Advertisement

Photosynthesis: An Overview

Part of the Advances in Photosynthesis and Respiration book series (AIPH, volume 10)

Keywords

Reaction Center Thylakoid Membrane Green Plant Photosynthetic Bacterium Purple Bacterium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

For further reading

  1. R1.
    RK Clayton (1980) Photosynthesis. Physical Mechanism and Chemical Patterns. Cambridge University PressGoogle Scholar
  2. R2.
    B Andersson and J Barber (1994) Composition, organization, and dynamics of thylakoid membranes. In: EE Bittar and J Barber (eds) Advances in Molecular and Cell Biology, 10: 1–53. JAI PressGoogle Scholar
  3. R.3
    LA Staehelin and GWM van der Staay (1996) Structure, composition, functional organization and dynamic properties of thylakoid membranes. In: DR Ort and CF Yocum (eds) Oxygenic Photosynthesis: The Light Reactions, pp 11–30. KluwerGoogle Scholar
  4. R4.
    H Huzisige and B Ke (1993) Dynamics of the history ofphotosynthesis research. Photosynthesis Res 38: 185–209Google Scholar
  5. R5.
    Govindjee (2000) Milestones in photosynthesis research. In: U Pathre, H Younis and PK Mohanty (eds) Probing Photosynthesis, pp 9–39. Taylor and Francis (UK)Google Scholar

References

  1. 1.
    VM Albers and HV Knorr (1937) Absorption spectra of single chloroplasts in living cells in the region from 664 nm to 704 nm. Plant Physiol 12: 833–843CrossRefPubMedGoogle Scholar
  2. 2.
    CS French (1958) Various forms of chlorophyll a in plants. Brookhaven Symp Biol 11: 65–73Google Scholar
  3. 3.
    CS French (1957) Derivative spectrophotometry. In: Proc l.S.A. Instrument and Control Symp, pp 83–94. Northern California Section, Instrument Society of America, Berkeley, CAGoogle Scholar
  4. 4.
    M Havaux (1998) Carotenoids as membrane stabilizers in chloroplasts. Trends in Plant Sci. 3: 147–151Google Scholar
  5. 5.
    R Willsttter and A Stoll (1918) Untersuchungen ber die Assimilation der Kohlens ure. Springer, BerlinGoogle Scholar
  6. 6.
    O Warburg (1919) ber die Geschwindigkeit der photochemischen Kohlens urezersetzung in lebenden Zellen. Biochem Z 100: 230–270Google Scholar
  7. 7.
    CB van Niel (1929) Photosynthesis in bacteria. In: Contribution to Marine Biology, pp 161–169. Stanford UniversityGoogle Scholar
  8. 8.
    CB van Niel (1941) The bacterial photosynthesis and their importance for the general problem of photosynthesis. Adv Enzymology 1: 263–328Google Scholar
  9. 9.
    S Ruben, M Randall, MD Kamen and JL Hyde (1941) Heavy oxygen (18 O) as tracer in the study of photosynthesis. J Am Chem Soc 63: 877–878CrossRefGoogle Scholar
  10. 10.
    MD Kamen (1963) Primary Processes in Photosynthesis. Acad PressGoogle Scholar
  11. 11.
    R Emerson and W Arnold (1932) A separation of the reactions in photosynthesis by means of intermittent light. J Gen Physiol 15: 391–420CrossRefPubMedGoogle Scholar
  12. 12.
    R Emerson and W Arnold (1932) The photochemical reaction in photosynthesis. J Gen Physiol 16: 191–205CrossRefPubMedGoogle Scholar
  13. 13.
    Govindjee (1999) On the requirement of minimum number of four versus eight quanta of light for the evolution of one molecule of oxygen in photosynthesis: A historical note. Photosynthesis Res 59: 249–254Google Scholar
  14. 14.
    RE Fenna, BW Mathews, JM Olson and EK Shaw (1974) Structure of a bacteriochlorophyll-protein from the green photosynthetic bacterium Chlorobium limicola: crystallographic evidence for a trimer. J Mol Biol 84: 231–240PubMedCrossRefGoogle Scholar
  15. 15.
    DE Tronrud, MF Schmid and BW Mathews (1986) Structure and x-ray amino acid sequence of a bacteriochlorophyll a protein from Prosthecochloris aestuarii refined at 1.9 - resolution. J Mol Biol 188: 443–454PubMedCrossRefGoogle Scholar
  16. 16.
    T Katoh, M Mimuro and S Takaichi (1989) Light-harvesting particles isolated from a brown alga, Dictyota dichotoma. A supramolecular assembly of fucoxanthin-chlorophyll-protein complexes. Biochim Biophys Acta 976: 233–240Google Scholar
  17. 17.
    T Katoh, A Tanaka and M Mimuro (1993) Xanthosomes: supramolecular assemblies of xanthophyll-chlorophyll a/c protein complexes. Methods in Enzymology 214: 402–412CrossRefGoogle Scholar
  18. 18.
    T Ogawa, F Obata and K Shibata (1966) Two pigment proteins in spinach chloroplasts. Biochim Biophys Acta 112: 223–234PubMedGoogle Scholar
  19. 19.
    R Hill (1939) Oxygen produced by isolated chloroplasts. Proc Roy Soc B127: 192–210Google Scholar
  20. 20.
    W Menke (1962) Structure and chemistry of plastids. Annu Rev Plant Physiology 13: 27–44Google Scholar
  21. 21.
    RB Park and NG Pon (1961) Correlation ofstructure with function in Spinacea oleracea chloroplasts. J Mol Biol 3: 1–10PubMedCrossRefGoogle Scholar
  22. 22.
    R Emerson and CM Lewis (1943) The dependence of the quantum yield of Chlorella photosynthesis on wave length of light. Am J Bot 30: 165–178Google Scholar
  23. 23.
    T Tanada (1951) The photosynthetic efficiency of carotenoid pigments in Navicula minima. Am J Bot 38: 276–283Google Scholar
  24. 24.
    FT Haxo and LR Blinks (1950) Photosynthetic action spectra of marine algae. J Gen Physiol 33: 389–422PubMedCrossRefGoogle Scholar
  25. 25.
    R Emerson, R Chalmers and C Cederstrand (1957) Some factors influencing the long-wave limit of photosynthesis Proc Nat Acad Sci, USA 43: 133–143Google Scholar
  26. 26.
    R Hill and F Bendall (1960) Function of two cytochrome components in chloroplasts: A working hypothesis. Nature 1186: 136–137Google Scholar
  27. 27.
    R Hill and R Scarisbrick (1951) The haematin compounds of leaves. New Phytol 50: 98–111Google Scholar
  28. 28.
    R Hill (1954) The cytochrome b component of chloroplasts. Nature 174: 501–503PubMedGoogle Scholar
  29. 29.
    R Hill (1965) The biochemist’s green mansions: the photosynthetic electron-transport chain in plants. In: PN Campbell and GD Greville (eds) Essays in Biochemistry 1: 121–151. Acad Press, LondonGoogle Scholar
  30. 30.
    Govindjee and E Rabinowitch (1960) Two forms of chlorophyll a in vivo with distinct photochemical function. Science 132: 355–356PubMedGoogle Scholar
  31. 31.
    Govindjee, S Ichimura, C Cederstrand and E Rabinowitch (1960) Effect of combining far-red light with shorter wave light on the excitation of fluorescence in Chlorella. Arch Biochem Biophys 89: 322–323PubMedCrossRefGoogle Scholar
  32. 32.
    H Kautsky, W Appel and H Amann (1960) Chlorophyllfluorescenz und Kohlens ureassimilation. XIII. Mitteilung. Die Fluorescenzkurve und die Photochemie der Pflanze. Biochem Z 332: 277–292PubMedGoogle Scholar
  33. 33.
    B Kok and G Hoch (1961) Spectral changes in photosynthesis. In: WD McElroy and B Glass (eds) Light and Life, pp 397–416. Johns Hopkins PressGoogle Scholar
  34. 34.
    LNM Duysens, J Amesz and BM Kamp (1961) Two photochemical systems in photosynthesis. Nature 190: 510–511PubMedGoogle Scholar
  35. 35.
    HT Witt, A M ller and B Rumberg (1961) Experimental evidence for the mechanism of photosynthesis. Nature 191: 194–195PubMedGoogle Scholar
  36. 36.
    HT Witt, A M ller and B Rumberg (1961) Oxidized cytochrome and chlorophyll in photosynthesis. Nature 192: 967–969PubMedGoogle Scholar
  37. 37.
    B Rumberg, P Schmidt-Mende, U Siggel, B Skerra and HT Witt (1965) Analyse der Photosynthese mit Blitzlicht. IV. Quantitative Kopplung der Reaktionscyclen I und II im vollst ndigen Reaktionssystem. Z Naturforsch 20b: 1102–1116Google Scholar
  38. 38.
    TG Dunahay, LA Staehelin, M Seibert, PD Ogilvie and SP Berg (1984) Structural, biochemical and biophysical characterization of four oxygen-evolving photosystem II preparations from spinach. Biochim Biophys Acta 764: 179–193Google Scholar
  39. 39.
    DA Berthold, GT Babcock and CF Yocum (1981) A highly resolved oxygen-evolving photosystem II preparation from spinach thylakoid membranes. FEBS Lett 134: 231–234CrossRefGoogle Scholar
  40. 40.
    B Andersson and H-E kerlund (1978) Inside-out membrane vesicles isolated from spinach thylakoids. Biochim Biophys Acta 503: 462–472PubMedGoogle Scholar
  41. 41.
    B Andersson and JM Anderson (1980) Lateral heterogeneity in the distribution of chlorophyll-protein complexes of the thylakoid membranes of spinach chloroplasts. Biochim Biophys Acta 593: 427–440PubMedGoogle Scholar
  42. 42.
    P. Albertsson (1985) Partition of Cell Particles and Macromolecules (3rd edition) John WileyGoogle Scholar
  43. 43.
    H.E kerlund, B Andersson and P. Albertsson (1976) Isolation of photosystem II enriched membrane vesicles from spinach chloroplasts by phase partition. Biochim Biophys Acta 449: 525–535Google Scholar
  44. 44.
    P Gr ber, A Zickler and H.E kerlund (1978) Electric evidence for the isolation of inside-out vesicles from spinach chloroplasts. FEBS Lett 96: 233–237Google Scholar
  45. 45.
    P.A Siegenthaler and N Murata (199 ) Lipids in Photosynthesis: Structure, Function and Genetics. KluwerGoogle Scholar
  46. 46.
    BA Barry and GT Babcock (1987) Tyrosine radicals are involved in the photosynthetic oxygen-evolving system. Proc Nat Acad Sci, USA 84: 7099–7103Google Scholar
  47. 47.
    S Gerken, K Brettel, E Schlodder and HT Witt (1988) Optical characterization of the immediate donor to chlo rophylla II in O 2-evolving photosystem-ll complexes. FEBS Lett 237: 69–75CrossRefGoogle Scholar
  48. 48.
    K Sauer, VK Yachandra, RD Britt and MP Klein (1992) The photosynthetic water oxidation complex studied by EPR and x-ray absorption spectroscopy. In: VL Pecararo (ed) Manganese Redox Enzymes, pp 141–175. VCH PublGoogle Scholar
  49. 49.
    S Katoh (1960) A new copper protein from Chlorella ellipsoidea. Nature 186: 533–534PubMedGoogle Scholar
  50. 50.
    KR Miller and LA Staehelin (1976) Analysis of the thylakoid outer surface: Coupling factor is limited to unstacked membrane regions. J Cell Biol 68: 30–47PubMedCrossRefGoogle Scholar
  51. 51.
    A Trebst (1986) The topology of the plastoquinone and herbicide binding peptides of photosystem II in the thylakoid membrane. Z Naturforsch 41c: 240–245Google Scholar
  52. 52.
    J Deisenhofer, O Epp, K Miki, R Huber and H Michel (1984) X-ray structure analysis of a membrane protein complex. Electron density map at 3- resolution and a model of the chromophores of the photosynthetic reaction center from Rhodopseudomonas viridis. J Mol Biol 180: 385–398PubMedCrossRefGoogle Scholar
  53. 53.
    H Michel and J Deisenhofer (1988) Relevance of the photosynthetic reaction center from purple bacteria to the structure of photosystem II. Biochemistry 27: 1–7CrossRefGoogle Scholar
  54. 54.
    CR Woese (1987) Bacterial evolution. Microbiol Rev 51: 221–271PubMedGoogle Scholar
  55. 55.
    W-D Schubert, O Klukas, W Saenger, HT Witt, P Fromme and N Krau (1998) A common ancestor for oxygenic and anoxygenic photosynthetic systems: A comparison based on the structural model of photosystem I. J Mol Biol 280: 297–314PubMedCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2003

Personalised recommendations