechanism of self-assembly of aggregated forms of BChl c. Mol Biol (Russian) 13: 582–594Google Scholar
  8. 8.
    DC Brune, T Nozawa and RE Blankenship (1987) Antenna organization in green photosynthetic bacteria. I. Oligomeric bacteriochlorophyll c as a model for the 740 nm absorbing bacteriochlorophyll c in Chloroflexus aurantiacus chlorosomes. Biochemistry 26: 8644–8652PubMedGoogle Scholar
  9. 9.
    K Matsuura and JM Olson (1990) Reversible conversion of aggregated bacteriochlorophyll c to monomeric form by 1-hexanol in chlorosomes from Chlorobium and Chloroflexus. Biochim Biophys Acta 1019: 233–238Google Scholar
  10. 10.
    AR Holzwarth, K Griebenov and K Schaffner (1990) A photosynthetic antenna system which contains a protein-free choromophore aggregate. Z Naturforsch 45C: 203–206Google Scholar
  11. 11.
    M Lutz and G van Brakal (1988) Ground state molecular interactions of bacteriochlorophyll c in chlorosomes of green bacteria and in model systems: a resonance Raman study. In: JM Olson, JG Omerod, J Amesz, E Stackenbrandt and HG Tr per (eds) Green Photosynthetic Bacteria, pp 23–33. Plenum PressGoogle Scholar
  12. 12.
    T Nozawa, T Noguchi and M Tasumi (1990) Resonance Raman studies on the structure of bacteriochlorophyll c in chlorosomes. J Biochem 108: 737–740PubMedGoogle Scholar
  13. 13.
    RE Blankenship, DC Brune, JM Freeman, GH King JD McManus, T Nozawa and BP Wittmershaus (1988) Energy trapping and electron transfer in Chloroflexus aurantiacus. In: JM Olson, JG Omerod, J Amesz, E Stackenbrandt and HG Trper (eds) Green Photosynthetic Bacteria, pp 57–68. Plenum PressGoogle Scholar
  14. 14.
    P Hildebrandt, H Tamiaki, AR Holzwarth and K Schaffner (1994) Resonance Raman spectroscopic study of metallochlorin aggregates. Implications for the supramolecular structure in chlorosomal BChl c antennae of green bacteria. J Phys Chem 98: 2192–2197CrossRefGoogle Scholar
  15. 15.
    H Van Amerongen, B Van Haeringen, M Van Gurp and R Van Grondelle (1991) Polarized fluorescence measurements on ordered photosynthetic antenna complexes chlorosomes of Chloroflexus aurantiacus and B800–850 antenna complexes of Rhodobacter sphaeroides. Biophys J 59: 992–1001PubMedGoogle Scholar
  16. 16.
    K Griebenov, AR Holzwarth, F Van Mourik and R van Grondelle (1991) Pigment organization and energy transfer in green bacteria. 2. Circular and linear dichroism spectrum of protein-containing and protein-free chlorosomes isolated from Chloroflexus aurantiacus strain Ok-70-fl. Biochim Biophys Acta 1058: 194–202Google Scholar
  17. 17.
    K Matsuura, M Hirota, K Shimada and M Mimuro (1993) Spectral forms and orientation of bacteriochlorophylls c and a in chlorosomes of the green photosynthetic bacterium Chloroflexus aurantiacus. Photochem Photobiol 57: 92–97Google Scholar
  18. 18.
    JM Olson and CA Romano (1962) A new chlorophyll from green bacteria. Biochim Biophys Acta 59: 726–728PubMedCrossRefGoogle Scholar
  19. 19.
    RA Olson (1966) Chlorophyll-protein complexes. II. Complexes derived from green photosynthetic bacteria. In: LP Vernon and GR Seely (eds) The Chlorophylls, pp 413–425. Acad PressGoogle Scholar
  20. 20.
    KD Philipson and K Sauer (1972) Exciton interaction in a bacteriochlorophyll-protein from Chloropseudomonas ethylica. Absorption and circular dichroism at 77 K. Biochemistry 11: 1880–1885PubMedGoogle Scholar
  21. 21.
    JM Olson, B Ke and KH Thompson (1976) Exciton interaction among chlorophyll molecules in bacteriochlorophyll-a proteins and bacteriochlorophyll-a reaction center complexes from green bacteria. Biochim Biophys Acta 430: 524–537PubMedGoogle Scholar
  22. 22.
    M Mimuro, T Nozawa, N Tamai, K Shimada, I Yamazaki, S Lin, RS Knox, BP Wittmershaus, DC Brune and RE Blankenship (1989) Excitation energy flow in chlorosome antennas of green photosynthetic bacteria. J Phys Chem 93: 7503–7509CrossRefGoogle Scholar
  23. 23.
    RA Olson, WH Jennings and CH Hanna (1969) Paracrystalline aggregates of bacteriochlorophyllprotein from green photosynthetic bacteria. Arch Biochem Biophys 130: 140–147PubMedCrossRefGoogle Scholar
  24. 24.
    RE Fenna, BW Mathews, JM Olson and EK Shaw (1974) Structure of a bacteriochlorophyll-protein from the green photosynthetic bacterium Chlorobium limicola: Crystallographic evidence for a trimer. J Mol Biol 84: 231–240PubMedCrossRefGoogle Scholar
  25. 25.
    DE Tronrud, MF Schmid and BW Mathews (1986) Structure and x-ray amino acid sequence of a bacteriochlorophyll a protein from Prosthecochloris aestuarii refined at 1.9 - resolution. J Mol Biol 188: 443–454PubMedCrossRefGoogle Scholar
  26. 26.
    JM Olson (1978) Confused history of Chloropseudomonas ethylica 2K. Int J Syst Bacteriol 28: 128–129Google Scholar
  27. 27.
    VN Shaposhnikov, EN Kondrateva and VD Federov (1960) - new species of green sulfur bacteria. Nature 187: 167–168Google Scholar
  28. 28.
    JM Olson (1994) Reminiscence about Chloropseudomonas ethylicum and the FMO-protein. Photosynthesis Res 41: 3–5Google Scholar
  29. 29.
    BH Gray, CF Fowler, NA Nugent, N Rigopoulos and RC Fuller (1973) Reevaluation of Chloropseudomonas ethylica strain 2K. Int J Syst Bacteriol 23: 256–264CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2003

Personalised recommendations