Photosynthesis pp 229-250 | Cite as

Role of Carotenoids in Photosynthesis

Part of the Advances in Photosynthesis and Respiration book series (AIPH, volume 10)


Supramolecular Assembly Primary Electron Donor Bacterial Reaction Center Triplet Energy Transfer Carotenoid Triplet 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

For further reading

  1. R1.
    HA Frank, AD Young, G Britton and RJ Cogdell [eds] (1999) The Photochemistry of Carotenoids. KluwerGoogle Scholar
  2. R2.
    A Young and G Britton [eds] (1993) Carotenoids in Photosynthesis. Chapman and HallGoogle Scholar
  3. R3.
    Y Koyama, M Kuki, PO Andersson and T Gillbro (1996) Singlet excited states and the light-harvesting function of Carotenoids in bacterial photosynthesis. Photochem Photobiol 63: 243–256Google Scholar
  4. R4.
    Koyama (1991) Structures and functions of carotenoids in photosynthetic systems. J Photochem Photobiol, B: Biol, 9: 265–280Google Scholar
  5. R5.
    HA Frank and RJ Cogdell (1996) Carotenoids in photosynthesis. Photochem Photobiol 63: 257–264PubMedGoogle Scholar
  6. R6.
    D Siefermann-Harms (1985) Carotenoids in photosynthesis. I. Location in photosynthetic membrane and light-harvesting function. Biochim Biophys Acta 811: 325–355Google Scholar


  1. 1.
    H Fujiwara, H Hayashi, M Tasumi, M Kanji, Y Koyama and (Ki) Satoh (1987) Structural studies on a photosystem II reaction center complex c onsisting of D-1 and D-2 polypeptides and cytochrome b-559 by resonance Raman spectroscopy and high-performance liquid chromatography. Chem Lett 10: 2005–2008Google Scholar
  2. 2.
    GE Bialek-Bylka, T Tomo, (Ki) Satoh and Y Koyama (1995) 15-cis-carotene found in the reaction center of spinach photosystem II. FEBS Lett 363: 137–140PubMedGoogle Scholar
  3. 3.
    P.S Song, P Koka, BB Prezelin and FT Haxo (1976) Molecular topology of the photosynthetic light-harvesting pigment complex, Peridinin-chlorophyll a-protein, from marine dinoflegellates. Biochemistry 15: 4422–2247PubMedCrossRefGoogle Scholar
  4. 4.
    T Katoh, A Tanaka and M Mimuro (1993) Xanthosomes: Supramolecular assemblies of xanthophyll-chlorophyll a/c protein complexes. Methods in Enzymology 214: 402–412CrossRefGoogle Scholar
  5. 5.
    T Katoh, M Mimuro and S Takaichi (1989) Light-harvesting particles isolated from a brown alga, Dictyota dichotoma. A supramolecular assembly of fucoxanthin-chlorophyll-protein complexes. Biochim Biophys Acta 976: 233–240Google Scholar
  6. 6.
    F Schtt (1890) Ueber Peridineenfarbstoffe. Ber deutschbot Ges 8: 9–32Google Scholar
  7. 7.
    VC Bode and JW Hastings (1963) The purification and properties of the bioluminescent system in Gonyaulax polyedra. Arch Biochem Biophys 103: 488–499PubMedCrossRefGoogle Scholar
  8. 8.
    DJ Haidak, CK Mathews and BM Sweeney (1966) Pigment protein complex from Gonyaulax. Science 152: 212–213PubMedGoogle Scholar
  9. 9.
    FT Haxo, JH Kycia, GF Somers, A Bennett and HW Siegelman (1976) Peridinin-chlorophyll a protein of the dinoflegellate Amphidinium carterae (Plymouth 450). Plant Physiol 57: 297–303.PubMedCrossRefGoogle Scholar
  10. 10.
    HW Siegelman, JH Kycia and FT Haxo (1976) Peridinin-chlorophyll a-proteins of dinoflegellate algae. Brookhaven Symp Biol 28:162–169PubMedGoogle Scholar
  11. 11.
    HH Strain, WA Svec, K Aitzetmller, MC Grandolfo, JJ Katz, H Kjlsen, S Norgard, S Liaaen-Jensen, FT Haxo, P Wegfahrt and H Rapoport (1971) The structure of peridinin, the characteristic dinoflegellate carotenoid. Am Chem Soc 93: 1823–1825Google Scholar
  12. 12.
    P Koka and P.S Song (1977) The chromophore topography and binding environment of peridinin-chlorophyll protein complexes from marine dinoflegellate algae. Biochim Biophys Acta 495: 220–231PubMedGoogle Scholar
  13. 13.
    E Hofmann, PM Wrench, FP Sharples, RG Hiller, W Werte and K Diederichs (1996) Structural basis of lightharvesting by carotenoids: Peridinin-chlorophyll-protein from Amphidinium carterae. Science 272: 1788–1791PubMedGoogle Scholar
  14. 14.
    M Mimuro, A Tamai, T Ishimaru and I Yamazaki (1990) Characteristic fluorescence components in photosynthetic pigment system of a marine dinoflegellate, Protogonyaulax tamarensis, and excitation energy flow among them. Studies by means of steady-stateand time resolved fluorescence spectroscopy. Biochim Biophys Acta 1016: 280–287Google Scholar
  15. 15.
    T Katoh and T Ehara(1990) Supramolecular assembly of fucoxanthin-chlorophyll-protein complexes isolated from a brown alga, Petalonia fascia. Electron microscopic studies. Plant Cell Phyiol 31: 439–447Google Scholar
  16. 16.
    M Mimuro, T Katoh and H Kawai (1990) Spatial arrangement of pigments and their interaction in the fucoxan-thin-chlorophyll a/c protein assembly (FCPA) isolated from the brown alga Dictyota dichotoma. Analysis by means of polarized spectroscopy. Biochim. Biophys Acta 1015: 455.Google Scholar
  17. 17.
    RJ Thrash, HLB Fang and GE Leroi (1977) The Raman excitation profile spectrum of β-carotene in the preresonance region: Evidencefor a low-lying singlet state. J Chem Phys 67: 5930–5933CrossRefGoogle Scholar
  18. 18.
    RJ Thrash, HLB Fang and GE Leroi (1979) On the role of forbidden low-lying excited states of light-harvesting carotenoids in energy transfer in photosynthesis. Photochem Photobiol 29: 1049–1050 Google Scholar
  19. 19.
    KR Naqvi (1980) The mechanism of singlet-singlet excitation energy transfer from carotenoids to chlorophyll. Photochem Photobiol 31: 523–524Google Scholar
  20. 20.
    DL Dexter (1953) A theory of sensitized luminescence in solids. J Chem Phys 21: 836–860CrossRefGoogle Scholar
  21. 21.
    T Gillbro and RJ Cogdell (1989) Carotenoid fluorescence. Chem Phys Lett 158: 312–316CrossRefGoogle Scholar
  22. 22.
    T Katoh, U Nagashima and M Mimuro (1991) Fluorescence properties of the allenic carotenoid fucoxanthin: Implication for energy transfer in photosynthetic pigment systems. Photosynthesis Res 27: 221–226Google Scholar
  23. 23.
    AP Shreve, JK Trautman, TG Owens and AC Albrecht (1991) A femtosecond study of electronic state dynamics of fucoxanthin and implication for photosynthetic carotenoid-to-chlorophyll energy transfer mechanisms. Chem Phys 154: 171–178CrossRefGoogle Scholar
  24. 24.
    B DeCoster, RL Christensen, R Gebhard, J Lutgenburg, R Farhoosh and HA Frank (1992) Low-lying electronic states of carotenoids. Biochim Biophys Acta 1102: 107–114Google Scholar
  25. 25.
    MR Wasielewski, DM Tiede and HA Frank (1986) Ultrafast electron and energy transfer in reaction centre and antenna proteins from photosynthetic bacteria. In: GR Flemming and AE Siegman (eds) Ultrafast Phenomena, Vol 5: 388–392. Springer VerlagGoogle Scholar
  26. 25.
    AP Shreve, JK Trautman, HA Frank, TG Owens and AC Albrecht (1991) Femtosecond energy-transfer processes in the B800–850 light-harvesting complex of Rhodobacter sphaeroides 2.4.1. Biochim Biophys Acta 1058: 280–288PubMedGoogle Scholar
  27. 27.
    HA Frank and CA Violette (1989) Monomeric bacteriochlorophyll is required for the tripl etenergy transfer between the primary donor and the carotenoid in photosynthetic bacterial reaction centers. Biochim Biophys Acta 976: 222–232PubMedGoogle Scholar
  28. 28.
    SL Ditson, RC Davis and RM Pearlstein (1984) Relative enrichment of P-870 in photosynthetic reaction centres treated with sodium borohydride. Biochim Biophys Acta 766: 623–629Google Scholar
  29. 29.
    L Takiff and SG Boxer (1987) Phosphorescence from the primary electron donor in Rhodobacter sphaeroides and Rhodopseudomonas viridis reaction centers. Biochim Biophys Acta 932: 325–334Google Scholar
  30. 30.
    L Takiff and SG Boxer (1987) Phosphorescence spectra of bacteriochlorophylls. J Am Chem Soc 110: 425–426Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Personalised recommendations