Skip to main content

The Relationship Between the Structure and Catalytic Mechanism of the Chloroplast ATP Synthase

  • Chapter
Oxygenic Photosynthesis: The Light Reactions

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 4))

Summary

An overview of the nucleotide binding properties and current models of the catalytic mechanism of the chloroplast ATP synthase is presented. The discussion includes consideration of the role of the small subunits of the catalytic chloroplast coupling factor 1 (CF1) in gating the flow of protons across the membrane. Some emphasis is placed on the potential role of the ε subunit in a proton-driven activation process and an apparent role of this subunit in influencing cooperativity among the different nucleotide binding sites on both membrane-bound and isolated CF1 Controversy over the type of nucleotide binding sites on CF1 is discussed, together with the potential involvement of the different nucleotide binding sites in the catalytic process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abrahams JP, Lutter R, Todd RJ, van Raaij MJ, Leslie AGW and Walker JE (1993) Inherent asymmetry of the structure of F1-ATPase from bovine heart mitochondria at 6.5Å resolution. EMBO J 12: 1775–1780

    PubMed  CAS  Google Scholar 

  • Abrahams JP, Leslie AGW, Lutter R and Walker JE (1994) Structure at 2.8Å resolution of F1-ATPase from bovine heart mitochondria. Nature 370: 621–628

    Article  PubMed  CAS  Google Scholar 

  • Admon A and Hammes GG (1987) Amino acid sequence of the nucleotide binding region of chloroplast coupling factor 1. Biochemistry 26: 3193–3197

    Article  PubMed  CAS  Google Scholar 

  • Aflalo C and Shavit N (1982) Source of rapidly labeled ATP tightly bound to non-catalytic sites on the chloroplast ATP synthase. Eur J Biochem 126: 61–68

    Article  PubMed  CAS  Google Scholar 

  • Andralojc PJ and Harris DA (1992) Isolation and characterization of a functional αβ heterodimer from ATP synthase of Rhodospirillum rubrum. FEBS Lett 310: 187–192

    Article  PubMed  CAS  Google Scholar 

  • Anthon GE and Jagendorf AT (1986) Evidence for multiple effects in methanol activation of chloroplast coupling factor 1. Biochim Biophys Acta 848: 92–98

    PubMed  CAS  Google Scholar 

  • Avital S and Gromet-Elhanan Z (1991) Extraction and purification of the beta subunit and an active alpha-beta-core complex from the spinach chloroplast CF0F1 ATP synthase. J Biol Chem 266: 7067–7072

    PubMed  CAS  Google Scholar 

  • Avron M and Jagendorf AT (1959) Evidence concerning the mechanism of adenine triphosphate formation by spinach chloroplasts. J Biol Chem 234: 967–972

    PubMed  CAS  Google Scholar 

  • Bakker-Grunwald T and van Dam K (1974) On the mechanism of activation of the ATPase in chloroplasts. Biochim Biophys Acta 347: 290–298

    PubMed  CAS  Google Scholar 

  • Bar-Zvi D and Shavit N (1980) Role of the tight nucleotide binding in the regulation of the chloroplast ATP synthetase activities. FEBS Lett 119: 68–72

    Article  CAS  Google Scholar 

  • Bar-Zvi D and Shavit N (1982) Modulation of the chloroplast ATPase by tight ADP binding: Effect of uncouplers and ATP. J Bioenerg Biomemb 14: 467–478

    CAS  Google Scholar 

  • Bar-Zvi D, Teifert MA and Shavit N (1983) Interaction of the chloroplast ATP synthetase with the photoreactive nucleotide 3′-0-(4-benzoyl)benzoyl adenosine 5′-diphosphate. FEBS Lett 160: 233–238

    Article  CAS  Google Scholar 

  • Beckers G, Berzborn RJ and Strotmann H (1992) Zero-length cross-linking between subunits δ and I of the H+-translocating ATPase of chloroplasts. Biochim Biophys Acta 1101: 97–104

    PubMed  CAS  Google Scholar 

  • Beharry S and Bragg PD (1992) E. coli F1-ATPase can use GTP-nonchaseable bound adenine nucleotide to synthesize ATP in DMSO. Biochemistry 31: 11472–11476

    Article  PubMed  CAS  Google Scholar 

  • Berden JA, Hartog AF and Edel CM (1991) Hydrolysis of ATP can be described only on the basis of a dual-site mechanism. Biochim Biophys Acta 1057: 151–156

    PubMed  CAS  Google Scholar 

  • Berg HC (1975) Bacterial behavior. Nature 254: 389–392

    Article  PubMed  CAS  Google Scholar 

  • Bianchet M, Xavier Y, Hullihen J, Pedersen PL and Amzel M (1991) Mitochondrial ATP synthase: Quaternary structure of the F1 moiety at 3.6Å determined by X-ray diffraction analysis. J Biol Chem 266: 21197–21201

    PubMed  CAS  Google Scholar 

  • Bickel-Sandkötter S and Strotmann H (1981) Nucleotide binding and regulation of chloroplast ATP synthase. FEBS Lett 125: 188–192

    Google Scholar 

  • Boyer PD (1987) The unusual enzymology of ATP synthase. Biochemistry 26: 8503–8507

    Article  PubMed  CAS  Google Scholar 

  • Boyer PD (1993) The binding change mechanism for ATP synthase-some probabilities and possibilities. Biochim Biophys Acta 1140: 215–250

    PubMed  CAS  Google Scholar 

  • Boyer PD and Kohlbrenner WE (1981) The present status of the binding-change mechanism and its relation to ATP formation by chloroplasts. In: R Selman and Selman-Reimer S (eds) Energy Coupling in Photosynthesis pp 230–240. Elsevier, Amsterdam

    Google Scholar 

  • Boynton JE, Gilham NW, Harris JP, Johnson AM, Jones AR, Randalf-Anderson BL, Robertson D, Klein TM, Shark KB and Sanford JC (1988) Chloroplast transformation in Chlamydomonas with high velocity projectiles. Science 240: 1534–1538

    PubMed  CAS  Google Scholar 

  • Bruist MF and Hammes GG (1981) Further characterization of nucleotide binding sites on chloroplast coupling factor one. Biochemistry 20: 6298–6305

    Article  PubMed  CAS  Google Scholar 

  • Bruist MF and Hammes GG (1982) Mechanism for catalysis and regulation of adenosine 5′-triphosphate hydrolysis by chloroplast coupling factor. Biochemistry 21: 3370–3377

    Article  PubMed  CAS  Google Scholar 

  • Carlier MF and Hammes GG (1979) Interaction of nucleotides with chloroplast coupling factor 1. Biochemistry 18: 3446–3451

    PubMed  CAS  Google Scholar 

  • Cerione RA and Hammes GG (1982) Structural mapping of nucleotide binding sites on chloroplast coupling factor. Biochemistry 21: 745–752

    Article  PubMed  CAS  Google Scholar 

  • Chaney SG and Boyer PD (1969) Lack of detection of intermediates in the path of phosphorylative oxidation to water in photophosphorylation. J Biol Chem 244: 5773–5778

    PubMed  CAS  Google Scholar 

  • Chen GG and Jagendorf AT (1994) Chloroplast molecular chaperone-assisted refolding and reconstitution of an active multi-subunit CF1 core. Proc Natl Acad Sci USA: 11497–11501

    Google Scholar 

  • Chen Z, Wu I and Richter ML (1992) Over-expression and refolding of β-subunit from chloroplast ATP synthase. FEBS Lett 298: 69–73

    Article  PubMed  CAS  Google Scholar 

  • Colvert KC, Mills DA and Richter ML (1992) Structural mapping of cysteine-63 of the chloroplast ATP synthase β subunit. Biochemistry 31: 3930–3935

    Article  PubMed  CAS  Google Scholar 

  • Cox GB, Jans DA, Fimmel AL, Gibson F and Hatch L (1984) The mechanism of ATP synthase: Conformational change by rotation of the β-subunit. Biochim Biophys Acta 768: 201–208

    PubMed  CAS  Google Scholar 

  • Cross RL (1981) The mechanism and regulation of ATP synthesis by F1-ATPases. Ann Rev Biochem 50: 681–714

    PubMed  CAS  Google Scholar 

  • Cross RL (1988) The number of functional sites on F1-ATPases and the effects of quaternary structural asymmetry on their properties. J Bioenerg Biomemb 20: 395–406

    CAS  Google Scholar 

  • Cross RL (1992). The reaction mechanism of F0F1-ATPsynthases. In: Ernster L (ed) Molecular Mechanisms in Bioenergetics pp 317–330. Elsevier, Amsterdam

    Google Scholar 

  • Cross RL and Nalin CM (1982) Adenine nucleotide binding sites on beef-heart F1-ATPase. Evidence for three exchangeable sites that are distinct from three non-catalytic sites. J Biol Chem 257: 2874–2881

    PubMed  CAS  Google Scholar 

  • Cross RL, Cunningham D, Miller CG, Xue Z, Zhou J-M and Boyer PD (1987) Adenine nucleotide binding sites on beef heart F1 ATPase: Photoaffinity labeling of β subunit Tyr 368 at a non-catalytic site and Tyr 345 at a catalytic site. Proc Natl Acad Sci USA 84: 5715–5719

    PubMed  CAS  Google Scholar 

  • Devlin CC and Grisham CM (1990) 1H and 31P Nuclear magnetic resonance and kinetic studies of the active site structure of chloroplast CF1 ATP synthase. Biochemistry 29: 6192–6203

    Article  PubMed  CAS  Google Scholar 

  • Duncan TM and Cross RL (1992) A model for the catalytic site of F1-ATPase based on analogies to nucleotide-binding domains of known structure. J Bioenerg Biomemb 24: 453–461

    CAS  Google Scholar 

  • Duncan TM and Senior AE (1985) The defective proton-ATPase of uncD mutants of Escherichia coli: Two mutations which affect the catalytic mechanism. J Biol Chem 260: 4901–4907

    PubMed  CAS  Google Scholar 

  • Engelbrecht S and Junge W (1988) Purified subunit δ of chloroplast coupling factor CF1 reconstitutes photophosphorylation in partially-CF1 depleted membranes. Eur J Biochem 172: 213–218

    Article  PubMed  CAS  Google Scholar 

  • Fromme P and Gräber P (1990a) Activation/inactivation and unisite catalysis by the reconstituted ATP-synthase from chloroplasts. Biochim Biophys Acta 1016: 29–42

    PubMed  CAS  Google Scholar 

  • Fromme P and Gräber P (1990b) ATP-hydrolysis in chloroplasts: Uni-site catalysis and evidence for heterogeneity of sites. Biochim Biophys Acta 1020: 187–194

    CAS  Google Scholar 

  • Gao F, Lipscomb B, Wu I and Richter ML (1995) In vitro assembly of the core catalytic complex of the chloroplast ATP synthase. J Biol Chem 270: 9763–9769

    Article  PubMed  CAS  Google Scholar 

  • Girault G, Berger G, Galmiche J-M and Andre F (1988) Characterization of six nucleotide binding sites of chloroplast coupling factor 1 and one site on its purified β subunit. J Biol Chem 263: 14690–14695

    PubMed  CAS  Google Scholar 

  • Gogol E, Johnston E, Aggeler R and Capaldi R (1990) Ligand-dependent structural variations in E. coli F1-ATPase revealed by cryoelectron microscopy. Biochemistry 29: 9585–9589

    Google Scholar 

  • Gräber P, Schlodder E and Witt HT (1977) Conformational change of the chloroplast ATPase induced by a transmembrane electric field and its correlation to phosphorylation. Biochim Biophys Acta 461: 426–440

    PubMed  Google Scholar 

  • Gresser MJ, Meyers JA and Boyer PD (1982) Catalytic site cooperativity of beef heart mitochondrial F1-ATPase. J Biol Chem 257: 12030–12038

    PubMed  CAS  Google Scholar 

  • Gromet-Elhanan Z (1992) Identification of the subunits required for the catalytic activity of the F1-ATPase. J Bioenerg Biomemb 24: 447–452

    CAS  Google Scholar 

  • Gromet-Elhanan Z and Avital S (1992) Properties of the catalytic (αβ)-core complex of chloroplast CF1-ATPase. Biochim Biophys Acta 1102: 379–385

    CAS  Google Scholar 

  • Gromet-Elhanan Z and Khanashvili D (1984) Characterization of two nucleotide binding sites on the isolated, reconstitutively active β subunit of the F0F1 ATP synthase. Biochemistry 23: 1022–1028

    Article  CAS  Google Scholar 

  • Grubmeyer C, Cross RL and Penefsky HS (1982) Mechanism of ATP hydrolysis by beef heart mitochondrial ATPase. J Biol Chem 257: 12092–12100

    PubMed  CAS  Google Scholar 

  • Guerrero KJ, Ehler LL and Boyer PD (1990) Guanosine and formycin triphosphates bind at non-catalytic nucleotide binding sites of CF1 ATPase and inhibit ATP hydrolysis. FEBS Lett 270: 187–190

    Article  PubMed  CAS  Google Scholar 

  • Hackney DD and Boyer PD (1978) Subunit interaction during catalysis: Implications of concentration dependency of oxygen exchange accompanying oxidative phosphorylation for alternating site cooperativity. J Biol Chem 253: 3164–3170

    PubMed  CAS  Google Scholar 

  • Hackney DD, Rosen G and Boyer PD (1979) Subunit interaction during catalysis. Alternating site cooperativity in photophosphorylation shown by substrate modulation of [18O] ATP species formation. Proc Natl Acad Sci USA 76: 3646–3650

    PubMed  CAS  Google Scholar 

  • Haddy AE and Sharp RR (1989) Field dependence of solvent proton and deuteron NMR relaxation rates of the manganese (II) binding site of chloroplast coupling factor 1. Biochemistry 28: 3656–3664

    CAS  Google Scholar 

  • Harris DA (1993) The ‘non-exchangeable’ nucleotides of F1-F0 ATP synthase; Cofactors in hydrolysis? FEBS Lett 316: 209–215

    Article  PubMed  CAS  Google Scholar 

  • Harris DA and Crofts AR (1978) The initial stages of photophosphorylation: Studies using excitation by saturating, short flashes of light. Biochim Biophys Acta 502: 87–102

    PubMed  CAS  Google Scholar 

  • Harris DA and Slater EC (1975) Tightly-bound nucleotides of the energy-transducing ATPase of chloroplasts and their role in photophosphorylation. Biochim Biophys Acta 387: 335–348

    PubMed  CAS  Google Scholar 

  • Hiller R and Carmeli C (1985) Cooperativity among manganese-binding sites in the H-ATPase of chloroplasts. J Biol Chem 260: 1614–1617

    PubMed  CAS  Google Scholar 

  • Hisabori T, Muneyuki E, Odaka M, Yokoyama K, Mochizuki K and Yoshida M (1992) Single site hydrolysis of 2′3′-O-(2,4,6-trinitrophenyl)-ATP by the F1-ATPase from the thermophilic bacterium PS3 is accelerated by the chase-addition of excess ATP. J Biol Chem 267: 4551–4556

    PubMed  CAS  Google Scholar 

  • Hochman Y and Carmeli C (1981) Correlation between the kinetics of activation and inhibition of adenosine triphosphatase activity by divalent metal ions and the binding of manganese to chloroplast coupling factor 1. Biochemistry 20: 6287–6292

    PubMed  CAS  Google Scholar 

  • Hochman Y, Lanir A and Carmeli C (1976) Relations between divalent cation binding and ATPase activity in coupling factor from chloroplast. FEBS Lett 61: 255–259

    Article  PubMed  CAS  Google Scholar 

  • Hu N, Mills DA, Huchzermeyer B and Richter ML (1993) Inhibition by tentoxin of cooperativity among nucleotide binding sites on chloroplast coupling factor 1. J Biol Chem 268: 8536–8540

    PubMed  CAS  Google Scholar 

  • Huchzermeyer B (1988a) Nucleotide binding and ATPase activity of membrane bound chloroplast coupling factor (CF1). Z Naturforsch 43: 133–139

    CAS  Google Scholar 

  • Huchzermeyer B (1988b) Phosphate binding to isolated chloroplast coupling factor (CF1). Z Naturforsch 43: 213–218

    CAS  Google Scholar 

  • Ishii N, Yoshimura H, Nagayama K, Kagawa Y and Yoshida M (1993) Three dimensional structure of F1-ATPase of thermophilic bacterium PS3 obtained by electron crystallography. J Biochem (Tokyo) 113: 245–250

    CAS  Google Scholar 

  • Johnson LN, Acharya KR, Jordan MD and McLaughlin PJ (1990) Refined crystal structure of the phosphorylase-heptulose-2-phosphate-oligosaccharide-AMP complex. J Mol Biol 211: 645–661

    Article  PubMed  CAS  Google Scholar 

  • Kambouris NG and Hammes GG (1985) Investigation of nucleotide binding sites on chloroplast coupling factor 1 with 3′-O-(4-benzoyl)benzoyl adenosine 5′-triphosphate. Proc Natl Acad Sci (USA) 82: 1950–1953

    CAS  Google Scholar 

  • Kayalar C, Rosing J and Boyer PD (1977) An alternating site sequence for oxidative phosphorylation suggested by measurement of substrate binding patterns and exchange reaction inhibitions. J Biol Chem 252: 2486–2491

    PubMed  CAS  Google Scholar 

  • Khananshvili D and Gromet-Elhanan Z (1982) Isolation and purification of an active γ subunit of the F0F1-ATP synthase from chromatophore membranes of Rhodospirillum rubrum. J Biol Chem 257: 11377–11383

    PubMed  CAS  Google Scholar 

  • Khananshvili D and Gromet-Elhanan Z (1984) Demonstration of two binding sites for ADP on the isolated β-subunit of the Rhodospirillum rubrum RF0F1-ATP synthase. FEBS Lett 178: 10–14

    Article  CAS  Google Scholar 

  • Kironde FA and Cross RL (1986) Adenine nucleotide-binding sites on beef heart F1-ATPase: Conditions that affect occupancy of catalytic and non-catalytic sites. J Biol Chem 261: 12544–12549

    PubMed  CAS  Google Scholar 

  • Kohlbrenner WE and Boyer PD (1983) Probes of catalytic site cooperativity during catalysis by the chloroplast ATPase and the ATP synthase. J Biol Chem 258: 10881–10886

    PubMed  CAS  Google Scholar 

  • Komatsu-Takaki M (1989) Energy-dependent conformational changes in the epsilon subunit of the chloroplast ATP synthase. J Biol Chem 264: 17750–17753

    PubMed  CAS  Google Scholar 

  • Larson EM and Jagendorf AT (1986) Anion stimulation of ATPase in activated spinach chloroplast coupling factor 1 (CF1); Light activation mimic? Plant Physiol 80: S251

    Article  Google Scholar 

  • Leckband D and Hammes GG (1987) Interactions between nucleotide binding sites on chloroplast coupling factor 1 during ATP hydrolysis. Biochemistry 26: 2306–2312

    Article  PubMed  CAS  Google Scholar 

  • Leckband D and Hammes GG (1988) Function of tightly bound nucleotides on membrane-bound chloroplast coupling factor. Biochemistry 27: 3629–3633

    Article  PubMed  CAS  Google Scholar 

  • Lill H, Burkovski A, Altendorf K, Junge W and Engelbrecht S (1993) Complementation of Escherichia coli unc mutant strains by chloroplast and cyanobacterial F1-ATPase subunits. Biochim Biophys Acta 1144: 278–284

    PubMed  CAS  Google Scholar 

  • Lohse D, Thelen R and Strotmann H (1989) Activity equilibria of the thiol-modulated chloroplast H+-ATPase as a function of the proton gradient in the absence and presence of ADP and arsenate. Biochim Biophys Acta 976: 85–93

    CAS  Google Scholar 

  • Magnusson RP and McCarty RE (1976) Light-induced exchange of nucleotides into coupling factor 1 in spinach chloroplast thylakoids. J Biol Chem 251: 7417–7422

    PubMed  CAS  Google Scholar 

  • McCarty RE and Fagan J (1973) Incorporation of N-ethylmaleimide into coupling factor 1 in spinach chloroplasts. Biochemistry 12: 1503–1507

    Article  PubMed  CAS  Google Scholar 

  • Michel L, Garin J, Girault G and Vignais PV (1992) Photolabeling of the phosphate binding site of chloroplast coupling factor 1 with [32P]azidonitrophenyl phosphate. FEBS Lett 313: 90–93

    Article  PubMed  CAS  Google Scholar 

  • Milgrom YM and Murataliev MB (1987) Characterization of the nucleotide tight-binding sites of the isolated mitochondrial F1-ATPase. FEBS Lett 219: 156–160

    Article  PubMed  CAS  Google Scholar 

  • Milgrom YM, Ehler LL and Boyer PD (1990) ATP binding at non-catalytic sites of soluble CF1 is required for expression of the enzyme activity. J Biol Chem 265: 18725–18728

    PubMed  CAS  Google Scholar 

  • Milgrom YM, Ehler LL and Boyer PD (1991) The characteristics and effect on activity of nucleotide binding to non-catalytic sites of CF1-ATPase. J Biol Chem 266: 11551–11558

    PubMed  CAS  Google Scholar 

  • Mills DA and Richter ML (1991) Nucleotide binding to the isolated β subunit of the chloroplast ATP synthase. J Biol Chem 266: 7440–7444

    PubMed  CAS  Google Scholar 

  • Mills DA, Seibold SA, Squier TC and Richter ML (1995) ADP binding induces long-distance structural changes in the β polypeptide of the chloroplast ATP synthase. Biochemistry 34: 6100–6108

    Article  PubMed  CAS  Google Scholar 

  • Moroney JV and McCarty RE (1979) Reversible uncoupling of photophosphorylation by a new bifunctional maleimide. J Biol Chem 254: 8951–8955

    PubMed  CAS  Google Scholar 

  • Moroney JV and McCarty RE (1982) Light-dependent cleavage of the subunit of coupling factor 1 by trypsin causes activation of Mg2+-ATPase activity and uncoupling of photophosphorylation in spinach chloroplasts. J Biol Chem 257: 5915–5920

    PubMed  CAS  Google Scholar 

  • Nalin CM and Nelson N (1987) Structure and biogenesis of chloroplast coupling factor CF0CF1-ATPase. Curr Top Bioenerg 15: 273–294

    CAS  Google Scholar 

  • Nalin CM, Snyder B and McCarty RE (1985) Selective modification of an α subunit of chloroplast coupling factor 1. Biochemistry 24: 2318–2324

    Article  PubMed  CAS  Google Scholar 

  • Nelson N, Nelson H and Racker E (1972) Partial resolution of the enzymes catalyzing photophosphorylation: Purification and properties of an inhibitor isolated from chloroplast coupling factor 1. J Biol Chem 247: 7657–7662

    PubMed  CAS  Google Scholar 

  • Noumi T, Taniai M, Kananzawa H and Futai M (1986) Replacement of arginine 246 by histidine in the β subunit of Escherichia coli H+-ATPase resulted in loss of multi-site ATPase activity. J Biol Chem 261: 9196–9201

    PubMed  CAS  Google Scholar 

  • Penefsky HS and Cross RL (1991) Structure and mechanism of F0F1-type ATP synthases and ATPases. Advances in Enzymology and Related Areas of Molecular Biology 64: 173–214

    PubMed  CAS  Google Scholar 

  • Philosoph S, Binder A and Gromet-Elhanan Z (1977) Coupling factor ATPase complex of R. rubrum. J Biol Chem 252: 8747–8752

    PubMed  CAS  Google Scholar 

  • Richter ML and McCarty RE (1987) Energy-dependent changes in the conformation of the ε subunit of the chloroplast ATP synthase. J Biol Chem 262: 15037–15040

    PubMed  CAS  Google Scholar 

  • Richter ML, Patrie WJ and McCarty RE (1984) Preparation of the ε subunit and ε subunit-deficient chloroplast coupling factor 1 in reconstitutively active forms. J Biol Chem 259: 7371–7373

    PubMed  CAS  Google Scholar 

  • Richter ML, Snyder B, McCarty RE and Hammes GG (1985) Binding stoichiometry and structural mapping of the ε polypeptide of chloroplast coupling factor 1. Biochemistry 24: 5755–5763

    Article  PubMed  CAS  Google Scholar 

  • Richter ML, Gromet-Elhanan Z and McCarty RE (1986) Reconstitution of the H+-ATPase complex of Rhodospirillum rubrum by the β subunit of the chloroplast coupling factor 1. J Biol Chem 261: 12109–12113

    PubMed  CAS  Google Scholar 

  • Rosen G, Gresser M, Vinkler C and Boyer PD (1979) Assessment of total catalytic sites and the nature of bound nucleotide participation in photophosphorylation. J Biol Chem 254: 10654–10661

    PubMed  CAS  Google Scholar 

  • Rosing J, Smith DJ, Kayalar C and Boyer PD (1976) Medium ADP and not ADP already tightly bound to thylakoid membranes forms the initial ATP in chloroplast phosphorylation. Biochem Biophys Res Commun 72: 1–8

    Article  PubMed  CAS  Google Scholar 

  • Roux-Fromy M, Neumann J-M, Andre F, Berger G, Girault G, Galmiche J-M, and Remy R (1987) Biochemical and proton NMR characterization of the isolated functional beta-subunit of coupling factor one from spinach chloroplasts. Biochem Biophys Res Commun 144: 718–725

    PubMed  CAS  Google Scholar 

  • Roy H and Moudrianakis EN (1971) Interactions between ADP and the coupling factor of photophosphorylation. Proc Natl Acad Sci USA 68: 2720–2724

    CAS  PubMed  Google Scholar 

  • Ryrie IJ and Jagendorf AT (1972) Correlation between a conformational change in the coupling factor protein and the high energy state in chloroplasts. J Biol Chem 247: 4453–4459

    PubMed  CAS  Google Scholar 

  • Schumann J (1981) Adenine nucleotide binding to CF1 and ATPase activity of chloroplasts. In: R Selman and Selman-Reimer S (eds) Energy Coupling in Photosynthesis Research, pp 223–230. Elsevier, North Holland

    Google Scholar 

  • Schumann J (1984) A study on the exchange of tightly bound nucleotides on the membrane-associated chloroplast ATP synthase complex. Biochim Biophys Acta 766: 334–342

    CAS  Google Scholar 

  • Schumann J, Richter ML and McCarty RE (1985) Partial proteolysis as a probe of the conformation of the γ subunit in activated soluble and membrane-bound chloroplast coupling factor. J Biol Chem 260: 11817–11830

    PubMed  CAS  Google Scholar 

  • Shapiro AB and McCarty RE (1990) Substrate binding-induced alteration of nucleotide binding site properties of chloroplast coupling factor 1. J Biol Chem 265: 4340–4347

    PubMed  CAS  Google Scholar 

  • Shapiro AB and McCarty RE (1991) Four tight nucleotide binding sites of chloroplast coupling factor 1. J Biol Chem 266: 4194–4200

    PubMed  CAS  Google Scholar 

  • Shapiro A, Gibson KD, Scheraga H and McCarty RE (1991) Fluorescence resonance energy transfer mapping of the fourth of six nucleotide-binding sites of chloroplast coupling factor 1. J Biol Chem 266: 17276–17285

    PubMed  CAS  Google Scholar 

  • Shavit N, Skye GE and Boyer PD (1967) Occurrence and possible mechanism of 32P and 18O exchange reactions of photophosphorylation. J Biol Chem 242: 5125–5130

    PubMed  CAS  Google Scholar 

  • Sherman PA and Wimmer MJ (1982) Two types of kinetic regulation of the activated ATPase in the chloroplast photophosphorylation system. J Biol Chem 257: 7012–7017

    PubMed  CAS  Google Scholar 

  • Sherman PA and Wimmer MJ (1983) Kinetic effects of chemical and physical uncoupling on the energy-transducing ATPase from spinach chloroplasts. Eur J Biochem 136: 539–543

    Article  PubMed  CAS  Google Scholar 

  • Shoshan V and Selman BR (1979) The relationship between light-induced adenine nucleotide exchange and ATPase activity in chloroplast thylakoid membranes. J Biol Chem 254: 8801–8807

    PubMed  CAS  Google Scholar 

  • Snyder B and Hammes GG (1984) Structural mapping of chloroplast coupling factor. Biochemistry 23: 5787–5795

    Article  PubMed  CAS  Google Scholar 

  • Soteropoulos P, Suss K-H and McCarty RE (1992) Modifications of the γ subunit of chloroplast coupling factor 1 alter interactions with the inhibitory ε subunit. J Biol Chem 267: 10348–10354

    PubMed  CAS  Google Scholar 

  • Spencer JC and Wimmer MJ (1985) Mechanisms by which reactions catalyzed by chloroplast coupling factor 1 are inhibited: ATP synthesis and ATP-H2O oxygen exchange. Biochemistry 24: 3884–3890

    Article  PubMed  CAS  Google Scholar 

  • Stroop SD and Boyer PD (1985) Characteristics ofthe chloroplast ATP synthase as revealed by reaction at low ADP concentrations. Biochemistry 24: 2304–2310

    Article  CAS  Google Scholar 

  • Strotmann H, Bickel S and Huchzermeyer B (1976) Energy-dependent release of adenine nucleotides tightly bound to chloroplast coupling factor CF1. FEBS Lett 61: 194–198

    Article  PubMed  CAS  Google Scholar 

  • Strotmann H, Bickel-Sandkötter S and Shoshan V (1979) Kinetic analysis of light-dependent exchange of adenine nucleotides on chloroplast coupling factor CF1. FEBS Lett 101: 316–320

    Article  PubMed  CAS  Google Scholar 

  • Strotmann H, Bickel-Sandkötter S, Franek U and Gerke V (1981) Nucleotide interactions with membrane-bound CF1. In: R Selman and Selman-Reimer S (eds) Energy Coupling in Photosynthesis Research, pp 187–196. Elsevier, North Holland

    Google Scholar 

  • Strotmann H, Kleefeld S and Lohse D (1987) Control of ATP hydrolysis in chloroplasts. FEBS Lett 221: 265–269

    Article  CAS  Google Scholar 

  • Suss K-H (1986) Stable binding interaction among subunits of the chloroplast ATP synthase (CF1-CF0) as examined by solid support (nitrocellulose)-subunit reconstitution-immunoblotting. FEBS Lett 199: 169–172

    Google Scholar 

  • Walker JE, Saraste M, Runswick MJ and Gay N (1982) Distantly related sequences in the α-and β-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J 1: 945–951

    PubMed  CAS  Google Scholar 

  • Wang JH (1988) Chemical modification of active sites in relation to the catalytic mechanism of F1. J Bioenerg Biomemb 20: 407–422

    CAS  Google Scholar 

  • Wetzel CM and McCarty RE (1993) Aspects of subunit interactions in the chloroplast ATP synthase: II. Characterization of a chloroplast coupling factor 1-subunit III complex from spinach thylakoids. Plant Physiol 102: 251–259

    PubMed  CAS  Google Scholar 

  • Wimmer MJ and Rose IA (1977) Mechanism for oxygen exchange in the chloroplast photophosphorylation system. J Biol Chem 252: 6769–6775

    PubMed  CAS  Google Scholar 

  • Wood JM, Wise JG, Senior AE, Futai M and Boyer PD (1987) Catalytic properties of the F1-adenosine triphosphatase from Escherichia coli K-12 and its genetic variants as revealed by O18 exchanges. J Biol Chem 262: 2180–2186

    PubMed  CAS  Google Scholar 

  • Xue Z and Boyer PD (1989) Modulation of the GTPase activity of the chloroplast F1-ATPase by ATP binding at non-catalytic sites. Eur J Biochem 179: 677–681

    Article  PubMed  CAS  Google Scholar 

  • Xue Z, Zhou J-M, Melese T, Cross RL and Boyer PD (1987a) Chloroplast F1-ATPase has more than three nucleotide binding sites, and 2-azido ADP or 2-azido ATP at both catalytic and noncatalytic sites labels the β subunit. Biochemistry 26: 3749–3753

    Article  PubMed  CAS  Google Scholar 

  • Xue Z, Miller CG, Zhou J-M and Boyer PD (1987b) Catalytic and noncatalytic nucleotide binding sites of chloroplast F1 ATPase. FEBS Lett 223: 391–394

    Article  PubMed  CAS  Google Scholar 

  • Zhou J-M and Boyer PD (1992) MgADP and free Pi as the substrates and the Mg2+ requirement for photophosphorylation. Biochemistry 31: 3166–3171

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

Richter, M.L., Mills, D.A. (1996). The Relationship Between the Structure and Catalytic Mechanism of the Chloroplast ATP Synthase. In: Ort, D.R., Yocum, C.F., Heichel, I.F. (eds) Oxygenic Photosynthesis: The Light Reactions. Advances in Photosynthesis and Respiration, vol 4. Springer, Dordrecht. https://doi.org/10.1007/0-306-48127-8_24

Download citation

  • DOI: https://doi.org/10.1007/0-306-48127-8_24

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-3683-9

  • Online ISBN: 978-0-306-48127-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics