Introduction to Photosystem I: Reaction Center Function, Composition and Structure

  • Rachel Nechushtai
  • Amir Eden
  • Yuval Cohen
  • Judith Klein
Part of the Advances in Photosynthesis and Respiration book series (AIPH, volume 4)


CAB – chlorophyll a/b binding protein CCI – core complex I Chl – chlorophyll EDC – N-ethyl-3-(3-dimethylaminopropyl) carbodiimide EPR – electron paramagnetic resonance EXAFS – extended X-ray absorption fine structure Fd – ferredoxin FNR – ferredoxin NADP reductase LHC – light-harvesting complex NHS-biotin – biotin N-hyclrosuccinimidc ester orf – open reading frame PC – plastocyanin PsaA-N – the polypeptide subunits of PS I psaA-N – the corresponding genes encoding the PS 1 subunits PS I – Photosystem I PS I-RC – Photosystem I reaction center RC – reaction center 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adam Z and Hoffman NE (1993) Biogenesis of Photosystem I light-harvesting complex: Evidence for a membrane intermediate. Plant Physiol 102: 35–43PubMedCrossRefGoogle Scholar
  2. Almog O, Shoham G, Michaeli D and Nechushtai R (1991) Monomeric and trimeric forms of Photosystem I reaction center of Mastigocladus laminosus: Crystallization and preliminary characterization. Proc Natl Acad Sci USA 88: 5312–5316PubMedGoogle Scholar
  3. Andersen B, Scheller HV and Moller BL (1992) The PS I-E subunit of Photosystem I binds ferredoxin: NADP+ oxido-reductase. FEBS Lett 311: 169–173PubMedCrossRefGoogle Scholar
  4. Andersson B and Haehnel W (1982) Location of Photosystem I and Photosystem II reaction centers in different thylakoid regions of stacked chloroplast. FEBS Lett 146: 13–17CrossRefGoogle Scholar
  5. Archer EK and Keegstra K (1990) Current views on chloroplast protein import and hypotheses on the origin of the transport mechanism. J Bioenerg Biomem 22: 789–810Google Scholar
  6. Armbrust TS, Odom WR and Guikema JA (1994) Structural analysis of Photosystem I polypeptides using chemical crosslinking. J Exp Zool 269: 205–211PubMedCrossRefGoogle Scholar
  7. Baker AN and Malkin R (1990) Photosystem I reaction center proteins contain leucine zipper motifs–a proposed role in dimer formation. FEBS Lett 264: 1–4Google Scholar
  8. Bassi R, Soen SY, Frank G, Zuber H and Rochaix JD (1992) Characterization of chlorophyll a/b proteins of Photosystem I from Chlamydomonas reinhardtii. J Biol Chem 267: 25714–25721PubMedGoogle Scholar
  9. Bengis C and Nelson N (1975) Purification and properties of Photosystem I reaction center from chloroplasts. J Biol Chem 250: 2783–2788PubMedGoogle Scholar
  10. Bengis C and Nelson N (1977) Subunit structure of chloroplast Photosystem I reaction center. J Biol Chem 252: 4564–4569PubMedGoogle Scholar
  11. Bingham SE, Xu RH and Webber AN (1991) Transformation of chloroplasts with the psaB gene encoding a polypeptide of the Photosystem I reaction center. FEBS Lett 292: 137–140PubMedCrossRefGoogle Scholar
  12. Boekema EJ, Dekker JP, Van Heel MG, Rogner M, Saenger W, Witt I and Witt HT (1987) Evidence for a trimeric organization of the Photosystem I complex from the thermophilic cyanobacterium Synechococcus sp. FEBS Lett 217: 283–286CrossRefGoogle Scholar
  13. Boekema EJ, Wynn RM and Malkin R (1991) The structure of spinach Photosystem I studied by electron microscopy. Biochem Biophys Acta 1017: 49–56Google Scholar
  14. Boekema EJ, Boonstra AF, Dekker JP and Rögner M (1994) Electron microscopic structural analysis of Photosystem I, Photosystem II and cytochrome b 6/f complex from green plants and cyanobacteria. J Bioener Biomemb 26: 17–29Google Scholar
  15. Bottcher B, Graber P and Boekema E (1992) The structure of photosystem-I from the thermophillic cyanobacterium Synechococcus sp. determined by electron-microscopy of 2-dimensional crystals. Biochim Biophys Acta 1100: 125–136PubMedGoogle Scholar
  16. Bredenkamp GJ and Baker NR (1988) The changing contribution of LHCI to Photosystem I activity during chloroplast biogenesis in wheat. Biochim Biophys Acta 934: 14–21Google Scholar
  17. Brettel K and Sétif P (1987) Magnetic-field effects on primary reaction in Photosystem I. Biochim Biophys Acta 893: 109–112Google Scholar
  18. Brettel K, Sétif P and Mathis P (1986) Flash-induced absorption changes in Photosystem I at low temperature: Evidence that the electron acceptor A, is vitamin K1. FEBS Lett 203: 220–224CrossRefGoogle Scholar
  19. Broadhurst RW, Hoff AJ and More PJ (1986) Interpretation of polarized electron paramagnetic resonance signal of plant Photosystem I. Biochim Biophys Acta 852: 106–111Google Scholar
  20. Bryant DA (1986) The cyanobacterial photosynthetic apparatus: Comparison to those of higher plants and photosynthetic bacteria. In: Platt T and Li WKW (eds) Photosynthetic Picoplankton Can Bull Fish Aquat Sci, Vol 214, pp 423–500.Google Scholar
  21. Bryant DA (1991) Molecular biology of Photosystem I. In: Barber J (ed) The Photosystems: Structure, Function and Molecular Biology, pp 501–551. Elsevier, AmsterdamGoogle Scholar
  22. Buttner M, Xie DL, Nelson H, Pinther W, Hauska G and Nelson N (1992a) Photosynthetic reaction center genes in green sulfur bacteria and in photosystem 1 are related. Proc Natl Acad Sci USA 89: 8135–8139PubMedGoogle Scholar
  23. Buttner M, Xie DL, Nelson H, Pinther W, Hauska G and Nelson N (1992b) The Photosystem I-like P840-reaction center of green S-bacteria is a homodimer. Biochim Biophys Acta 1101: 154–156PubMedGoogle Scholar
  24. Cammack R and Evans MCW (1975) EPR spectra of iron-sulfur protein in dimethylsulfoxide solution: Evidence that chloroplast Photosystem I particles contain 4Fe-4S centers. Biochem Biophys Res Commun 67: 544–549PubMedCrossRefGoogle Scholar
  25. Cantrell B and Bryant DA (1987) Molecular cloning and nucleotide sequence of the psaA and psaB genes of the cyanobacterium Synechococcus sp. PCC 7002. Plant Mol Biol 9: 453–468CrossRefGoogle Scholar
  26. Chitnis VP and Chitnis PR (1993) PsaL is required for the formation of Photosystem I trimers in the cyanobacteria Synechocystis sp. PC 6803. FEBS Lett 336: 330–334PubMedCrossRefGoogle Scholar
  27. Chitnis PR and Nelson N (1991) Photosystem I. In: Bogorad L and Vasil IK (eds) The Photosynthetic Apparatus: Molecular Biology and Operation, pp 178–224. Academic Press, San DiegoGoogle Scholar
  28. Chitnis PR and Nelson N (1992a) Assembly of two subunits of the cyanobacterial Photosystem I on the n-side of thylakoid membranes. Plant Physiol 99: 239–246PubMedGoogle Scholar
  29. Chitnis PR and Nelson N (1992b) Biogenesis of Photosystem I: The subunit PsaE is important for the stability of PS I complex. In: Argyroudi-Akoyunoglou J (ed) Regulation of Chloroplast Biogenesis, pp 277–282. Plenum Press, New YorkGoogle Scholar
  30. Chitnis PR and Thornber JP (1988) The major light-harvesting complex of Photosystem II: Aspects of its molecular and cell biology. Photosynth Res 16: 41–63CrossRefGoogle Scholar
  31. Chitnis PR, Nechushtai R and Thornber JP (1987) Insertion of the precursor of the light-harvesting chlorophyll a/b-binding protein into the thylakoids requires the presence of a developmentally regulated stromal factor. Plant Mol Biol 10: 3–12CrossRefGoogle Scholar
  32. Chitnis PR, Reilly PA, Miedel MC and Nelson N (1989a) Structure and targeted mutagenesis of the gene encoding 8-kDa subunit of Photosystem I of the cyanobacterium Synechocystis sp. PCC 6803. J Biol Chem 264: 18374–18380PubMedGoogle Scholar
  33. Chitnis PR, Reilly PA and Nelson N (1989b) Insertional inactivation of the gene encoding subunit II of Photosystem I of the cyanobacterium Synechocystis sp. PCC 6803. J Biol Chem 264: 18381–18385PubMedGoogle Scholar
  34. Chitnis PR, Purvis D and Nelson N (1991) Molecular cloning and targeted mutagenesis of the gene psaF encoding subunit III of Photosystem I from the cyanobacterium Synechocystis sp. PCC 6803. J Biol Chem 266: 20146–20151PubMedGoogle Scholar
  35. Chitnis VP, Xu Q, Yu L, Golbeck JH, Nakamoto H, Xie DL and Chitnis PR (1993) Targeted inactivation of the gene psaL encoding a subunit of Photosystem I of the cyanobacterium Synechocystis sp. PCC 6803. J Biol Chem 268: 11678–11684PubMedGoogle Scholar
  36. Chua N-H and Schmidt GW (1979) Transport of proteins into mitochondria and chloroplast, J Cell Biol 81: 461–483PubMedCrossRefGoogle Scholar
  37. Cline K (1986) Import of proteins into chloroplasts: Membrane integration of a thylakoid precursor protein reconstituted in chloroplast lysates. J Biol Chem 261: 14804–14810PubMedGoogle Scholar
  38. Cline K, Werner-Washburne M, Lubben TH and Keegstra K (1985) Precursors to two nuclear-encoded chloroplast proteins bind to the outer envelope membrane before being imported into chloroplasts. J Biol Chem 260: 3691–3696PubMedGoogle Scholar
  39. Cohen Y and Nechushtai R (1992) Assembly and processing of subunit II (PsaD) precursor in the isolated Photosystem I complex. FEBS Lett 302: 15–17PubMedCrossRefGoogle Scholar
  40. Cohen Y, Steppuhn J, Yalovsky S, Herrman RG and Nechushtai R (1992) Insertion and assembly of the precursor of subunit II into the Photosystem I complex may precede its processing. EMBO J 11: 79–85PubMedGoogle Scholar
  41. Cohen Y, Chitnis VP, Nechushtai R and Chitnis PR (1993) Stable assembly of PsaE into cyanobacterial photosynthetic membranes is dependent on the presence of other accessory subunits of Photosystem I. Plant Mol Biol 23: 895–900PubMedCrossRefGoogle Scholar
  42. de Boer DA and Weisbeek PJ (1992) Chloroplast protein topogenesis: Import, sorting and assembly. Biochim Biophys Acta 1071: 221–253Google Scholar
  43. Dunahay TG and Staehelin LA (1985) Isolation of Photosystem I complexes from octyl glucoside/sodium dodecyl sulfate solubilized spinach thylakoids. Plant Physiol 78: 606–613PubMedGoogle Scholar
  44. Dunn PPJ and Gray JC (1988) Nucleotide sequence of the frxB gene in wheat chloroplast DNA. Nucl Acids Res 16: 348PubMedGoogle Scholar
  45. Eichacker LA, Soll J, Lauterbach P, Rudiger W, Klein RR and Mullet JE (1990) In vitro synthesis of chlorophyll a in the dark triggers accumulation of chlorophyll a apoproteins in barley etioplasts. J Biol Chem 265: 13566–13571PubMedGoogle Scholar
  46. Eichacker L, Paulsen H and Rudiger W (1992) Synthesis of chlorophyll a regulates translation of chlorophyll a apoproteins P700, CP47, CP43 and D2 in barley etioplasts. Eur J Biochem 205: 17–24PubMedCrossRefGoogle Scholar
  47. Enami I, Ohta H and Katho S (1986) Topographical studies on subunit polypeptides of the Photosystem I reaction center complex in the thylakoid membrane of the thermophilic cyanobacterium Synechococcus sp. Plant Cell Physiol 27: 1395–1405Google Scholar
  48. Enami I, Ohta H and Miyaoka T (1987) Cross linking studies on the membrane topography of Photosystem I reaction center complex in Synecococcus sp. Plant Cell Physiol 28: 101–111Google Scholar
  49. Fish LE, Kuck U and Bogorad L (1985a) Analysis of the two partially homologous P700 chlorophyll a proteins of maize Photosystem I: Predictions based on the primary sequences and features shared by other chlorophyll proteins. In: Steinback KE, Bonitz S, Arntzen CJ and Bogorad L (eds) Molecular Biology of the Photosynthetic Apparatus, pp 111–120. Cold Spring Harbor Laboratory, Cold Spring, New YorkGoogle Scholar
  50. Fish LE, Kuck U and Bogorad L (1985b) Two partially homologous adjacent light-inducible maize chloroplast genes encoding polypeptides of the P700 chlorophyll a protein complex of Photosystem I. J Biol Chem 260: 1413–1421PubMedGoogle Scholar
  51. Flieger K., Oelmuller R and Herrmann RG (1993) Isolation and characterization of cDNA clones encoding a 18.8 kDa polypeptide, the product of the gene psaL associated with Photosystem I reaction center from spinach. Plant Mol Biol 22: 703–709PubMedCrossRefGoogle Scholar
  52. Flugge UI and Hinz G (1986) Energy dependence of protein translocation into chloroplasts. Eur J Biochem 160: 563–570PubMedCrossRefGoogle Scholar
  53. Ford RC and Cochrane MA (1993) Cyanobacterial Photosystem I structure. Biochem Soc Trans 21: 19–21PubMedGoogle Scholar
  54. Ford RC and Holzenburg A (1988) Investigation of the structure of trimeric and monomeric Photosystem I reaction centre complexes. EMBO J 7: 2287–2293PubMedGoogle Scholar
  55. Ford RC, Pauptit RA and Holzenberg A (1988) Structural studies on improved crystals of the Photosystem I reaction center from Phormidium laminosum. FEBS Lett 238: 385–389CrossRefGoogle Scholar
  56. Ford RC, Hefti A and Engel A (1990) Ordered arrays of the Photosystem I reaction centre after reconstitution: Projections and surface reliefs of the complex at 2 nm resolution. EMBO J 9: 3067–3075PubMedGoogle Scholar
  57. Franzen L-G, Frank G, Zuber H and Rochaix J-D (1989a) Isolation and characterization of cDNA clones encoding five subunits of Photosystem I from the green alga Chlamydomonas reinhardtii. In: Baltscheffsky M (ed) Current Research in Photosynthesis, Vol 3, pp 617–621. Kluwer Academic Publishers, DordrechtGoogle Scholar
  58. Franzen L-G, Frank G, Zuber H and Rochaix J-D (1989b) Isolation and characterization of cDNA clones encoding Photosystem I subunits with molecular masses 11.0, 10.0 and 8.4 kDa from Chlamydomonas reinhardtii. Mol Gen Genet 219: 137–144PubMedGoogle Scholar
  59. Furrer R and Thurnauer MC (1983) Resolution of signals attributed to Photosystem I primary reactants by time resolved EPR at K band. FEBS Lett 153: 399–403CrossRefGoogle Scholar
  60. Golbeck JH (1987) Structure, function and organization of the Photosystem I reaction center complex. Biochim Biophys Acta 895: 167–204PubMedGoogle Scholar
  61. Golbeck JH (1993) Shared thematic elements in photochemical reaction centers. Proc Natl Acad Sci USA 90: 1642–1646PubMedGoogle Scholar
  62. Golbeck JH (1994) Photosystem I in cyanobacteria. In: Bryant DA (ed) The Molecular Biology of Cyanobacteria, pp 319–360. Kluwer Academic Publishers, DordrechtGoogle Scholar
  63. Golbeck JH and Bryant DA (1991) Photosystem I. Current Topics in Bioenergetics 16: 83–177Google Scholar
  64. Green BR and Pichersky E (1994) Chl a/c light-harvesting antenna proteins from helix and four helix ancestors. Photosyn Res 39: 149–162Google Scholar
  65. Grossman AR, Bartlett SG and Chua N-H (1980) Energy-dependent uptake of cytoplasmically-synthesized polypeptides by chloroplasts. Nature 285: 625–628CrossRefGoogle Scholar
  66. Guigliarelli B, Guillaussier J, More C, Sétif P, Bottin H and Bertrand P (1993) Structural organization of the iron-sulfur centers in Synechocystis 6803 Photosystem I. EPR study of oriented thylakoid membranes and analysis of the magnetic interactions. J Biol Chem 268: 900–908PubMedGoogle Scholar
  67. Haehnel W (1982) On the functional organization of electron transport from plastoquinone to Photosystem I. Biochim Biophys Acta 682: 245–257Google Scholar
  68. Haehnel W (1986) Plastocyanin. In: Staehelin LA and Arntzen CJ (eds) Encyclopedia of Plant Physiology, Photosynthesis III, Vol 19, pp 547–559. Springer Verlag, BerlinGoogle Scholar
  69. Haehnel W, Propper A and Krause H (1980) Evidence for complexed plastocyanin as the immediate electron donor of P-700. Biochim Biophys Acta 593: 384–399PubMedGoogle Scholar
  70. Haehnel W, Jansen T, Cause K, Klosgen RB, Stahl B, Michel D, Huvermann B, Karas M and Herrmann RG (1994) Electron transfer from plastocyanin to Photosystem I. EMBO J 13: 1028–1038PubMedGoogle Scholar
  71. Hefti A, Ford RC, Miller M, Cox RP and Engel A (1992) Analysis of the structure of Photosystem I in cyanobacterial thylakoid membranes. FEBS Lett 296: 29–32PubMedCrossRefGoogle Scholar
  72. Herrin DL, Plumley FG, Ikeuchi M and Michaels AS (1987) Chlorophyll antenna proteins of Photosystem I: Topology, synthesis, and regulation of the 20-kDa subunit of Chlamydomonas light-harvesting complex of Photosystem I. Arch Biochem Biophys 254: 397–408PubMedCrossRefGoogle Scholar
  73. Herrmann RG, Westhoff P, Alt J, Tittgen J and Nelson N (1985) Thylakoid membrane proteins and their genes. In: van Vloten-Doting L, Groot GSP and Hall TC (eds) Molecular Form and Function of the Plant Genome, pp 233–256. Plenum, AmsterdamGoogle Scholar
  74. Hippler M, Ratajczak R and Haehnel W (1989) Identification of the plastocyanin binding subunit of Photosystem I. FEBS Lett 250: 280–284CrossRefGoogle Scholar
  75. Hoffman NE, Pichersky E, Malik VS, Castresana C, Ko K, Darr SC and Cashmore AR (1987) A cDNA clone encoding a Photosystem I protein with homology to Photosystem II chlorophyll a/b-binding polypeptides. Proc Natl Acad Sci USA 84: 8844–8848PubMedGoogle Scholar
  76. Hulford N, Hazell L, Mould RM and Robinson C (1994) Two distinct mechanisms for the translocation of proteins across the thylakoid membranes, one requiring the presence of a stromal protein factor and nucleotide triphosphates. J Biol Chem 269: 3251–3256PubMedGoogle Scholar
  77. Hwang S and Herrin DL (1993) Characterization of a cDNA encoding the 20-kDa Photosystem I light-harvesting polypeptide of Chlamydomonas reinhardtii. Curr Genet 23: 512–517PubMedCrossRefGoogle Scholar
  78. Ikeuchi M and Inoue Y (1991) Two new components of 9 and 14 kDa from spinach Photosystem I complex. FEBS Lett 280: 332–334PubMedCrossRefGoogle Scholar
  79. Ikeuchi M, Hirano A, Hiyama T and Inoue Y (1990) Polypeptide composition of higher plant Photosystem I complex: Identification of psaI, psaJ and psaK gene products. FEBS Lett 263: 274–278PubMedCrossRefGoogle Scholar
  80. Ikeuchi M, Nyhus KJ, Inou Y and Pakrasi HB (1991) Identities of four low-molecular-mass subunits of the Photosystem I complex from Anabaena variabilis ATCC 29413: Evidence for the presence of the psal gene product in a cyanobacterial complex. FEBS Lett 287: 5–9PubMedCrossRefGoogle Scholar
  81. Illinger N, Xie DL, Hauska G and Nelson N (1993) Identification of the subunit carrying FeS centers A and B in the P840 center preparation of Chlorobium limicola. Photosyn Res 38: 111–114Google Scholar
  82. Iwaki M, Takahashi M, Shimada K, Takahashi Y and Itoh S (1992) Photoaffinity labeling of the phylloquinone-binding polypeptides by 2-azidoanthraquinone in Photosystem I particles. FEBS Lett 312: 27–30PubMedCrossRefGoogle Scholar
  83. Iwasaki Y, Ishikawa H, Hibino T and Takabe T (1991) Characterization of genes that encode subunits of cucumber PS I complex by N-terminal sequencing. Biochim Biophys Acta 1059: 141–148PubMedGoogle Scholar
  84. Kirsch W, Seyer P and Herrmann RG (1986) Nucleotide sequence of the clustered genes for two P700 chlorophyll a apoproteins of the Photosystem I reaction center and the ribosomal protein S14 of the spinach plastid chromosome. Curr Genet 10: 843–855CrossRefGoogle Scholar
  85. Kjaerulff S, Andersen B, Nielsen VS, Moller BL and Okkels JS (1993) The PS I-K subunit of Photosystem I from barley (Hordeum vulgare L.). Evidence for a gene duplication of an ancestral PS I-G/K gene. J Biol Chem 268: 18912–18916PubMedGoogle Scholar
  86. Knoetzel J and Simpson DJ (1993) The primary structure of a cDNA for PsaN, encoding an extrinsic lumenal polypeptide of barley Photosystem I. Plant Mol Biol 22: 337–345PubMedCrossRefGoogle Scholar
  87. Knoetzel J, Svendsen I and Simpson DJ (1992) Identification of the Photosystem I antenna polypeptides in barley. Isolation of three pigment-binding antenna complexes. Eur J Biochern 206: 209–215Google Scholar
  88. Kok B (1957) Absorption changes induced by the photochemical reaction of photosynthesis. Nature 179: 583–584Google Scholar
  89. Kok B (1961) Partial purification and determination of oxidation-reduction potential of the photosynthetic chlorophyll complex absorbing at 700 nm. Biochim Biophys Acta 48: 527–533PubMedCrossRefGoogle Scholar
  90. Kossel H, Dory I, Igloi G and Maier R (1990) A leucine-zipper motif in Photosystem I. Plant Mol Biol 15: 497–499PubMedGoogle Scholar
  91. Krauss N, Hinrichs W, Witt I, Fromme P, Pritzkow W, Dauter Z, Betzel C, Wilson KS, Witt HT and Saenger W (1993) Three-dimensional structure of system I of photosynthesis at 6 Å resolution. Nature 361: 326–331CrossRefGoogle Scholar
  92. Kruip J, Boekema EJ, Bald D, Boonstra AF and Rögner M (1993) Isolation and structural characterization of monomeric and trimeric Photosystem I complexes (P700.FA/FB and P700.FX) from the cyanobacterium Synechocystis PCC 6803. J Biol Chem 268: 23353–23360PubMedGoogle Scholar
  93. Lagoutte B and Vallon O (1992) Purification and membrane topology of PS I-D and PS I-E, two subunits of the Photosystem I reaction center. Eur J Biochem 205: 1175–1185PubMedCrossRefGoogle Scholar
  94. Lam E, Ortiz W, Mayfield S and Malkin R (1984) Isolation and characterization of a light-harvesting chlorophyll a/b protein complex associated with PS I. Plant Physiol 74: 650–655PubMedCrossRefGoogle Scholar
  95. Laudenbach DE, Herbert SK, McDowell C, Fork DC, Grossman AR and Straus NA (1990) Cytochrome c-553 is not required for photosynthetic activity in the cyanobacterium Synechococcus. Plant Cell 2: 913–924PubMedCrossRefGoogle Scholar
  96. Leu S, White D and Michaels A (1990) Cell cycle-dependent transcriptional and post-transcriptional regulation of chloroplast gene expression in Chlamydomonas reinhardtii, Biochim Biophys Acta l049:311–317Google Scholar
  97. Li N, Warren PV, Golbeck JH, Frank G, Zuber H and Bryant DA (1991a) Polypeptide composition of the Photosystem I complex and the Photosystem I core protein from Synechococcus sp. PCC 6301. Biochim Biophys Acta 1059: 215–225PubMedGoogle Scholar
  98. Li N, Zhao J, Warren PV, Warden JT, Bryant DA and Golbeck JH (1991b) PsaD is required for the stable binding of PsaC to the Photosystem I core protein of Synechococcus sp. PCC 6301. Biochemistry 30: 7863–7872PubMedGoogle Scholar
  99. Liebl U, Mockensturm WM, Trost JT, Brune DC, Blankenship RE and Vermaas W (1993) Single core polypeptide in the reaction center of the photosynthetic bacterium Heliobacillus mobilis: Structural implications and relations to other photosystems. Proc Natl Acad Sci USA 90: 7124–7128PubMedGoogle Scholar
  100. Lotan O and Nechushtai R (1993) The light-regulated biogenesis of subunit V (PsaG) or the Photosystem I reaction center. In: Murata N (ed) Research in Photosynthesis, Vol I, pp 65–68. Kluwer Academic Publishers, DordrechtGoogle Scholar
  101. Lotan O, Cohen Y, Yalovsky S, Michaeli D and Nechushtai R (1991) Characterization of the sequential light-regulated assembly of Photosystem I core complex. In: Argyroudi-Akoyunoglou H (ed) Regulation of Chloroplast Biogenesis, pp 269–276. Plenum Publishing Corporation, New YorkGoogle Scholar
  102. Lotan O, Cohen Y, Michaeli D and Nechushtai R (1993a) High levels of Photosystem I subunit II (PsaD) mRNA result in the accumulation of the PsaD polypeptide only in the presence of light. J Biol Chem 268: 16185–16189PubMedGoogle Scholar
  103. Lotan O, Streubel M, Westhoff P and Nechushtai R (1993b) Subunit III (Psa-F) of Photosystem I reaction center of the C4 dicotyledon Flaveria trinervia. Plant Mol Biol 21: 573–577PubMedCrossRefGoogle Scholar
  104. Machold O, Simpson DJ and Moller B (1979) Chlorophyll-proteins of thylakoids from wild-type and mutants of barley (Hordeum vulgare L.). Carlsberg Res Commun 44: 235–254CrossRefGoogle Scholar
  105. Malkin R (1982) Photosystem I. Ann Rev Plant Physiol 33: 455–479Google Scholar
  106. Malkin R (1987) Photosystem I. In: Barber J (ed) The Light Reactions. Topics in Photosynthesis Research, Vol 8, pp 495–525. Elsevier Science Publishers, AmsterdamGoogle Scholar
  107. Mannan RM, Whitmarsh J, Nyman P and Pakrasi HB (1991) Directed mutagenesis of an iron-sulfur protein of the Photosystem I complex in the filamentous cyanobacterium Anabaena variabilis ATCC 29413. Proc Natl Acad Sci USA 88: 10168–10172PubMedGoogle Scholar
  108. Medina M, Diaz A, Hervas M, Navarro JA, Gomez-Moreno C, Delarosa MA and Tollin G (1993) A comparative laser-flash absorption spectroscopy study of Anabaena PCC 7119 plastocyanin and cytochrome C 6 photooxidation by Photosystem I particles. Eur J Biochem 213: 1133–1138PubMedCrossRefGoogle Scholar
  109. Miihlenhoff U, Haehnel W, Witt H and Herrmann RG (1993) Genes encoding eleven subunits of Photosystem I from the thermophilic cyanobacterium Synechococcus sp. Gene 127: 71–78Google Scholar
  110. Mullet JE, Burke JJ and Arntzen CJ (1980) Chlorophyll proteins of Photosystem I. Plant Physiol 65: 814–822PubMedGoogle Scholar
  111. Nechushtai R and Nelson N (1981a) Photosystem I reaction centers from Chlamydomonas and higher plant chloroplasts. J Bioenerg Biomembranes 13: 295–306Google Scholar
  112. Nechushtai R and Nelson N (1981b) Purification properties and biogenesis of Chlamydomonas reinhardtii Photosystem I reaction center. J Biol Chem 256: 11624–11628PubMedGoogle Scholar
  113. Nechushtai R and Nelson N (1985) Biogenesis of Photosystem I reaction center during greening. Plant Mol Biol 4: 377–384Google Scholar
  114. Nechushtai R, Nelson N, Mattoo A and Edelman M (1981) Site of synthesis of subunits to Photosystem I reaction center and the proton-ATPase in spirodela. FEBS Lett 125: 115–119CrossRefGoogle Scholar
  115. Nechushtai R, Nelson N, Gonen O and Levanon H (1985) Photosystem I reaction center from Mastigocladus laminosus. Correlation between reduction state of the iron-sulfur centers and the triplet formation mechanisms. Biochim Biophys Acta 807: 35–43Google Scholar
  116. Nechushtai R, Peterson CC, Peter GF and Thornber JP (1987) Purification and characterization of a light-harvesting chlorophyll a/b protein of Photosystem I of Lemna gibba. Eur J Biochem 164: 345–350PubMedCrossRefGoogle Scholar
  117. Nielsen VS, Mant A, Knoetzel J, Moller BL and Robinson C (1994) Import of barley Photosystem I subunit N into the thylakoid lumen is mediated by a bipartite presequence lacking an intermediate processing site. J Biol Chem 269: 3762–3766PubMedGoogle Scholar
  118. Nitschke W and Rutherford AW (1991) Photosynthetic reaction centres: Variations on a common structural theme? Trends Biochem Sci 16:241–245PubMedCrossRefGoogle Scholar
  119. Nitschke W, Feiler U and Rutherford AW (1990) Photosynthetic reaction center of green sulfur bacteria studied by EPR. Biochemistry 29: 3834–3842PubMedGoogle Scholar
  120. Nordling M, Sigfridsson K, Young S, Lundberg LG and Hansson O (1991) Flash-photolysis studies of the electron transfer from genetically modified spinach plastocyanin to Photosystem I. FEBS Lett 291: 327–330PubMedCrossRefGoogle Scholar
  121. Nugent JHA, Moller BL and Evans MCW (1981) Comparison of the EPR properties of Photosystem I iron-sulphur centres A and B in spinach and barley. Biochim Biophys Acta 634: 249–255PubMedGoogle Scholar
  122. Nyhus KJ, Ikeuchi M, Inoue Y, Whitmarsh J and Pakrasi HB (1992) Purification and characterization of the Photosystem I complex from the filamentous cyanobacterium Anabaena variabilis ATCC 29413. J Biol Chem 267: 12489–12495PubMedGoogle Scholar
  123. Oelmuller R and Kendrick RE (1991) Blue light is required for survival of the tomato phytochrome-deficient aurea mutant and the expression of four nuclear genes coding for plastidic proteins. Plant Mol Biol 16: 293–299PubMedGoogle Scholar
  124. Oelmuller R, Kendrick RE and Briggs WR (1989) Blue-light mediated accumulation of nuclear-encoded transcripts coding for proteins of the thylakoid membrane is absent in the phytochrome-deficient aurea mutant of tomato. Plant Mol Biol 13: 223–232PubMedGoogle Scholar
  125. Oh-oka H, Takahashi Y, Wada K, Matsubara H, Ohyama K and Ozeki H (1987) The 8 kDa polypeptide in Photosystem I is a probable candidate of an iron-sulfur center protein coded by the chloroplast gene frxa. FEBS Lett 218: 52–54CrossRefGoogle Scholar
  126. Oh-Oka H, Takahashi Y and Matsubara H (1989) Topological considerations of the 9-kDa polypeptide which contains centers A and B, associated with the 14-and 19-kDa polypeptides in the Photosystem I complex of spinach. Plant Cell Physiol 30: 869–875Google Scholar
  127. Okkels JS, Scheller HV, Svendsen I and Moller BL (1991) Isolation and characterization of a cDNA clone encoding an 18-kDa hydrophobic Photosystem I subunit (PS I-L) from barley (Hordeum vulgare L.). J Biol Chem 266: 6767–6773PubMedGoogle Scholar
  128. Ortiz W, Lam E, Chollar S, Munt D and Malkin R (1985) Topography of the protein complexes of the chloroplast thy lakoid membrane. Studies of Photosystem I using a chemical probe and proteolytic digestion. Plant Physiol 77: 389–397PubMedGoogle Scholar
  129. Pain D and Blobel G (1987) Protein import into chloroplasts requires a chloroplast ATPase. Proc Natl Acad Sci USA 84: 3288–3292PubMedGoogle Scholar
  130. Pain D, Kanwar YS and Blobel G (1988) Identification of a receptor for protein import into chloroplasts and its localization to envelope contact zones. Nature 331: 232–237PubMedCrossRefGoogle Scholar
  131. Palomares R, Herrmann RG and Oelmuller R (1991) Different blue-light requirement for the accumulation of transcripts from nuclear genes for thylakoid proteins in Nicotiana tabacum and Lycopersicon esculentum. J Photochem Photobiol B 11: 151–162PubMedCrossRefGoogle Scholar
  132. Pichersky E, Tanksley SD, Piechulla B, Stayton MM and Dunsmuir P (1988) Nucleotide sequence and chromosomal location of Cab-7, the tomato gene encoding chlorophyll binding polypeptide of Photosystem I. Plant Mol Biol 11: 69–71CrossRefGoogle Scholar
  133. Pilon M, De Kruijff B and Weisbeek PJ (1992) New insights into the import mechanism of the ferredoxin precursor into chloroplasts. J Biol Chem 267: 2548–2556PubMedGoogle Scholar
  134. Robinson C, Klosgen RB, Herrmann RG and Shackleton JB (1993) Protein translocation across the thylakoid membrane–a tale of two mechanisms. FEBS Lett 325: 67–69PubMedCrossRefGoogle Scholar
  135. Rousseau F, Sétif P and Lagoutte B (1993) Evidence for the involvement of PS I-E subunit in the reduction of ferredoxin by Photosystem I. EMBO J 12: 1755–1765PubMedGoogle Scholar
  136. Sadewasser DA and Sherman LA (1981) Internal and external membrane proteins of the cyanobacterium, Synechococcus cedroum. Biochim Biophys Acta 640: 326–340PubMedGoogle Scholar
  137. Scheller HV and Moller BL (1990) Photosystem I polypeptides. Physiologia Plantarum 78: 484–494CrossRefGoogle Scholar
  138. Schnell DJ, Blobel G and Pain D (1990) The chloroplast import receptor is an integral membrane protein of chloroplast envelope contact sites. J Cell Biol 111: 1825–1838PubMedCrossRefGoogle Scholar
  139. Schnell DJ, Blobel G and Pain D (1991) Signal peptide analogs derived from two chloroplast precursors interact with the signal recognition system of the chloroplast envelope. J Biol Chem 266: 3335–3342PubMedGoogle Scholar
  140. Schuster G, Nechushtai R, Ferreira PCG, Thornber JP and Ohad I (1988) Structure and biogenesis of Chlamydomonas reinhardtii Photosystem I. Eur J Biochem 177: 411–416PubMedGoogle Scholar
  141. Schwartz E, Shen D, Aebersold R, McGrath JM, Pichersky E and Green BR (1991) Nucleotide sequence and chromosomal location of Cab11 and Cab12, the genes for the fourth polypeptide of the Photosystem I light-harvesting antenna (LHCI). FEBS Lett 280: 229–234PubMedCrossRefGoogle Scholar
  142. Simpson DJ (1982) Freeze-fracture studies on barley plastid membranes V. Viridis-n 34, a Photosystem I mutant. Carlberg Res Commun 47: 215–225Google Scholar
  143. Smart LB and McIntosh L (1993) Genetic inactivation of the psa β gene in Synechocystis sp. PCC 6803 disrupts assembly of Photosystem I. Plant Mol Biol 21: 177–180PubMedCrossRefGoogle Scholar
  144. Smart LB, Anderson SL and McIntosh L (1991) Targeted genetic inactivation of the Photosystem I reaction center in the cyanobacterium Synechocystis sp. PCC 6803. EMBO J 10: 3289–3296PubMedGoogle Scholar
  145. Smith AG, Wilson RM, Kaethner TM, Willey DL and Gray JC (1991) Pea chloroplast genes encoding a 4 kDa polypeptide of Photosystem I and a putative enzyme of C1 metabolism. Curr Genet 19: 403–410PubMedGoogle Scholar
  146. Sonoike K, Ikeuchi M and Pakrasi HB (1992) Presence of an N-terminal presequence in the Psal protein of the Photosystem I complex in the filamentous cyanobacterium Anabaena variabilis ATCC 29413. Plant Mol Biol 20: 987–990PubMedCrossRefGoogle Scholar
  147. Sonoike K, Hatanaka H and Katoh S (1993) Small subunits of Photosystem I reaction center complexes from Synechococcus elongatus. II. The psaE gene product has a role to promote interaction between the terminal electron acceptor and ferredoxin. Biochim Biophys Acta 1141: 52–57PubMedGoogle Scholar
  148. Steinmuller K (1992) Identification of a second psaC gene in the cyanobacterium Synechocystis sp. PCC6803. Plant Mol Biol 20: 997–1001PubMedGoogle Scholar
  149. Steppuhn J, Hermans J, Nechushtai R, Ljungberg U, Thummler F, Lottspeich F and Herrmann RG (1988) Nucleotide sequence of cDNA clones encoding the entire precursor polypeptides for subunits IV and V of Photosystem I reaction center from spinach. FEBS Lett 237: 218–224PubMedCrossRefGoogle Scholar
  150. Takahashi Y, Goldschmidt CM, Soen SY, Franzen LG and Rochaix JD (1991) Directed chloroplast transformation in Chlamydomonas reinhardtii: Insertional inactivation of the psaC gene encoding the iron sulfur protein destabilizes Photosystem I. EMBO J 10: 2033–2040PubMedGoogle Scholar
  151. Theg SM, Bauerle C, Olsen LJ, SElman BR and Keegstra K (1989) Internal ATP is the only energy requirement for the translocation of precursor proteins across chloroplastic membranes. J Biol Chem 264: 6730–6736PubMedGoogle Scholar
  152. Thornber JP (1986) Biochemical characterization and structure of pigment-proteins of photosynthetic organisms. In: Staehelin LA and Arntzen CJ (eds) Encyclopedia of Plant Physiol., Vol 19, pp 98–142, Springer-Verlag, BerlinGoogle Scholar
  153. Thornber JP, Morishige DT, Anandan S and Peter GF (1991) Chlorophyll-carotenoid-proteins of higher plant thylakoids. In: Scheer H (ed) The Chlorophylls, pp 549–585. CRC Press, Boca RatonGoogle Scholar
  154. Tittgen J, Hermans J, Steppuhn J, Jansen T, Jansson C, Andersson B, Nechushtai R, Nelson N and Herrmann RG (1986) Isolation of cDNA clones for fourteen nuclear encoded thylakoid proteins. Mol Gen Genet 204: 258–265CrossRefGoogle Scholar
  155. Tjus SE and Andersson B (1991) Extrinsic polypeptides of spinach Photosystem I. Photosynth Res 27: 209–219Google Scholar
  156. Vainstein A, Peterson CC and Thornber JP (1989) Light-harvesting pigment-proteins of Photosystem I in maize: Subunit composition and biogenesis. J Biol Chem 264: 4058–4062PubMedGoogle Scholar
  157. Vallon O and Bogorad L (1993) Topological study of PS I-A and PS I-B, the large subunits of the photosystem-I reaction center. Eur J Biochem 214: 907–915PubMedCrossRefGoogle Scholar
  158. von Heijne G, Steppuhn J and Herrmann RG (1989) Domain structure of mitochondrial and chloroplast targeting peptides. Eur J Biochem 180: 535–545CrossRefGoogle Scholar
  159. Warren PV, Smart LB, McIntosh L and Golbeck JH (1993) Site-directed conversion of cysteine-565 to serine in PsaB of Photosystem I results in the assembly of [3Fe-4S] and [4Fe-4S] clusters in Fx. A mixed-ligand [4Fe-4S] cluster is capable of electron transfer to FA and FB. Biochemistry 32: 4411–4419PubMedGoogle Scholar
  160. Webber AN and Malkin R (1990) Photosystem I reaction-centre proteins contain leucine zipper motifs. A proposed role in dimer formation. FEBS Lett 264: 1–4PubMedCrossRefGoogle Scholar
  161. Webber AN, Gibbs PB, Ward JB and Bingham SE (1993) Site-directed mutagenesis of the Photosystem I reaction center in chloroplast. The proline-cysteine motif. J Biol Chem 268: 12990–12995PubMedGoogle Scholar
  162. Weber N and Strotmann H (1993) On the function of subunit PsaE in chloroplast Photosystem I. Biochim Biophys Acta 1143: 204–210PubMedGoogle Scholar
  163. Williams RC, Glazer AN and Lundell DJ (1983) Cyanobacterial Photosystem I: Morphology and aggregation behavior. Proc Natl Acad Sci USA 80: 5923–5926PubMedGoogle Scholar
  164. Wynn RM, Luong C and Malkin R (1989) Maize Photosystem I. Identification of the subunit which binds plastocyanin. Plant Physiol 91: 445–449PubMedGoogle Scholar
  165. Xu Q, Armbrust TS, Guikema JA and Chitnis PR (1994a) Organization of Photosystem I polypeptides: A structural interaction between the PsaD and PsaL subunits. Plant Physiol 106: 1057–1063PubMedCrossRefGoogle Scholar
  166. Xu Q, Jung YS, Chitnis VP, Guikema JA, Golbeck JH and Chitnis PR (1994b) Mutational analysis of Photosystem I polypeptides in Synechocystis sp. PCC 6803. Subunit requirements for the reduction of NADP+ mediated by ferredoxin and flavodoxin. J Biol Chem 269: 21512–21518PubMedGoogle Scholar
  167. Xu Q, Odom WR, Guikema JA, Chitnis VP and Chitnis PR (1994c) Targeted deletion of psaJ from the cyanobacterium Synechocystis sp. PCC 6803 indicates structural interactions between PsaJ and PsaF. Plant Mol Biol 26: 291–302PubMedCrossRefGoogle Scholar
  168. Yamamoto Y, Tsuji H and Obokata J (1993) Structure and expression of a nuclear gene for the PS I-D subunit of Photosystem I in Nicotiana sylvestris. Plant Mol Biol 22: 985–994PubMedCrossRefGoogle Scholar
  169. Zanetti G and Merati G (1987) Interaction between Photosystem I and ferredoxin: Identification by chemical cross-linking of the polypeptide which binds ferredoxin. Eur J Biochem 169: 143–146PubMedCrossRefGoogle Scholar
  170. Zhao JD, Warren PV, Li N, Bryant DA and Golbeck JH (1990) Reconstitution of electron transport in Photosystem I with PsaC and PsaD proteins expressed in Escherichia coli. FEBS Lett 276: 175–180PubMedCrossRefGoogle Scholar
  171. Zhao J, Li N, Warren PV, Golbeck JH and Bryant DA (1992) Site-directed conversion of a cysteine to aspartate leads to the assembly of a [3Fe-4S] cluster in PsaC of Photosystem I. The photoreduction of FA is independent of FB. Biochemistry 31: 5093–5099PubMedCrossRefGoogle Scholar
  172. Zhao J, Snyder WB, Muhlenhoff U, Rhiel E, Warren PV, Golbeck JH and Bryant DA (1993) Cloning and characterization of the psaE gene of the cyanobacterium Synechococcus sp. PCC 7002: Characterization of a psaE mutant and over-production of the protein in Escherichia coli. Mol Microbiol 9: 183–194PubMedGoogle Scholar
  173. Zilber A and Malkin R (1988) Ferredoxin cross-links to a 22 kDa subunit of Photosystem I. Plant Physiol 88: 810–814PubMedGoogle Scholar
  174. Zilber AL and Malkin R (1992) Organization and topology of Photosystem I subunits. Plant Physiol 99: 901–911PubMedCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • Rachel Nechushtai
    • 1
  • Amir Eden
    • 1
  • Yuval Cohen
    • 1
  • Judith Klein
    • 1
  1. 1.Botany DepartmentThe Hebrew University of JerusalemJerusalemIsrael

Personalised recommendations