Skip to main content

Ultrafast Dynamics of Metal Nanospheres and Nanorods

  • Chapter
Nanoscale Materials

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

6. References

  1. U. Kreibig and M. Vollmer, Optical Properties Of Metal Clusters (Springer, Berlin, 1995).

    Google Scholar 

  2. M. Faraday, Experimental relations of gold (and other metals) to light, Philos. Trans. Roy. Soc. Lon. 147, 145–181 (1857).

    Google Scholar 

  3. G. Mie, Beiträge zur optik trüber medien, speziell kolloidaler metallösungen, Ann. Physik 25, 377–445 (1908).

    CAS  Google Scholar 

  4. R. H. Doremus, Optical properties of small silver particles, J. Chem. Phys. 42, 414–417 (1965).

    Article  CAS  Google Scholar 

  5. W.A. Kraus and G. C. Schatz, Plasmon resonance broadening in small metal particles, J. Chem. Phys. 79, 6130–6139 (1983).

    Article  CAS  Google Scholar 

  6. H. Hovel, S. Fritz, A. Hilger, U. Kreibig, and M. Vollmer, Width of cluster plasmon resonances: bulk dielectric functions and chemical interface damping, Phys. Rev. B 48, 18178–18188 (1993).

    Google Scholar 

  7. T. Jensen, L. Kelly, A. Lazarides, and G. C. Schatz, Electrodynamics of noble metal nanoparticles and nanoparticle clusters, J. Cluster Sci. 10, 295–317 (1999)

    Article  CAS  Google Scholar 

  8. J. Z. Zhang, Ultrafast studies of electron dynamics in semiconductor and metal colloidal nanoparticles: effects of size and surface, Acc. Chem. Res. 30, 423–429 (1997).

    Article  CAS  Google Scholar 

  9. S. Link and M. A. El-Sayed, Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods, J. Phys. Chem. B 103, 8410–8426 (1999).

    CAS  Google Scholar 

  10. J. H. Hodak, A. Henglein, and G. V. Hartland, Photophysics of nanometer sized metal particles: electron-phonon coupling and coherent excitation of breathing vibrational modes, J. Phys. Chem. B 104, 9954–9965 (2000).

    CAS  Google Scholar 

  11. J. Y. Bigot, V. Halte, J. C. Merle, and A. Daunois, Electron dynamics in metallic nanoparticles, Chem. Phys. 251, 181–203 (2000).

    Article  CAS  Google Scholar 

  12. N. Del Fatti, F. Vallee, C. Flytzanis, Y. Hamanaka and A. Nakamura, Electron dynamics and surface plasmon resonance nonlinearities in metal nanoparticles, Chem. Phys. 251, 215–226 (2000).

    Google Scholar 

  13. S. Stagira, M. Nisoli, S. De Silvestri, A. Stella, P. Tognini, P. Cheyssac and R. Kofman, Ultrafast optical relaxation dynamics in metallic nanoparticles: from bulk-like toward spatial confinement regime, Chem. Phys. 251, 259–267 (2000).

    Article  CAS  Google Scholar 

  14. C. Voisin, N. Del Fatti, D. Christofilos, and F. Vallee, Ultrafast electron dynamics and optical nonlinearities in metal nanoparticles, J. Phys. Chem. B 105, 2264–2280 (2001).

    Article  CAS  Google Scholar 

  15. M. A. El-Sayed, Some interesting properties of metals confined in time and nanometer space of different shapes, Acc. Chem. Res. 34, 257–264 (2001).

    Article  CAS  Google Scholar 

  16. S. L. Logunov, T. S. Ahmadi, M. A. El-Sayed, J. T. Khoury, and R. L. Whetten, Electron dynamics of passivated gold nanocrystals probed by subpicosecond transient absorption spectroscopy, J. Phys. Chem. B 101, 713–3719(1997).

    Google Scholar 

  17. J. H. Hodak, I. B. Martini, and G. V. Hartland, Spectroscopy and dynamics of nanometer-sized noble metal particles, J. Phys. Chem. B 102, 6958–6967 (1998).

    Article  CAS  Google Scholar 

  18. L. M. Liz-Marzán and P. Mulvaney, Au@SiO 2 colloids: effect of temperature on the surface plasmon absorption, New J. Chem. 22, 1285–1288 (1998).

    Google Scholar 

  19. S. Link and M. A. El-Sayed, Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles, J. Phys. Chem. B 103, 4212–4217 (1999).

    CAS  Google Scholar 

  20. N. Del Fatti, C. Voisin, D. Christofilos, F. Vallee, and C. Flytzanis, Acoustic vibration of metal films and nanoparticles, J. Phys. Chem. A 104, 4321–4326 (2000).

    Google Scholar 

  21. H. E. Elsayed-Ali, T. B. Norris, M. A. Pessot, and G. A. Mourou, Time-resolved observation of electron-phonon relaxation in copper, Phys. Rev. Lett. 58, 1212–1215 (1987).

    Article  CAS  Google Scholar 

  22. R. W. Schoenlein, W. Z. Lin, J. G. Fujimoto, and G. L. Eesley, Femtosecond studies of nonequilibrium electronic processes in metals, Phys. Rev. Lett. 58, 1680–1683 (1987).

    Article  CAS  Google Scholar 

  23. C. K. Sun, F. Vallee, L. H. Acioli, E. P. Ippen, and J. G. Fujimoto, Femtosecond-tunable measurement of electron thermalization in gold, Phys. Rev. B 50, 15337–15348 (1994).

    CAS  Google Scholar 

  24. J. Hohlfeld, S. S. Wellershoff, J. Gudde, U. Conrad, V. Jahnke, and E. Matthias, Electron and lattice dynamics following optical excitation of metals, Chem. Phys. 251, 237–258 (2000).

    Article  CAS  Google Scholar 

  25. N. W. Ashcroft and N. D. Mermin, Solid State Physics (Harcourt Brace, Orlando, 1976).

    Google Scholar 

  26. J. H. Hodak, I. B. Martini, and G. V. Hartland, Ultrafast study of electron-phonon coupling in colloidal gold particles, Chem. Phys. Lett. 284, 135–141 (1998).

    Article  CAS  Google Scholar 

  27. M. Nisoli, S. Stagira, S. De Silvestri, A. Stella, P. Tognini, P. Cheyssac, and R. Kofman, Ultrafast electronic dynamics in solid and liquid gallium nanoparticles, Phys. Rev. Lett. 78, 3575–3578 (1997).

    CAS  Google Scholar 

  28. J. H. Hodak, A. Henglein, and G. V. Hartland, Electron-phonon coupling dynamics in very small (between 2 and 8 nm diameter) Au nanoparticles, J. Chem. Phys. 112, 5942–5947 (2000).

    Article  CAS  Google Scholar 

  29. S. Link, C. Burda, M. B. Mohamed, B. Nikoobakht, and M. A. El-Sayed, Femtosecond transient-absorption dynamics of colloidal gold nanorods: shape independence of the electron-phonon relaxation time, Phys. Rev. B 61, 6086–6090 (2000).

    Article  CAS  Google Scholar 

  30. C. Voisin, N. Del Fatti, D. Christofilos, and F. Vallee, Ultrafast electron dynamics and optical nonlinearities in metal nanoparticles, J. Phys. Chem. B 105, 2264–2280 (2001).

    Article  CAS  Google Scholar 

  31. E. D. Belotskii and P. M. Tomchuk, Surface electron phonon energy exchange in small metallic particles, Int. J. Electron. 73,955–957 (1992).

    Google Scholar 

  32. N. Del Fatti, R. Bouffanais, F. Vallee, and C. Flytzanis, Nonequilibrium electron interactions in metal films, Phys. Rev. Lett. 81, 922–925 (1998).

    Google Scholar 

  33. S. Link, C. Burda, Z. L. Wang, and M. A. El-Sayed, Electron dynamics in gold and gold-silver alloy nanoparticles: the influence of a nonequilibrium electron distribution and the size dependence of the electron-phonon relaxation, J. Chem. Phys. 111, 1255–1264 (1999).

    Article  CAS  Google Scholar 

  34. T. W. Roberti, B. A. Smith, and J. Z. Zhang, Ultrafast electron dynamics at the liquid-metal interface — femtosecond studies using surface-plasmons in aqueous silver colloid, J. Chem. Phys. 102, 3860–3866 (1995).

    Article  CAS  Google Scholar 

  35. M. B. Mohamed, T. S. Ahmadi, S. Link, M. Braun, and M. A. El-Sayed, Hot electron and phonon dynamics of gold nanoparticles embedded in a gel matrix, Chem. Phys. Lett. 343, 55–63 (2001).

    Article  CAS  Google Scholar 

  36. S. Link, A. Furube, M. B. Mohamed, T. Asahi, M. Masuhara, and M. A. El-Sayed, Hot electron relaxation dynamics of gold nanoparticles embedded in MgSO 4 powder compared to solution: the effect of the surrounding medium, J. Phys. Chem. B 106, 945–955 (2002).

    CAS  Google Scholar 

  37. M Hu and G. V. Hartland, Heat dissipation for Au particles in aqueous solution: relaxation time versus size, J. Phys. Chem. B, 106, 7029–7033 (2002).

    CAS  Google Scholar 

  38. G. Huttmann and R. Birngruber, On the possibility of high-precision photothermal microeffects and the measurement of fast thermal denaturation of proteins, IEEE J. Select. Top. Quant. Electron. 5, 954–962 (1999).

    CAS  Google Scholar 

  39. H. Kurita, A. Takami, and S. Koda, Size reduction of gold particles in aqueous solution by pulsed laser irradiation, App. Phys. Lett. 72, 789–791 (1998).

    Article  CAS  Google Scholar 

  40. P. V. Kamat, M. Flumiani, and G. V. Hartland, Picosecond dynamics of silver nanoclusters. photoejection of electrons and fragmentation, J. Phys. Chem. B 102, 3123–3128 (1998).

    Article  CAS  Google Scholar 

  41. A. Takami, H. Kurita, and S. Koda, Laser-induced size reduction of noble metal particles, J. Phys. Chem. B 103, 1226–1232 (1999).

    Article  CAS  Google Scholar 

  42. S. S. Chang, C. W. Shih, C. D. Chen, W. C. Lai, and C. R. C. Wang, The shape transition of gold nanorods, Langmuir 15, 701–709 (1999).

    Article  CAS  Google Scholar 

  43. H. Fujiwara, S. Yanagida, and P. V. Kamat, Visible laser induced fusion and fragmentation of thionicotinamide-capped gold nanoparticles, J. Phys. Chem. B 103, 2589–2591 (1999).

    CAS  Google Scholar 

  44. S. Link, C. Burda, B. Nikoobakht, and M. A. El-Sayed, Laser-induced shape changes of colloidal gold nanorods using femtosecond and nanosecond laser pulses, J. Phys. Chem. B 104, 6152–6163 (2000).

    CAS  Google Scholar 

  45. C. S. Ah, H. S. Han, K. Kim, and D. J. Jang, Photofragmentation dynamics of n-dodecanethiol-derivatized silver nanoparticles in cyclohexane, J. Phys. Chem. B 104, 8153–8159 (2000).

    Article  CAS  Google Scholar 

  46. S. Link and M. A. El-Sayed, Spectroscopic determination of the melting energy of a gold nanorod, J. Chem. Phys. 114, 2362–2368 (2001).

    Article  CAS  Google Scholar 

  47. A. Dawson and P. V. Kamat, Semiconductor-metal nanocomposites. Photoinduced fusion and photocatalysis of gold-capped TiO 2 (TiO 2 /gold) nanoparticles, J. Phys. Chem. B 105, 960–966 (2001).

    Article  CAS  Google Scholar 

  48. J. H. Hodak, A. Henglein, M. Giersig, and G. V. Hartland, Laser-induced inter-diffusion in Au-Ag core-shell nanoparticles, J. Phys. Chem. B 104, 11708–11718 (2000).

    CAS  Google Scholar 

  49. M. Nisoli, S. De Silvestri, A. Cavalleri, A. M. Malvezzi, A. Stella, G. Lanzani, P. Cheyssac, and R. Kofman, Coherent acoustic oscillations in metallic nanoparticles generated with femtosecond optical pulses, Phys. Rev. B 55, 13424–13427 (1997).

    Article  Google Scholar 

  50. J. H. Hodak, I. B. Martini, and G. V. Hartland, Observation of acoustic quantum beats in nanometer sized Au particles, J. Chem. Phys. 108, 9210–9213 (1998)

    Article  CAS  Google Scholar 

  51. N. Del Fatti, C. Voisin, F. Chevy, F. Vallee, and C. Flytzanis, Coherent acoustic mode oscillation and damping in silver nanoparticles J. Chem. Phys 110, 11484–11487 (1999).

    Google Scholar 

  52. J. H. Hodak, A. Henglein, and G. V. Hartland, Size dependent properties of Au particles: coherent excitation and dephasing of acoustic vibrational modes, J. Chem. Phys. 111, 8613–8621 (1999).

    Article  CAS  Google Scholar 

  53. P. Mulvaney, Surface Plasmon spectroscopy of nanosized metal particles, Langmuir 12, 788–800 (1996).

    Article  CAS  Google Scholar 

  54. H. Lamb, On the vibrations of an elastic sphere, Proc. London Math. Soc. 13, 189–212 (1882).

    Google Scholar 

  55. V. A. Dubrovskiy and V. S. Morochnik, Natural vibrations of a spherical inhomogeneity in an elastic medium, Izv. Earth Phys. 17, 494–504 (1981).

    Google Scholar 

  56. K. E. Bullen and B. A. Bolt, An Introduction to Seismology, 4th Edition, (Cambridge University Press, Cambridge, 1985).

    Google Scholar 

  57. J. E. Sader, G. V. Hartland, and P. Mulvaney, Theory of acoustic breathing modes of core-shell nanoparticles. J. Phys. Chem. B, 106, 1399–1402 (2002).

    Article  CAS  Google Scholar 

  58. H. F. Pollard, Sound Waves In Solids (Pion, London, 1977).

    Google Scholar 

  59. B. V. Enüstün and J. Turkevich, Coagulation of colloidal gold, J. Am. Chem. Soc. 85, 3317–3328 (1963).

    Google Scholar 

  60. V. V. Vukovic and J. M. Nedeljkovic, Surface modification of nanometer-scale silver particles by imidazole, Langmuir 9, 980–983 (1993).

    Google Scholar 

  61. A. Henglein and D. Meisel, Radiolytic control of the size of colloidal gold nanoparticles, Langmuir 14, 7392–7396 (1998).

    Article  CAS  Google Scholar 

  62. A. Henglein, Radiolytic preparation of ultrafine colloidal gold particles in aqueous solution: optical spectrum, controlled growth, and some chemical reactions, Langmuir, 15, 6738–6744 (1999).

    Article  CAS  Google Scholar 

  63. P. Mulvaney, M. Giersig, and A. Henglein, Surface-chemistry of colloidal gold — deposition of lead and accompanying optical effects, J. Phys. Chem. 96, 10419–10424 (1992).

    Article  CAS  Google Scholar 

  64. M. Michaelis, A. Henglein, and P. Mulvaney, Composite Pd-Ag particles in aqueous-solution, J. Phys. Chem. 98, 6212–6215 (1994).

    Article  CAS  Google Scholar 

  65. F. Henglein, A. Henglein, and P. Mulvaney, Surface-chemistry of colloidal gold — deposition and reoxidation of Pb, Cd, AndTl, Ber. Bunsen-Gesellschaft-Phys. Chem. Chem. Phys. 98, 180–189 (1994).

    CAS  Google Scholar 

  66. A. Henglein and M. Giersig, Optical and chemical observations on gold-mercury nanoparticles in aqueous solution, J. Phys. Chem. B 104, 5056–5060 (2000).

    CAS  Google Scholar 

  67. A. Henglein, Preparation and optical aborption spectra of Aucore-Ptshell And Ptcore-Aushellcolloidal nanoparticles in aqueous solution, J. Phys. Chem. B 104, 2201–2203 (2000).

    CAS  Google Scholar 

  68. J. Belloni, M. Mostafavi, H. Remita, J. L. Marignier, and M. O. Delcourt, Radiation-induced synthesis of mono-and multi-metallic clusters and nanocolloids, New J. Chem. 22, 1239–1255 (1998).

    Article  CAS  Google Scholar 

  69. J. Belloni, Metal Nanocolloids, Current Opinion Coll. Int. Sci. 1, 184–196 (1996).

    Google Scholar 

  70. A. Henglein, Colloidal Palladium nanoparticles: reduction of Pd(II) by H2; Pdcore-Aushell-Agshell particles, J. Phys. Chem. B, 104, 6683–6685 (2000).

    CAS  Google Scholar 

  71. Y. Y. Yu, S. S. Chang, C. L. Lee, and C. R. C. Wang, Gold nanorods: electrochemical synthesis and optical properties, J. Phys. Chem. B, 101, 6661–6664 (1997).

    CAS  Google Scholar 

  72. M. B. Mohamed, K. Z. Ismail, S. Link, and M. A. El-Sayed, Thermal reshaping of gold nanorods in micelles, J. Phys. Chem. B 102, 9370–9374 (1998).

    Article  CAS  Google Scholar 

  73. S. Link, M. B. Mohamed, and M. A. El-Sayed, Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant, J. Phys. Chem. B 103, 3073–3077 (1999).

    CAS  Google Scholar 

  74. G. V. Hartland, Coherent vibrational motion in metal particles: determination of the vibrational amplitude and excitation mechanism, J. Chem. Phys. 116, 8048–8055 (2002).

    Article  CAS  Google Scholar 

  75. C. Voisin, N. Del Fatti, D. Christofilos and F. Vallee, Time-resolved investigation of the vibrational dynamics of metal nanoparticles, App. Surf. Sci. 164, 131–139 (2000).

    CAS  Google Scholar 

  76. M. Perner, S. Gresillon, J. Marz, G. Von Plessen, J. Feldmann, J. Porstendorfer, K. J. Berg, and G. Berg, Observation of hot-electron pressure in the vibration dynamics of metal nanoparticles, Phys. Rev. Lett. 85, 792–795 (2000).

    Article  CAS  Google Scholar 

  77. G. Tas and H. J. Mans, Electron-diffusion in metals studied by picosecond ultrasonics, Phys. Rev. B 49, 15046–15054 (1994).

    Article  CAS  Google Scholar 

  78. V. E. Gusev, On the duration of acoustic pulses excited by subpicosecond laser action on metals, Opt. Comm. 94, 76–78 (1992).

    Google Scholar 

  79. F. Cooper, Heat transfer from a sphere to an infinite medium, Int. J. Heat Mass Transfer 991–993 (1977).

    Google Scholar 

  80. S. Kanac and Y. Yenev, Heat Conduction (Taylor And Francis, Washington, 1993).

    Google Scholar 

  81. G. Herzberg, Molecular Spectra and Molecular Structure, II Infrared and Raman Spectra of Polyatomic Molecules (Van Nostrand Reinhold Co., New York, 1945).

    Google Scholar 

  82. E. B. Wilson, J. C. Decius, and P. C. Cross, Molecular Vibrations, The Theory of Infrared and Raman Vibration Spectra (Dover Publications, New York, 1980).

    Google Scholar 

  83. G. Simmons and H. Wang, Single Crystal Elastic Constants and Calculated Aggregate Properties: A Handbook (The MIT Press, Cambridge, 1971).

    Google Scholar 

  84. J. E. Sader, personal communication.

    Google Scholar 

  85. T Iida and R. I. L. Guthrie, The Physical Properties of Liquid Metals (Clarendon Press, Oxford, 1988).

    Google Scholar 

  86. H. C. van der Hulst, Light Scattering by Small Particles (Dover Publications, New York, 1981).

    Google Scholar 

  87. L. Francois, M. Mostafavi, J. Belloni, J. F. Delouis, J. Delaire, and P. Feneyrou, Optical limitation induced by gold clusters. 1. size effect, J. Phys. Chem. B 104, 6133–6137 (2000).

    Article  CAS  Google Scholar 

  88. G. Battaglin, P. Calvelli, E. Cattaruzza, R. Polloni, E. Borsella, T. Cesca, F. Gonella, and P. Mazzoldi, Laser-irradiation effects during Z-scan measurement on metal nanocluster composite glasses, J. Opt. Soc. Am. B 17, 213–218 (2000).

    CAS  Google Scholar 

  89. K. F. Peters, J. B. Cohen, and Y. W. Chung, Melting of Pb Nanocrystals, Phys. Rev. B 57, 13430–13438 (1998).

    Article  CAS  Google Scholar 

  90. Z. L. Wang, J. M. Petroski, T. C. Green, and M. A. El-Sayed, Shape transformation and surface melting of cubic and tetrahedral platinum nanocrystals, J. Phys. Chem. B 102, 6145–6151 (1998).

    CAS  Google Scholar 

  91. C. L. Cleveland, W. D. Luedtke, and U. Landman, Melting of gold clusters, Phys. Rev. B 60, 5065–5077 (1999).

    Article  CAS  Google Scholar 

  92. Y. Lereah, R. Kofman, J. M. Penisson, G. Deutscher, P. Cheyssac, T. Ben David, and A. Bourret, Time-resolved electron microscopy studies of the structure of nanoparticles and their melting, Philos. Magazine B 81, 1801–1819 (2001).

    Google Scholar 

  93. Y. G. Chushak and L. S. Bartell, Melting and freezing of gold nanoclusters, J. Phys. Chem. B 105, 11605–11614 (2001).

    Article  CAS  Google Scholar 

  94. T. S. Ahmadi, Z. L. Wang, T. C. Green, A. Henglein, and M. A. El-Sayed, Shape-controlled synthesis of colloidal Pt nanoparticles, Science 272, 1924–1926 (1996).

    CAS  Google Scholar 

  95. R.C. Jin, Y. W. Cao, C. A. Mirkin, K. L. Kelly, G. C. Schatz, and J. G. Zheng, Photoinduced conversion of silver nanospheres to nanoprisms, Science 294, 1901–1903 (2001)

    CAS  Google Scholar 

  96. R. Borek, K. J. Berg, and G. Berg, Low-temperature tensile deformation of flat glass containing metal particles to generate dichroism, Glastech. Berichte-Glass Sci. Tech. 71, 352–359 (1998).

    Google Scholar 

  97. B. R. Martin, D. J. Dermody, B. D. Reiss, M. M. Fang, L. A. Lyon, M. J. Natan, and T. E. Mallouk, Orthogonal self-assembly on colloidal gold-platinum nanorods, Adv. Mater. 11, 1021–1025 (1999).

    Article  CAS  Google Scholar 

  98. J. S. Yu, J. Y. Kim, S. Lee, J. K. N. Mbindyo, B. R. Martin, and T. E. Mallouk, Template synthesis of polymer-insulated colloidal gold nanowires with reactive ends, Chem Comm. (24), 2445–2446 (2000).

    Google Scholar 

  99. S. R. Nicewarner-Pena, R. G. Freeman, B. D. Reiss, L. He, D. J. Pena, I. D. Walton, R. Cromer, C. D. Keating, and M. J. Natan, Submicrometer metallic barcodes, Science 294, 137–141 (2001).

    Article  CAS  Google Scholar 

  100. Z. T. Zhang, S. Dai, D. A. Blom, and J. Shen, Synthesis of ordered metallic nanowires inside ordered mesoporous materials through electroless deposition, Chem. Mater. 14, 965 (2002).

    CAS  Google Scholar 

  101. S. O. Obare, N. R. Jana, and C. J. Murphy, Preparation of polystyrene-and silica-coated gold nanorods and their use as templates for the synthesis of hollow nanotubes, Nano Lett. 1, 601–603 (2001).

    Article  CAS  Google Scholar 

  102. N. R. Jana, L. Gearheart, and C. J. Murphy, Wet chemical synthesis of high aspect ratio cylindrical gold nanorods, J. Phys. Chem. B 105, 4065–4067 (2001).

    Article  CAS  Google Scholar 

  103. C. S. Ah, S. Do Hong, and D. J. Jang, Preparation of Au core Ag shell nanorods and characterization of their surface plasmon resonances, J. Phys. Chem. B 105, 7871–7873 (2001).

    Article  CAS  Google Scholar 

  104. Z. L. Wang, M.B. Mohamed, S. Link, and M. A. El-Sayed, Crystallographic facets and shapes of gold nanorods of different aspect ratios, Surf. Sci. 440, L809–L814 (1999).

    CAS  Google Scholar 

  105. Z. L. Wang, R. P. Gao, B. Nikoobakht, and M. A. El-Sayed, Surface reconstruction of the unstable 110 surface in gold nanorods, J. Phys. Chem. B 104, 5417–5420 (2000).

    CAS  Google Scholar 

  106. G. V. Hartland, M. Hu, O. Wilson, P. Mulvaney, and J. E. Sader, Coherent excitation of vibrational modes in gold nanorods, J. Phys. Chem. B 106, 743–747 (2002).

    Article  CAS  Google Scholar 

  107. CRC Handbook of Chemistry and Physics, 80thed. (CRC Press, Boca Raton, 1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this chapter

Cite this chapter

Hu, M., Hartland, G.V. (2004). Ultrafast Dynamics of Metal Nanospheres and Nanorods. In: Liz-Marzán, L.M., Kamat, P.V. (eds) Nanoscale Materials. Springer, Boston, MA. https://doi.org/10.1007/0-306-48108-1_4

Download citation

  • DOI: https://doi.org/10.1007/0-306-48108-1_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4020-7366-3

  • Online ISBN: 978-0-306-48108-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics