Some Consequences of the High Resolution X-Ray Structure Analysis of Cytochrome f

  • S. E. Martinez
  • D. Huang
  • J. L. Smith
  • W. A. Cramer
Part of the Advances in Photosynthesis and Respiration book series (AIPH, volume 4)


A high resolution structure is described of the lumen-side domain of cytochrome f. This structure is the first for a polypeptide subunit of cytochrome or bc1 or b6f complexes, and has at least three unique or unprecedented features for a c-type cytochrome: (i) more than one structural domain; (ii) predominantly β-strand; and (iii) the N-terminal α-amino group is the orthogonal (6th) ligand, which is unprecedented for a heme protein.


Cyt – cytochrome ESMS – electrospray mass spectrometry HPLC – high performance liquid chromatography SDS-PAGE – sodium dodecyl sulfate polyacrylamide electrophoresis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barker PD and Mauk AG (1992) pH-linked conformational regulation of a metalloprotein oxidation-reduction equilibrium. J Am Chem Soc 114: 3619–3624CrossRefGoogle Scholar
  2. Bergström J and Vänngard T (1982) EPR signals and orientation of cytochromes in the spinach chloroplast thylakoid membrane. Biochim Biophys Acta 682: 452–456Google Scholar
  3. Crowder MS, Prince RC and Bearden A (1982) Orientation of membrane-bound cytochromes in chloroplasts, detected by low-temperature EPR spectroscopy. FEBS Lett 144: 204–208CrossRefGoogle Scholar
  4. Davenport HE and Hill R (1952) The preparation and some properties of cytochrome f. Proc Roy Soc London Ser B 139: 327–345Google Scholar
  5. Davis DJ, Frame MK and Johnson DA (1988) Resonance Raman spectroscopy indicates a lysine as the sixth iron ligand in cytochrome f. Biochim Biophys Acta 936: 61–66PubMedGoogle Scholar
  6. Doolittle RF (1994) Convergent evolution: The need to be explicit. Trends Biochem Sci 19: 15–18PubMedCrossRefGoogle Scholar
  7. Gray JC (1978) Purification and properties of cytochrome f from charlock. Eur J Biochem 82: 133–141PubMedCrossRefGoogle Scholar
  8. Gray JC (1992) Cytochrome f: Structure, function, and biosynthesis. Photosyn Res 34: 359–374Google Scholar
  9. Gross EL (1993) Plastocyanin: Structure and function. Photosyn Res 37:103–116Google Scholar
  10. Ho KK and Krogmann DW (1980) Cytochrome f from spinach and cyanobacteria. J Biol Chem 255: 3855–3861PubMedGoogle Scholar
  11. Johnson EM, Schabelrauch LS and Sears BB (1991) A plastome mutation affects processing of both chloroplast and nuclear DNA-encoded plastid proteins. Mol Gen Genet 225: 106–112PubMedCrossRefGoogle Scholar
  12. Kirwin PM, Elderfield PD, Williams RS and Robinson C (1991) Transport of proteins into chloroplasts: Organization, orientation, and lateral distribution of the plastocyanin processing peptidase. J Biol Chem 263: 18128–18132Google Scholar
  13. Kraulis PJ (1991) MOLSCRIPT: A program to produce detailed and schematic maps of protein structures. J Appl Crystallog 24: 946–950Google Scholar
  14. Martinez SE, Smith JL, Huang D, Szczepaniak A and Cramer WA (1992) Crystallographic studies of the lumen-side domain of turnip cytochrome f. In: Murata N (ed) Research in Photosynthesis, Vol II, pp 495–498. Kluwer, DordrechtGoogle Scholar
  15. Martinez SE, Huang D, Szczepaniak A, Cramer WA and Smith JL (1994) Crystal structure of chloroplast cytochrome f reveals a novel cytochrome fold and unexpected heme ligation. Structure 2: 95–105CrossRefGoogle Scholar
  16. Moore GR and Pettigrew GW (1990) Cytochromes c: Evolutionary, Structural, and Physicochemical Aspects. Springer-Verlag, BerlinGoogle Scholar
  17. Morand LZ, Frame MK, Colvert KK, Johnson DA, Krogmann DW and Davis DJ (1989) Plastocyanin-cytochrome f interaction. Biochemistry 28: 8039–8047PubMedGoogle Scholar
  18. Pfanner N and Neupert W (1990) The mitochondrial protein import apparatus. Ann Rev Biochem 59: 331–353PubMedGoogle Scholar
  19. Qin L and Kostic NM (1992) Electron transfer reactions of cytochrome f with flavin semiquinones and with plastocyanin. Importance of protein-protein interactions and of donor-acceptor coupling. Biochemistry 31: 5145–5150PubMedCrossRefGoogle Scholar
  20. Qin L and Kostic NM (1993) Importance of protein rearrangement in the electron-transfer reaction between the physiological partners cytochrome f and plastocyanin. Biochemistry 32: 6073–6080PubMedCrossRefGoogle Scholar
  21. Redinbo MR, Yeates TO and Merchant S (1994) Plastocyanin: Structural and functional analysis. J Bioenerg Biomemb 26: 49–66Google Scholar
  22. Riedel A, Rutherford W, Hauska G, Müller A and Nitschke W (1991) Chloroplast Rieske center: EPR study on its spectral characteristics, relaxation, and orientation properties. J Biol Chem 266: 17838–17844PubMedGoogle Scholar
  23. Rigby SEJ, Moore GR, Gray JC, Godsby PMA, George SJ and Thomson AJ (1988) NMR, EPR, and magnetic CD studies of cytochrome f. Biochem J 256: 571–577PubMedGoogle Scholar
  24. Siedow JN, Vickery LE and Palmer G (1980) The nature of the axial ligands of cytochrome f. Arch Biochem Biophys 203: 101–107PubMedCrossRefGoogle Scholar
  25. Simpkin D, Palmer G, Devlin FJ, McKenna MC, Jensen GM and Stephens PJ (1989) The axial ligands of heme in cytochromes: A near infrared magnetic circular dichroism study of cytochromes c, c1, b, and spinach cytochrome f. Biochemistry 28: 8033–8039PubMedCrossRefGoogle Scholar
  26. Tae G-S, Furbacher PN and Cramer WA (1996) Evolution of cytochrome bc1 complexes. In: Baltscheffsky H (ed) Origin and Evolution of Biological Energy Conversion. VCHGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • S. E. Martinez
    • 1
  • D. Huang
    • 1
  • J. L. Smith
    • 1
  • W. A. Cramer
    • 1
  1. 1.Department of Biological SciencesPurdue UniversityWest LafayetteUSA

Personalised recommendations