Skip to main content

Chemically Functionalized Metal Nanoparticles

Synthesis, Properties and Applications

  • Chapter
Nanoscale Materials

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

9. References

  1. L. N. Lewis, Chemical catalysis by colloids and clusters, Chem. Rev. 93, 2693–2730 (1993).

    Article  CAS  Google Scholar 

  2. M. Králik and A. Biffis, Catalysis by metal nanoparticles supported on functional organic polymers, J. Mol. Catal. A 177, 113–138 (2001).

    Google Scholar 

  3. A. P. Alivisatos, Semiconductor clusters, nanocrystals, and quantum dots, Science 271, 933–937 (1996).

    CAS  Google Scholar 

  4. D. L. Feldheim and C. D. Keating, Self-assembly of single electron transistors and related devices, Chem. Soc. Rev. 27, 1–12 (1998).

    CAS  Google Scholar 

  5. Colloidal Gold: Principles, Methods, and Applications, edited by M.A. Hayat (Academic Press, New York, 1989).

    Google Scholar 

  6. W. P. McConnell, J. P. Nowak, L. C. Brousseau, III, R. R. Fuierer, R. C. Tenent, and D. L. Feldheim, Electronic and optical properties of chemically modified metal nanoparticles and molecular bridged nanoparticle arrays, J. Phys. Chem. B 104, 8925–8930 (2000).

    Article  CAS  Google Scholar 

  7. T. Trindade, P. O’Brien, and N. L. Pickett, Nanocrystalline semiconductors: Synthesis, properties, and perspectives, Chem. Mater. 13, 3843–3858 (2001).

    Article  CAS  Google Scholar 

  8. K. Grieve, P. Mulvaney, and F. Grieser, Synthesis and electronic properties of semiconductor nanoparticles/quantum dots, Curr. Opin. Colloid Inter. Sci. 5, 168–172 (2000).

    CAS  Google Scholar 

  9. J. M. Nedeljkovic, Nanoengineering of inorganic and hybrid composites, Trends Adv. Mater. Processes Mater. Sci. Forum 352, 79–85 (2000).

    CAS  Google Scholar 

  10. S. C. Farmer and T. E. Patten, Photoluminescent polymer/quantum dot composite nanoparticles, Chem. Mater. 13, 3920–3926(2001).

    Article  CAS  Google Scholar 

  11. J. H. Hodak, A. Henglein, and G. V. Hartland, Tuning the spectral and temporal response in Pt/Au core-shell nanoparticles, J. Chem. Phys. 114, 2760–2765 (2001).

    Article  CAS  Google Scholar 

  12. M. P. Hughes, Dielectrophoretic behavior of latex nanospheres: Low-frequency dispersion, J. Colloid Interface Sci. 250, 291–294 (2002).

    CAS  Google Scholar 

  13. X. J. Xu, P. Y. Chow, and L. M. Gan, Nanoparticles of latexes from commercial polystyrene, J. Nanoscience Nanotechnol. 2, 61–65 (2002).

    CAS  Google Scholar 

  14. A. Henglein, Small-particle research — Physicochemical properties of exteremely small colloidal metal and semiconductor particles, Chem. Rev. 89, 1861–1873 (1989).

    Article  CAS  Google Scholar 

  15. G. D. Stucky and J. E. MacDougall, Quantum confinement and host guest chemistry — Probing a new dimension, Science 247, 669–678 (1990).

    CAS  Google Scholar 

  16. G. C. Bond, The origins ofparticle size effects in heterogeneous catalysis, Surf. Sci. 156, 966–981 (1985).

    Article  CAS  Google Scholar 

  17. M. Brust and C. J. Kiely, Some recent advances in nanostructure preparation from gold and silver particles: a short topical review, Colloid Surf. A 202, 175–186 (2002).

    Article  CAS  Google Scholar 

  18. J. T. Lue, A review of characterization and physical property studies of metallic nanoparticles, J. Phys. Chem. Solids 62, 1599–1612 (2001).

    CAS  Google Scholar 

  19. M. J. J. Jak, C. Konstapel, A. van Kreuningen, J. Verhoeven, R. van Gastel, and J. W. M. Frenken, Automated detection of particles, clusters and islands in scanning probe microscopy images, Surf. Sci. 494, 43–52(2001).

    Article  CAS  Google Scholar 

  20. H. Osman, J. Schmidt, K. Svensson, R. E. Palmer, Y. Shigeta, and J. P. Wilcoxon, STM studies of passivated Au nanocrystals immobilised on a passivated Au(lll) surface: ordered arrays and single electron tunnelling, Chem. Phys. Lett. 330, 1–6 (2000).

    Article  CAS  Google Scholar 

  21. T. Tsirlin, J. Zhu, J. Grunes, and G. A. Somorjai, AFM and TEM studies of Pt nanoparticle arrays supported on alumina model catalyst prepared by electron beam lithography, Topics Catal. 19, 165–170 (2002).

    Article  CAS  Google Scholar 

  22. P. Mesquida and A. Stemmer, Guiding self-assembly with the tip of an atomic force microscope, Scanning 24, 117–120 (2002).

    CAS  Google Scholar 

  23. S. Takahashi, S. Machida, and K. Horie, Photochemistry in small domains and single polymer nanoparticles, Macromol. Symp. 175, 299–308 (2001).

    Article  CAS  Google Scholar 

  24. K. V. Sarathy, K. S. Narayan, J. Kim, and J. O. White, Novel fluorescence and morphological structures in gold nanoparticle-polyoctylthiophene based thin films, Chem. Phys. Lett. 318, 543–548 (2000).

    Google Scholar 

  25. M. Jose-Yacaman, M. Marin-Almazo, J. A. Ascencio, High resolution TEM studies on palladium nanoparticles, J. Mol. Catal. A 173, 61–74 (2001).

    CAS  Google Scholar 

  26. Clusters and Colloids, edited by G. Schmid (VCH, Weinheim, 1994).

    Google Scholar 

  27. H. Bönnemann and R. M. Richards, Nanoscopic metal particles — Synthetic methods and potential applications, Eur. J. Inorg. Chem., 2455–2480 (2001).

    Google Scholar 

  28. G. Schmid, B. Morun, and J.-O. Malm, Pt309Phen36 *O30±10, afour-shell platinum cluster, Angew. Chem. Int. Ed. Engl. 28, 778–780 (1989).

    Google Scholar 

  29. M. Green and P. O’Brien, A simple one phase preparation of organically capped gold nanocrystals, Chem. Commun., 183–184 (2000).

    Google Scholar 

  30. S. V. Manorama, K. M. Reddy, C. V. G. Reddy, S. Narayanan, P. R. Raja, and P. R. Chatterji, Photostabilization of dye on anatase titania nanoparticles by polymer capping, J. Phys. Chem. Solids 63, 135–143 (2002).

    CAS  Google Scholar 

  31. Y. Zhou, H. Itoh, T. Uemura, K. Naka, and Y. Chujo, Preparation, optical spectroscopy, and electrochemical studies of novel μ-conjugated polymer-protected stable PbS colloidal nanoparticles in a nonaqueous solution, Langmuir 18, 5287–5292 (2002).

    CAS  Google Scholar 

  32. D. H. Cole, K. R. Shull, P. Baldo, and L. Rehn, Dynamic properties of a model polymer/metal nanocomposite: Gold particles in poly(tert-butyl acrylate), Macromolecules 32, 771–777 (1999).

    Article  CAS  Google Scholar 

  33. B. K. Paul and S. P. Moulik, Microemulsions: An overview, J. Disper. Sci. Technol. 18, 301–367 (1997).

    CAS  Google Scholar 

  34. M. P. Pileni, J. Tanori, A. Filankembo, J. C. Dedieu, and T. Gulik-Krzywicki, Template design of microreactors with colloidal assemblies: Control the growth of copper metal rods, Langmuir 14, 7359–7363 (1998).

    Article  CAS  Google Scholar 

  35. M. J. Yacaman, J. A. Ascencio, H. B. Liu, and J. Gardea-Torresdey, Structure, shape and stability of nanometric sized particles, J. Vac. Sci. Technol. B. 19, 1091–1103 (2001).

    CAS  Google Scholar 

  36. F. Caruso, Nanoengineering of particle surfaces, Adv. Mater. 13, 11–22 (2001).

    CAS  Google Scholar 

  37. T. X. Wang, D. Q. Zhang, W. Xu, J. L. Yang, R. Han, and D. B. Zhu, reparation, characterization, and photophysical properties of alkanethiols with pyrene units-capped gold nanoparticles: Unusual fluorescence enhancement for the aged solutions of these gold nanoparticles, Langmuir 18, 1840–1848 (2002).

    CAS  Google Scholar 

  38. A. Eychmuller, Structure and photophysics of semiconductor nanocrystals, J. Phys. Chem. B 104, 6514–6528 (2000).

    Article  CAS  Google Scholar 

  39. A. N. Shipway and I. Willner, Nanoparticles as structural and functional units in surface-confined architectures, Chem. Commun., 2035–2045 (2001).

    Google Scholar 

  40. A. N. Shipway, M. Lahav, and I. Willner, Nanostructured gold colloid electrodes, Adv. Mater. 12, 993–998 (2000).

    Article  CAS  Google Scholar 

  41. M. Lahav, A. N. Shipway, and I. Willner, Au-nanoparticle-bis-bipyridinium cyclophane superstructures: assembly, characterization and sensoric applications, J. Chem. Soc., Perkin Trans. 2, 1925–1931 (1999).

    Google Scholar 

  42. A. N. Shipway, E. Katz, and I. Willner, Nanoparticle arrays on surfaces for electronic optical, and sensoric applications, Chem. Phys. Chem. 1, 18–52 (2000).

    CAS  Google Scholar 

  43. C. M. Niemeyer, Nanoparticles, proteins, and nucleic acids: Biotechnology meets materials science, Angew. Chem. 40, 4128–4158 (2001).

    CAS  Google Scholar 

  44. E. Katz, A. N. Shipway, and I. Willner, Biomaterial-nanoparticle hybrid systems: Synthesis, properties and applications, in: Nanoparticles — From Theory to Applications, edited by G. Schmid (Wiley-VCH, Weinheim), in press.

    Google Scholar 

  45. H. O. Finklea, Electrochemistry of organized monolayers of thiols and related molecules on electrodes, in: Electroanalytical Chemistry, edited by A. J. Bard and I. Rubinstein (Marcel Dekker, New York, 1996), Vol. 19, pp. 109–335.

    Google Scholar 

  46. J. Xu and H.-L. Li, The chemistry of self-assembled long-chain alkanethiol monolayers on gold, J. Colloid Interface Sci. 176, 138–149 (1995).

    CAS  Google Scholar 

  47. M. Faraday, The Bakerian Lecture. — Experimental relations of gold (ans other metals) to light, Philos. Trans. R. Soc. London 147, 145–181 (1857).

    Google Scholar 

  48. G. W. Stevens, J. M. Perera, and F. Grieser, Interfacial aspects of metal ion extraction in liquid-liquid systems, Rev. Chem. Eng. 17, 87–110 (2001).

    CAS  Google Scholar 

  49. M. Brust, M. Walker, D. Bethell, D. J. Schiffrin, and R. Whyman, Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid-liquid system, J. Chem. Soc. Chem. Commun., 801–802 (1994).

    Google Scholar 

  50. A. C. Templeton, W. P. Wuelfing, and R. W. Murray, Monolayer-Protected Cluster Molecules, Acc. Chem. Res. 33, 27–36 (2000).

    Article  CAS  Google Scholar 

  51. D. G. Duff, A. C. Curtis, P. P. Edwards, D. A. Jefferson, B. F. G. Johnson, A. I. Kirkland, and D. E. Logan, The morphology and microstructure of colloidal silver and gold, Angew. Chem. Int. Ed. Engl. 26, 676–678 (1987).

    Article  Google Scholar 

  52. J.-O. Bovin and J.-O. Malm, Atomic resolution electron-microscopy of small metal-clasters, Z. Phys. D 19, 293–298 (1991).

    Article  CAS  Google Scholar 

  53. R. C. Bell, K. A. Zemski, and A. W. Castleman, Gas-phase chemistry of vanadium oxide cluster cations. 3. Reactions with CCl4, Jr., J. Phys. Chem. A 103, 1585–1591 (1999).

    CAS  Google Scholar 

  54. M. J. Hostetler, J. J. Stokes, and R. W. Murray, Infrared spectroscopy of three-dimensional self-assembled monolayers: N-Alkanethiolate monolayers on gold cluster compounds, Langmuir 12, 3604–3612 (1996).

    Article  CAS  Google Scholar 

  55. C. S. Weisbecker, M. V. Merritt, and G. M. Whitesides, Molecular self-assembly of aliphatic thiols on gold colloids, Langmuir 12, 3763–3772 (1996).

    Article  CAS  Google Scholar 

  56. T. Yonezawa, S. Onoue, and N. Kimizuka, Formation of uniform fluorinated gold nanoparticles and their highly ordered hexagonally packed monolayer, Langmuir 17, 2291–2293 (2001).

    CAS  Google Scholar 

  57. M. Moreno-Mañas, R. Pieixats, and S. Villarroya, Palladium nanoparticles stabilizd by polyfluorinated chains, Chem. Commun., 60–61 (2002).

    Google Scholar 

  58. R. H. Terrill, T. A. Postiethwaite, C.-H. Chen, C.-D. Poon, A. Terzis, A. Chen, J. E. Hutchison, M. R. Clark, G. Wignall, J. D. Londono, R. Superfine, M. Falvo, C. S. Johnson, Jr., E. T. Samulski, and R. W. Murray, Monolayers in three dimensions: NMR, SAXS, thermal, and electron hopping studies of alkanethiol stabilized gold clusters, J. Am. Chem. Soc. 117, 12537–12548 (1995).

    Article  CAS  Google Scholar 

  59. A. Badia, L. Cuccia, L. Demers, F. Morin, and R. B. Lennox, Structure and dynamics in alkanethiolate monolayers self-assembled on gold nanoparticles: A DSC, FT-IR, and deuterium NMR study, J. Am. Chem. Soc. 119, 2682–2692 (1997).

    CAS  Google Scholar 

  60. A. Badia, S. Singh, L. Demers, L. Cuccia, G. R. Brown, and R. B. Lennox, Self-assembled monolayers on gold nanoparticles, Chem. Eur. J. 2, 359–363 (1996).

    CAS  Google Scholar 

  61. A. Badia, W. Gao, S. Singh, L. Demers, L. Cuccia, and L. Reven, Structure and chain dynamics of alkanethiol-capped gold colloids, Langmuir 12, 1262–1269 (1996).

    Article  CAS  Google Scholar 

  62. F. P. Zamborini, S. M. Gross, and R. W. Murray, Synthesis, characterization, reactivity, and electrochemistry of palladium monolayer protected clusters, Langmuir 17, 481–488 (2001).

    Article  CAS  Google Scholar 

  63. W. D. Luedtke and U. Landman, Structure and thermodynamics of self-assembled monolayers on gold nanocrystallites, J. Phys. Chem. B 102, 6566–6572 (1998).

    Article  CAS  Google Scholar 

  64. I. Quiros, M. Yamada, K. Kubo, J. Mitzutani, M. Kurihara, and H. Nishihara, Preparetion of alkanethiolate-protected palladium nanoparticles and their size dependence on synthetic conditions, Langmuir 18, 1413–1418 (2002).

    Article  CAS  Google Scholar 

  65. K. V. Sarathy, G. U. Kulkarni, and C. N. R. Rao, A novel method of preparing thiol-derivatised nanoparticles of gold, platinum and silver forming superstructures, Chem. Commun., 537–538 (1997).

    Google Scholar 

  66. S. Chen and R. W. Murray, Arenethiolate monolayer-protected gold clusters, Langmuir 15, 682–689 (1999).

    CAS  Google Scholar 

  67. S. R. Johnson, S. D. Evans, S. W. Mahon, and A. Ulman, Alkanethiol molecules containing an aromatic moiety self-assembled onto gold clusters, Langmuir 13, 51–57 (1997).

    Article  CAS  Google Scholar 

  68. L. A. Porter, Jr., D. Ji, S. L. Westcott, M. Graupe, R. S. Czernuszewcz, N. J. Halas, and T. R. Lee, Gold and silver nanoparticles functionalized by the adsorption of dialkyl disulfides, Langmuir 14, 7378–7386 (1998).

    Article  CAS  Google Scholar 

  69. T. Yonezawa, K. Yasui, and N. Kimizuka, Controlled formation of smaller gold nanoparticles by the use offour-chained disulfide stabilizer, Langmuir 17, 271–273 (2001).

    CAS  Google Scholar 

  70. A. Badia, L. Demers, L. Dickinson, F. G. Morin, R. B. Lennox, and L. Reven, Gold-sulfur interactions in alkylthiol self-assembled monolayers formed on gold nanoparticles studied by solid-state NMR, J. Am. Chem.Soc. 119, 11104–11105 (1997).

    CAS  Google Scholar 

  71. M. Wu, S. A. O’Neill, L. C. Brousseau, W. P. McConnell, D. A. Shultz, R. J. Linderman, and D. L. Feldheim, Synthesis of nanometer-sized hollow polymer capsules from alkanethiol-coated gold particles, Chem. Commun., 775–776 (2000).

    Google Scholar 

  72. M. Brust, N. Stuhr-Hansen, K. Nørgaard, J. B. Christensen, L. K. Nielsen, and T. Bjørnholm, Langmuir-Blodgett films of alkane chalcogenide (S, Se, Te) stabilized gold nanoparticles, Nano Lett. 1, 189–191 (2001).

    Article  CAS  Google Scholar 

  73. M. Brust, J. Fink, D. Bethell, D. J. Schiffrin, and C. Kiely, Synthesis and reactions of functionalized gold nanoparticles, J. Chem. Soc. Chem. Commun., 1655–1666 (1995).

    Google Scholar 

  74. S. R. Johnson, S. D. Evans, and R. Brydson, Influence of a terminal functionality on the physical properties of surfactant-stabilized gold nanoparticles, Langmuir 14, 6639–6647 (1998).

    Article  CAS  Google Scholar 

  75. K. S. Mayya, V. Patil, and M. Sastry, On the stability of carboxylic acid derivatized gold colloidal particles: The role of colloidal solution pH studied by optical absorption spectroscopy, Langmuir 13, 3944–3947 (1997).

    CAS  Google Scholar 

  76. S. Chen and K. Kimura, Synthesis and characterization of carboxylate-modified gold nanoparticle powders dispersible in water, Langmuir 15, 1075–1082 (1999).

    CAS  Google Scholar 

  77. M. Sastry, K. S. Mayya, and K. Bandyopadhyay, pH Dependent changes in the optical properties of carboxylic acid derivatized silver colloidal particles, Colloids Surf. A 127, 221–228 (1997).

    Article  CAS  Google Scholar 

  78. A. Kumar, A. B. Mandale, and M. Sastry, Sequential electrostatic assembly of amine-derivatized silver colloidal particles on glass substrates, Langmuir 16, 6921–6926 (2000).

    CAS  Google Scholar 

  79. Y.-S. Shon, W. P. Wuelfing, and R. W. Murray, Water-soluble, sulfonic acid-functionalized, monolayer-protected nanoparticles and an ionically conductive molten salt containing them, Langmuir 17, 1255–1261 (2001).

    CAS  Google Scholar 

  80. N. Sandhyarani and T. Pradeep, 2-Mercaptobenzothiazole protected Au and Ag clusters, J. Mater. Chem. 10, 981–986 (2000).

    Article  CAS  Google Scholar 

  81. A. C. Templeton, S. Chen, S. M. Gross, and R. W. Murray, Water-soluble, isolable gold clusters protected by tiopronin and coenzyme A monolayers, Langmuir 15, 66–76 (1999).

    Article  CAS  Google Scholar 

  82. A. C. Templeton, D. E. Cliffel, and R. W. Murray, Redox and fluorophore functionalization of water-soluble, tiopronin-protected gold clusters, J. Am. Chem. Soc. 121, 7081–7089 (1999).

    Article  CAS  Google Scholar 

  83. S. Mandal, A. Gole, N. Lala, R. Gonnade, V. Ganvir, and M. Sastry, Studies on the reversible aggregation of cysteine-capped colloidal silver particles interconnected via hydrogen bonds, Langmuir 17, 6262–6268 (2001).

    Article  CAS  Google Scholar 

  84. T. G. Schaaff, G. Knight, M. N. Shafigullin, R. F. Borkman, and R. L. Whetten, Isolation and selected properties of a 10.4 kDa gold-glutathione cluster compound, J. Phys. Chem. B 102, 10643–10646 (1998).

    Article  CAS  Google Scholar 

  85. S. Link, A. Beeby, S. Fritz-Gerald, M. A. El-Sayed, T. G. Schaaff, and R. L. Whetten, Visible to infrared luminescence from a 28-atom gold cluster, J. Phys. Chem. B 106, 3410–3415 (2002).

    CAS  Google Scholar 

  86. J. Simard, C. Briggs, A. K. Boal, and V. M. Rotello, Formation and pH-controlled assembly of amphiphilic gold nanoparticles, Chem. Commun., 1943–1944 (2000).

    Google Scholar 

  87. M. A. Bryant and R. M. Crooks, Determination of surface pK a, values of surface-confined molecules derivatized with pH-sensitive pendant groups, Langmuir 9, 385–387 (1993).

    Article  CAS  Google Scholar 

  88. J. Zhao, L. Luo, X. Yang, E. Wang, and S. Dong, Determination of surface pK a of SAM using an electrochemical titration method, Electroanalysis 11, 1108–1111 (1999).

    Article  CAS  Google Scholar 

  89. A. K. Boal and V. M. Rotello, Intra-and Intermonolayer hydrogen bonding in amide-functionalized alkanethiol self-assembled monolayers on gold nanoparticles, Langmuir 16, 9527–9532 (2000).

    Article  CAS  Google Scholar 

  90. S. E. Creager and J. Clarke, Contact-angle titrations of mixed ω-mercaptoalkanoic acid/alkanethiol monolayers on gold. Reactive vs. nonreactive spreading, and chain length effects on surface pKa values, Langmuir 10, 3675–3683 (1994).

    Article  CAS  Google Scholar 

  91. R. Paulini, B. L. Frankamp, and V. M. Rotello, Effects of branched ligands on the structure and stability of monolayers on gold nanoparticles, Langmuir 18, 2368–2373 (2002).

    Article  CAS  Google Scholar 

  92. M. J. Hostetler, A. C. Templeton, and R. W. Murray, Dynamics of place-exchange reactions on monolayer-protected gold cluster molecules, Langmuir 15, 3782–3789 (1999).

    Article  CAS  Google Scholar 

  93. M. J. Hostetler, S. J. Green, J. J. Stokes, and R. W. Murray, Monolayers in three dimensions: Synthesis and electrochemislry of ω-functionalized alkanethiolate-stabilized gold cluster compounds, J. Am. Chem. Soc. 118,4212–4213 (1996).

    Article  CAS  Google Scholar 

  94. R. S. Ingram, M. J. Hostetler, and R. W. Murray, Poly-hetero-ω-functionalized alkanethiolate-stabilized gold cluster compounds, J. Am. Chem. Soc. 119, 9175–9178 (1997).

    CAS  Google Scholar 

  95. A. C. Templeton, M. J. Hostetler, C. T. Kraft, and R. W. Murray, Reactivity of monolayer-protected gold cluster molecules: Steric effects, J. Am. Chem. Soc. 120, 1906–1911 (1998).

    CAS  Google Scholar 

  96. A. C. Templeton, M.J. Hostetler, E.K. Warmoth, S. Chen, C. M. Hartshorn, V. M. Krishnamurthy, M. D. E. Forbes, and R. W. Murray, Gateway reactions to diverse, polyfunctional monolayer-protected gold clusters, J. Am. Chem. Soc. 120, 4845–4849 (1998).

    CAS  Google Scholar 

  97. D. Bethell, M. Schiffrin, D. J. Schiffrin, and C. Kiely, From monolayers to nanostructured materials: An organic chemist’s view of self-assembly, J. Electroanal. Chem. 409, 137–143 (1996).

    Article  CAS  Google Scholar 

  98. D. M. Collard and M. A. Fox, Use of electroactive thiols to study the formation and exchange of alkanethiol monolayers on gold, Langmuir 7, 1192–1197 (1991).

    Article  CAS  Google Scholar 

  99. C. E. D. Chidsey, C. R. Bertozzi, T. M. Putvinski, and A. M. Mujsce, Coadsorption of ferrocene-terminated and unsubstituted alkanethiols on gold: electroactive self-assembled monolayers, J. Am. Chem. Soc. 112, 4301–4306 (1990).

    Article  CAS  Google Scholar 

  100. E. Katz and A. A. Solov’ev, Chemical modification of platinum and gold electrodes by naphthoquinones using amines containing sulfhydryl or disulfide groups, J. Electroanal. Chem. 291, 171–186 (1990).

    CAS  Google Scholar 

  101. Y. Song and R. W. Murray, Dynamics and extent of ligand exchange depend on electronic charge of metal nanoparticles, J. Am. Chem. Soc. 124, 7096–7102 (2002).

    CAS  Google Scholar 

  102. K. S. Mayya and M. Sastry, Intercolloidal particle monolayer transfer in mixed metal colloids, Langmuir 14, 6344–6346 (1998).

    CAS  Google Scholar 

  103. N. Herron and D. L. Thorn, Nanoparticles: uses and relationships to molecular cluster compounds, Adv. Mater. 10, 1173–1184 (1998).

    Article  CAS  Google Scholar 

  104. J. F. Ciebien, R. T. Clay, B. H. Sohn, and R. E. Cohen, Brief review of metal nanoclusters in block copolymer films, New J. Chem. 22, 685–691 (1998).

    Article  CAS  Google Scholar 

  105. R. Gangopadhyay and A. De, Conducting polymer nanocomposites: A brief overview, Chem. Mater. 12, 608–622 (2000).

    CAS  Google Scholar 

  106. K. J. Klabunde, J. Habdas and G. Cadenas-Trivino, Colloidal metal particles dispersed in monomeric and polymeric styrene and methyl methacrylate, Chem. Mater. 1, 481–483 (1989).

    Article  CAS  Google Scholar 

  107. M. S. El-Shall and W. Slack, Ultrafine metal particles in polymers and the formation of periodic polymer stripes, Macromolecules 28, 8456–8458 (1995).

    Article  CAS  Google Scholar 

  108. J. H. Golden, H. Deng, F. J. DiSalvo, J. M. J. Frechet, and P. M. Thompson, Monodisperse metal-clusters 10-Angstroms in diameter in a polymeric host — the monomer-as-solvent approach, Science 268, 1463–1466 (1995).

    CAS  Google Scholar 

  109. L. Quaroni and G. Chumanov, Preparation of polymer-coated functionalized silver nanoparticles, J. Am. Chem. Soc, 121, 10642–10643 (1999).

    Article  CAS  Google Scholar 

  110. C. Johans, J. Clohessy, S. Fantini, K. Kontturi, and V.J. Cunnane, Electrosynthesis of polyphenylpyrrole coated silver particles at a liquid-liquid interface, Electrochem. Commun. 4, 227–230 (2002).

    Article  CAS  Google Scholar 

  111. J. J. Watkins and T. J. McCarthy, Polymer/metal nanocomposite synthesis in supercritical CO2, Chem. Mater. 7, 1991–1994 (1995).

    Article  CAS  Google Scholar 

  112. T. K. Sarma, D. Chowdhury, A. Paul, and A. Chattopadhyay, Synthesis of Au nanoparticle-conductive polyaniline composite using H2O2 as oxidizing as well as reducing agent, Chem. Commun., 1048–1049 (2002).

    Google Scholar 

  113. B. Corain and M. Kralik, Generating palladium nanoclusters inside functional cross-linked polymer frameworks, J. Molec. Catal. A 173, 99–115 (2001).

    CAS  Google Scholar 

  114. I. Pastoriza-Santos and L. M. Liz-Marzán, Formation of PVP-protected metal nanoparticles in DMF, Langmuir 18, 2888–2894 (2002).

    Article  CAS  Google Scholar 

  115. Y. Zhou, H. Itoh, T. Uemura, K. Naka, and Y. Chujo, Preparation of π-conjugated polymer-protected gold nanoparticles in stable colloidal form, Chem. Commun., 613–614 (2001).

    Google Scholar 

  116. R. T. Clay and R. E. Cohen, Synthesis of metal nanoclusters within microphase-separated diblock copolymers: ICP-AES analysis of metal ion uptake, Supramol. Sci. 4, 113–119 (1997).

    Article  CAS  Google Scholar 

  117. Y. N. C. Chan, R. R. Schrock, and R. E. Cohen, Synthesis of silver and gold nanoclusters within microphase-separated diblock copolymers, Chem. Mater. 4, 24–27 (1992).

    CAS  Google Scholar 

  118. Y. N. C. Chan, R. R. Schrock, and R. E. Cohen, Synthesis of single silver nanoclusters within spherical microdomains in block copolymer films, J. Am. Chem. Soc. 114, 7295–7296 (1992).

    Google Scholar 

  119. M. Moffitt and A. Eisenberg, Scaling relations and size control of block ionomer microreactors containing different metal ions, Macromolecules 30, 4363–4373 (1997).

    Article  CAS  Google Scholar 

  120. Y. N. C. Chan, G. S. W. Craig, R. R. Schrock, and R. E. Cohen, Synthesis of palladium and platinum nanoclusters within microphase-separated diblock copolymers, Chem. Mater. 4, 885–894 (1992).

    CAS  Google Scholar 

  121. S. T. Selvan, Novel nanostructures of gold-polypyrrole composites, Chem. Commun., 351–352 (1998).

    Google Scholar 

  122. S. T. Selvan, J. P. Spatz, H. A. Klok, and M. Moller, Gold-polypyrrole core-shell particles in diblock copolymer micelles, Adv. Mater. 10, 132–134(1998).

    Article  CAS  Google Scholar 

  123. W. P. Wuelfing, S. M. Gross, D. T. Miles, and R. W. Murray, Nanometer gold clusters protected by surface-bound monolayers of thiolated poly(ethylene glycol) polymer electrolyte, J. Am. Chem. Soc. 120, 12696–12697(1998).

    Article  CAS  Google Scholar 

  124. C. Mangeney, F. Ferrage, I. Aujard, V. Marchi-Artzner, L. Jullien, O. Ouari, E. D. Rékai, A. Laschewsky, I. Vikholm, and J.W. Sadowski, Synthesis and properties of water-soluble gold colloids covalently derivatized with neutral polymer monolayers, J. Am. Chem. Soc. 124, 5811–5821 (2002).

    Article  CAS  Google Scholar 

  125. S. Nuß, H. BÖttcher, H. Wurm, and M. L. Hallensleben, Gold nanoparticles with covalently attached polymer chains, Angew. Chem. Int. Ed. 40, 4016–4018 (2001).

    Google Scholar 

  126. T. K. Mandal, M. S. Fleming, and D. R. Walt, Preparation of polymer coated gold nanoparticles by surface-confined living radical polymerization at ambient temperature, Nano Lett. 2, 3–7 (2002).

    Article  Google Scholar 

  127. P. A. Buining, B. M. Humbel, A. P. Philipse, and A. J. Verkleij, Preparation of functional silane-stabilized gold colloids in the (sub)nanometer size range, Langmuir 13, 3921–3926 (1997).

    Article  CAS  Google Scholar 

  128. D. I. Gittins and F. Caruso, Tailoring the polyelectrolyte coating of metal nanoparticles, J. Phys. Chem. B 105, 6846–6852 (2001).

    Article  CAS  Google Scholar 

  129. K. Esumi, A. Kameo, A. Suzuki, and K. Torigoe, Preparation of gold nanoparticles in formamide and N,N-dimethylformamide in the presence of poly(amidoamine) dendrimers with surface methyl ester groups. Colloids Surf. A 189, 155–161 (2001).

    Article  CAS  Google Scholar 

  130. E. Esumi, A. Suzuki, N. Aihara, K, Usui, and K. Torigoe, Preparation ofgold colloids with UV irradiation using dendrimers as stabilizer, Langmuir 14, 3157–3159 (1998).

    CAS  Google Scholar 

  131. M. E. Garcia, L. A. Baker, and R. M. Crooks, Preparation and characterization of dendrimer-gold colloid nanocomposites, Anal. Chem. 71, 256–258 (1999).

    Article  CAS  Google Scholar 

  132. M. Zhao and R. M. Crooks, Homogeneous hydrogenation catalysis with monodisperse, dendrimer-encapsulated Pd and Pt nanoparticles, Angew. Chem. Int. Ed. 38, 364–366 (1999).

    Article  CAS  Google Scholar 

  133. M. Zhao and R. M. Crooks, Dendrimer-encapsulated Pt nanoparticles: Synthesis, characterization, and applications to catalysis, Adv. Mater. 11, 217–220 (1999).

    CAS  Google Scholar 

  134. V. Chechik, M. Zhao and R. M. Crooks, Self-assembled inverted micelles prepared from a dendrimer template: Phase transfer of encapsulated guests, J. Am. Chem. Soc. 121, 4910–4911 (1999).

    Article  CAS  Google Scholar 

  135. M. Zhao and R. M. Crooks, Intradendrimer exchange of metal nanoparticles, Chem. Mater. 11, 3379–3385 (1999).

    CAS  Google Scholar 

  136. K. Esumi, T. Hosoya, A. Suzuki, and K. Torigoe, Spontaneous formation of gold nanoparticles in aqueous solution of sugar-persubstituted poly(amidoamine) dendrimers, Langmuir 16, 2978–2980 (2000).

    CAS  Google Scholar 

  137. K. Esumi, A. Suzuki, A. Yamahira, and K. Torigoe, Role of poly(amidoamine) dendrimers for preparing nanoparticles of gold, platinum, and silver, Langmuir 16, 2604–2608 (2000).

    CAS  Google Scholar 

  138. K. Esumi, R. Nakamura, A. Suzuki, and K. Torigoe, Preparation of platinum nanoparticles in ethyl acetate in the presence of poly(amidoamine) dendrimers with a methyl ester terminal group, Langmuir 16, 7842–7846 (2000).

    CAS  Google Scholar 

  139. K. Esumi, T. Hosoya, A. Suzuki, and K. Torigoe, Formation of gold and silver nanoparticles in aqueous solution of sugar-persubstituted poly(amidoamine) dendrimers, J. Colloid Interface Sci. 226, 346–352 (2000).

    Article  CAS  Google Scholar 

  140. K. Esumi, T. Hosoya, A. Suzuki, and K. Torigoe, Preparation of hydrophobically modified poly(amidoamine) dendrimer-encapsulated gold nanoparticles in organic solvents, J. Colloid Interface Sci. 229, 303–306 (2000).

    Article  CAS  Google Scholar 

  141. F. Gröhn, G. Kim, B. J. Bauer, and E. J. Amis, Nanoparticle formation within dendrimer-containing polymer networks: Route to new organic-inorganic hybrid materials, Macromolecules 34, 2179–2185 (2001).

    Google Scholar 

  142. O. Rossell, M. Seco, A. M. Caminade, and J. P. Majoral, Gold-containing dendrimers: A new class of macromolecules, Gold Bulletin 34, 88–94 (2001).

    CAS  Google Scholar 

  143. E. Matijevic, Controlled colloid formation, Curr. Opin. Coll. Interface. Sci. 1, 176–183 (1996).

    Article  CAS  Google Scholar 

  144. J. Belloni, Metal nanocolloids, Curr. Opin. Coll. Interface. Sci. 1, 184–196 (1996).

    Article  CAS  Google Scholar 

  145. K. J. Klabunde, J. Stark, O. Koper, C. Mohs, D. G. Park, S. Decker, Y. Jiang, I. Lagadic, and D. Zhang, Nanocrystals as stoichiometric reagents with unique surface chemistry, J. Phys. Chem. 100, 12142–12153 (1996).

    Article  CAS  Google Scholar 

  146. Clusters of Atoms and Molecules, edited by H. Haberland (Springer-Verlag, New York, 1994).

    Google Scholar 

  147. Optical Properties of Metal Clasters, edited by U. Kreibig and M. Vollmer (Springer-Verlag, New York, 1995).

    Google Scholar 

  148. S. Underwood and P. Mulvaney, Effect of the solution refractive-index on the color of gold colloids, Langmuir 10, 3427–3430 (1994).

    CAS  Google Scholar 

  149. P. Mulvaney, Surface plasmon spectroscopy of nanosized metal particles, Langmuir 12, 788–800 (1996).

    Article  CAS  Google Scholar 

  150. U. Kreibig, K. Fouth, M. Quinten, and D. Schönauer, Many-cluster-systems — models of inhomogeneous matter, Z. Phys. D 12, 505–514 (1989).

    Article  Google Scholar 

  151. M. J. Hostetler, J. E. Wingate, C.-J. Zhong, J. E. Harris, R. W. Vachet, M. R. Clark, J. D. Londono, S. J. Green, J. J. Stokes, G. D. Wignall, G. L. Glish, M. D. Porter, N. D. Evans, and R. W. Murray, Alkanethiolate gold cluster molecules with core diameters from 1.5 to 5.2 nm: Core and monolayer properties as a function of core size, Langmuir 14, 17–30 (1998).

    Article  CAS  Google Scholar 

  152. S. Chen, A. C. Templeton, and R. W. Murray, Monolayer-protected cluster growth dynamics, Langmuir 16, 3543–3548 (2000).

    CAS  Google Scholar 

  153. R. L. Whetten, J. T. Khoury, M. M. Alvarez, S. Murthy, I. Vezmar, Z. L. Wang, P. W. Stephen, C. L. Cleveland, W. D. Luedtke, and U. Landman, Nanocrystal gold molecules, Adv. Mater. 8, 428–433 (1996).

    Article  CAS  Google Scholar 

  154. D. V. Leff, P. C. O’Hara, J. R. Heath, W. M. Gelbart, Thermodynamic control of gold nanocrystal size-experiment and theory, J. Phys. Chem. 99, 7036–7041 (1995).

    Article  CAS  Google Scholar 

  155. H. P. Choo, K. Y. Liew, and H. Liu, Factors affecting the size of polymer stabilized Pd nanoparticles, J. Mater. Chem. 12, 934–937 (2002).

    Article  CAS  Google Scholar 

  156. X. Yan, H. Liu, and K. Y. Liew, Size control of polymer-stabilized ruthenium nanoparticles by polyol reduction, J. Mater. Chem. 11, 3387–3391 (2001).

    Article  CAS  Google Scholar 

  157. H. P. Choo, K. Y. Liew, W. A. K. Mahmood, and H. Liu, Morphology and crystalline structure of polymer stabilized Pd nanoparticles, J. Mater. Chem. 11, 2906–2908 (2001).

    Article  CAS  Google Scholar 

  158. Q. F. Zhou, J. C. Bao, and Z. Xu, Shape-controlled synthesis of nanostructured gold by a protection-reduction technique, J. Mater. Chem. 12, 384–387 (2002).

    CAS  Google Scholar 

  159. T. Teranishi, R. Kurita, and M. Miyake, Shape control of Pt nanoparticles, J. Inorg. Organometal. Polym. 10, 145–156 (2000).

    Article  CAS  Google Scholar 

  160. C. P. Collier, R. J. Saykally, J. J. Shiang, S. E. Henrichs, and J. R. Heath, Reversible tuning of silver quantum dot monolayers through the metal-insulator transition, Science 277, 1978–1981 (1997).

    Article  CAS  Google Scholar 

  161. M. J. Hostetler, C.-J. Zhong, B. K. H. Yen, J. Anderegg, S. M. Gross, N. D. Evans, M. Porter, and R. W. Murray, Stable, monolayer-protected metal alloy clusters, J. Am. Chem. Soc. 120, 9396–9397 (1998).

    Article  CAS  Google Scholar 

  162. K. R. Harikumar, S. Ghosh, and C. N. R. Rao, X-Ray photoelectron spectroscopic investigations of Cu-Ni, Au-Ag, Ni-Pd, and Cu-Pd bimetallic clusters, J. Phys. Chem. B 101, 536–540 (1997).

    CAS  Google Scholar 

  163. T. J. Schmidt, M. Noeske, H. A. Gasteiger, R. J. Behm, P. Britz, W. Brijoux, and H. Bönnemann, Electrocatalytic activity of Pt/Ru alloy colloids for CO and CO/H2 electrooxidation: Stripping voltammetry and rotating disk measurements, Langmuir 13, 2591–2595 (1997).

    Article  CAS  Google Scholar 

  164. C. Sangregorio, M. Galeotti, U. Bardi, and P. Baglioni, Synthesis of Cu3Au nanocluster alloy in reverse micelles, Langmuir 12, 5800–5802 (1996).

    Article  CAS  Google Scholar 

  165. J. Sinzig, U. Radtke, M. Quinten, and U. Kreibig, Binary clusters — homogeneous alloys and nucleus-shell structures, Z. Phys. D26, 242–245 (1993).

    Google Scholar 

  166. N. Toshima, M. Harada, Y. Yamazaki, and K. Asakura, Catalytic activity and structural analysis of polymer protected Au/Pd bemetallic clusters prepared by the simultaneous reduction of HauCl 4 and PdCl 2 , J. Phys. Chem. 96, 9927–9933 (1992).

    CAS  Google Scholar 

  167. M. Michaelis, A. Henglein, and P. Mulvaney, Composite Pd-Ag particles in aqueous solution, J. Phys. Chem. 98, 6212–6215 (1994).

    Article  CAS  Google Scholar 

  168. A. Henglein and C. Brancewicz, Absorption spectra and reactions of colloidal bimetallic nanoparticles containing mercury, Chem. Mater. 9, 2164–2167 (1997).

    Article  CAS  Google Scholar 

  169. S. Remita, M. Mostafavi, and M. O. Delcourt, Bimetallic Ag-Pt and Au-Pt aggregates synthesized by radiolysis, Radial Phys. Chem. 47, 275–279 (1996).

    CAS  Google Scholar 

  170. L. M. Liz-Marzán and A. P. Philipse, Stable hydrosols of metallic and bimetallic nanoparticles immobilized on imogolitefibers, J. Phys. Chem. 99, 15120–15128 (1995).

    Google Scholar 

  171. H. Remita, J. Khatouri, M. Treguer, J. Amblard, and J. Belloni, Silver-palladium alloyed clusters synthesized by radiolysis, Z. Phys. D 40, 127–130 (1997).

    Article  CAS  Google Scholar 

  172. G. Schmid, H. West, H. Mehles, and A. Lehnert, Hydrosilation reactions catalyzed by supported bimetallic colloids, Inorg. Chem. 36, 891–895 (1997).

    Article  CAS  Google Scholar 

  173. M. S. Nashner, A. I. Frenkel, D. L. Adler, J. R. Shapley, and R. G. Nuzzo, Structural characterization of carbon-supported platinum-ruthenium nanoparticles from the molecular cluster precursor PtRu 3 C(CO) 16 , J. Am. Chem. Soc. 119, 7760–7771 (1997).

    Article  CAS  Google Scholar 

  174. T. Pham, J. B. Jackson, N. J. Halas, and T. R. Lee, Preparation and characterization of gold nanoshells coated with self-aasembled monolayers, Langmuir 18, 4915–4920 (2002).

    CAS  Google Scholar 

  175. T. Cassagneau and F. Caruso, Contiguous silver nanoparticle coatings on dielectric spheres, Adv. Mater. 14, 732–736 (2002).

    CAS  Google Scholar 

  176. L. Pasquato, F. Rancan, P. Scrimin, F. Mancin, and C. Frigeri, N-Methylimidazole-functionalized gold nanoparticles as catalysts for cleavage of a carboxylic acid ester, Chem. Commun., 2253–2254 (2000).

    Google Scholar 

  177. G. A. Somorjai and Y. G. Borodko, Research in nanosciences — Great opportunity for catalysis science, Catal. Lett. 76, 1–5 (2001).

    Article  CAS  Google Scholar 

  178. M. Haruta and M. Daté, Advances in the catalysis of Au nanoparticles, Appl. Catal. A 222, 427–437 (2001).

    CAS  Google Scholar 

  179. C.-J. Zhong and M. M. Maye, Core-shell assembled nanoparticles as catalysts, Adv. Mater. 13, 1507–1511 (2001).

    Article  CAS  Google Scholar 

  180. R. Brayner, G. Viau, and F. Bozon-Verduraz, Liquid-phase hydrogenation of hexadienes on metallic colloidal nanoparticles immobilized on supports via coordination capture by bifunctional organic molecules, J. Mol. Catal. A 182–183, 227–238 (2002).

    Google Scholar 

  181. N. Toshima, Y. Shiraishi, and T. Teranishi, Effect of additional metal ions on catalyses of polymer-stabilized metal nanoclusters, J. Mol. Catal. A 177, 139–147 (2001).

    CAS  Google Scholar 

  182. T. H, Galow, U. Drechsler, J. A. Hanson, and V. M. Rotello, Highly reactive heterogeneous Heck and hydrogenation catalysts constructed through ‘bottom-up’ nanoparticle self-assembly, Chem. Commun., 1076–1077 (2001).

    Google Scholar 

  183. J. Dai and M. L. Bruening, Catalytic nanoparticles formed by reduction of metal ions in multilayered polyelectrolyte films, Nano Lett. 2, 497–501 (2002).

    CAS  Google Scholar 

  184. V. Chegel, O. A. Rahman, O. Lioubashevski, Y. Shirshov, E. Katz, and I. Willner, Redox-switching of electrorefractive, electrochromic and conducting functions of Cu 2+ /polyacrylic acid films associated with electrodes, Adv. Mater, in press.

    Google Scholar 

  185. A. Borsla, A. M. Wilhelm, and H. Delmas, Hydrogenation of olefins in aqueous phase, catalyzed by polymer-protected rhodium colloids: kinetic study, Catal. Today 66, 389–395 (2001).

    Article  CAS  Google Scholar 

  186. Y. H. Niu, L. K. Yeung, and R. M. Crooks, Size-selective hydrogenation of olefins by dendrimer-encapsulated palladium nanoparticles, J. Amer. Chem. Soc. 123, 6840–6846 (2001).

    Article  CAS  Google Scholar 

  187. C. Ramarao, S. V. Ley, S. C. Smith, I. M. Shirley, and N. DeAlmeida, Encapsulation of palladium in polyurea microcapsules, Chem. Commun., 1132–1133 (2002).

    Google Scholar 

  188. H. G. Niessen, A. Eichhorn, K. Woelk, and J. Bargon, Homogeneous hydrogenation in supercritical fluids mediated by colloidal catalysts, J. Mol. Catal. A 182–183, 463–470 (2002).

    Google Scholar 

  189. H. Li, Y.-Y. Luk, and M. Mrksich, Catalytic asymmetric dihydroxylation by gold colloids functionalized with self-assembled monolayers, Langmuir 15, 4957–4959 (1999).

    CAS  Google Scholar 

  190. H. Bönnemann and G. A. Braun, Enantioselective hydrogenations on platinum colloids, Angew. Chem. Int. Ed. Engl. 35, 1992–1995 (1996).

    Google Scholar 

  191. H. Bönnemann and G. A. Braun, Enantioselectivity control with metal colloids as catalysts, Chem. Eur. J. 3, 1200–1202 (1997).

    Google Scholar 

  192. M. M. Maye, Y. Lou, and C.-J. Zhong, Core-shell gold nanoparticle assembly as novel electrocatalyst of CO oxidation, Langmuir 16, 7520–7523 (2000).

    CAS  Google Scholar 

  193. M. S. El-Deab and T. Ohsaka, An extraordinary electrocatalytic reduction of oxygen on gold nanoparticles-electrodeposited electrodes, Electrochem. Commun. 4, 288–292 (2002).

    CAS  Google Scholar 

  194. O. Antoine, Y. Bultel, and R. Durand, Oxygen reduction kinetics and mechanism on platinum nanoparticles inside Nafion, J. Electroanal. Chem. 499, 85–94 (2001).

    Article  CAS  Google Scholar 

  195. R. Woods, Specific activity of platinum for the electrocatalytic oxidation of acetate, Electrochim. Acta 13, 1967–1972 (1968).

    Article  CAS  Google Scholar 

  196. J. F. Hicks, A. C. Templeton, S. Chen, K. M. Sheran, R. Jasti, and R. W. Murray, The monolayer thickness dependence of quantized double-layer capacitances of monolayer-protected gold clusters, Anal. Chem. 71, 3703–3711 (1999).

    Article  CAS  Google Scholar 

  197. J. B, Flanagan, S. Margel, A. J. Bard, and F. C. Anson, Electron transfer to and from molecules containing multiple, noninteracting redox centers. Electrochemical oxidation of poly(vinylferrocene), J. Am. Chem. Soc. 100, 4248–4253 (1978).

    Article  CAS  Google Scholar 

  198. L. D. Margerum, R. W. Murray, and T. J. Meyer, Transient storage of photochemically produced oxidative and reductive equivalents in soluble redox polymers, J. Phys. Chem. 90, 728–730 (1986).

    CAS  Google Scholar 

  199. G. R. Newkome, C. N. Moorefield, and F. Vogtie, Dendritic Molecules — Concepts, Synthesis, Properties (VCH, New York, 1996).

    Google Scholar 

  200. S. J. Green, J. J. Pietron, J. J. Stokes, M. J. Hostetler, H. Vu, W. P. Wuelfing, and R. W. Murray, Three-dimensional monolayers: Voltammetry of alkanethiolate-stabilized gold cluster molecules, Langmuir 14, 5612–5619 (1998).

    Article  CAS  Google Scholar 

  201. S. J. Green, J. J. Stokes, M. J. Hostetler, J. Pietron, and R. W. Murray, Three-dimension monolayers: Nanometer-sized electrodes of alkanethiolate-stabilized gold cluster molecules, J. Phys. Chem. B 101, 2663–2668 (1997).

    CAS  Google Scholar 

  202. M.-C. Daniel, J. Ruiz, S. Nlate, J. Palumbo, J.-C. Blais, and D. Astruc, Gold nanoparticles containing redox-active supramolecular dendrons that recognize H2PO4, Chem. Commun., 2000–2001 (2001).

    Google Scholar 

  203. M. Yamada, I. Quiros, J. Mizutani, K. Kubo, and H. Nishihara, Preparetion of palladium nanoparticles functionalized with biferrocene thiol derivatives and their electro-oxidative deposition, Phys. Chem. Chem. Phys. 3, 3377–3381 (2001).

    Article  CAS  Google Scholar 

  204. W.-J. Lee, M. J. Hostetler, R. W. Murray, and M. Majda, Electron hopping and eleclronic conductivity in monolayers of alkanethiol-stabilized gold nano-clusters at the air/water interface, Isr. J. Chem. 37, 213–223 (1997).

    CAS  Google Scholar 

  205. T. Horikoshi, M. Itoh, M. Kurihara, K. Kubo, and H. Nishihara, Synthesis, redox behavior and electrodeposition of biferrocene-modified gold clusters J. Electroanal. Chem. 473, 113–116 (1999).

    Article  CAS  Google Scholar 

  206. R. S. Ingram and R. W. Murray, Electroactive three-dimensional monolayers. Anthraquinone ω-functionalized alkanethiolate-stabilized gold clusters, Langmuir 14, 4115–4121 (1998).

    Article  CAS  Google Scholar 

  207. J. J. Pietron and R. W. Murray, Mediated electrocatalysis with polyanthraquinone-functionalized monolayer-protected clusters, J. Phys. Chem. B 103, 4440–4446 (1999).

    Article  CAS  Google Scholar 

  208. M. Yamada, K. Kubo and H. Nishihara, Electroreductive deposilion of Au clusters modified with an anthraquinone derivative, Chem. Lett., 1335–1336 (1999).

    Google Scholar 

  209. M. Yamada, T. Tadera, K. Kubo, and H. Nishihara, Electroreductive deposition of anthraquinone derivative attached Au clusters: Optical properties and scanning tunneling microscopy observation of the electrodeposited cluster film, Langmuir 17, 2363–2370 (2001).

    CAS  Google Scholar 

  210. N. Sun, Y. Wang, Y. Song, Z. Quo, L. Dai, and D. Zhu, Novel [60]fullerene-silver nanocomposile with large optical limiting effect, Chem. Phys. Lett. 344, 277–282 (2001).

    Article  CAS  Google Scholar 

  211. H. Fujihara and H. Nakai, Fullerenethiolate-functionalized gold nanoparticles: A new class of surface-confined metal-C 60 nanocomposites, Langmuir 17, 6393–6395 (2001).

    Article  CAS  Google Scholar 

  212. P. K. Sudeep, B. O. Ipe, K. G. Thomas, M.V. George, S. Barazzouk, S. Hotchandani, and P. V. Kamat, Fullerene-functionalized gold nanoparticles. A self-assembled photoactive antenna-metal nanocore assembly, Nano Lett. 2, 29–35 (2002).

    Article  CAS  Google Scholar 

  213. W. P. Wuelfing, A. C. Templeton, J. F. Hicks, and R. W. Murray, Taylor dispersion measurements of monolayer protected clusters: A physicochemical determination of nanoparticie size, Anal. Chem. 71, 4069–4074 (1999).

    Article  CAS  Google Scholar 

  214. E. Katz, N. Itzhak, and I. Willner, Electron transfer in self-assembled monolayers of N-methyl-N’-carboxyalkyl-4,4’-bipyridinium linked to gold electrodes, Langmuir 9, 1392–1396 (1993).

    CAS  Google Scholar 

  215. A. Labande and D. Astruc, Colloids as redox sensors: recognition of H 2 PO 4 and HSQ 4 by amidoferrocenylalkylthiol-gold nanoparticles, Chem. Commun., 1007–1008 (2000).

    Google Scholar 

  216. P. V. Kamat, Photophysical, photochemical and photacatalytic aspects of metal nanoparticles, J. Phys. Chem. B 106, 7729–7744 (2002).

    CAS  Google Scholar 

  217. K. G. Thomas and P. V. Kamat, Making gold nanoparticles glow: Enhanced emission from a surface-bound fluoroprobe, J. Am. Chem. Soc. 122, 2655–2656 (2000).

    Article  CAS  Google Scholar 

  218. M. M. Y. Chen and A. Katz, Steady-state fluorescence-based investigation of the interaction between protected thiols and gold nanoparticles, Langmuir 18, 2413–2420 (2002).

    CAS  Google Scholar 

  219. J. Hu, J. Zhang, F. Liu, K. Kittredge, J. K. Whitesell, and M. A. Fox, Competitive photochemical reactivity in a self-assembled monolayer on a colloidal gold cluster, J. Am. Chem. Soc. 123, 1464–1470 (2001).

    CAS  Google Scholar 

  220. H. Imahori and S. Fukuzumi, Porphyrin monolayer-modified gold clusters as photoactive materials, Adv. Mater. 13, 1197–1199 (2001).

    Article  CAS  Google Scholar 

  221. H. Imahori, M. Arimura, T. Hanada, Y. Nishimura, I. Yamazaki, Y. Sakata, and S. Fukuzumi, Photoactive three-dimensional monolayers: Porphyrin-alkanethiolate-stabilized gold clusters, J. Am. Chem. Soc. 123, 335–336 (2001).

    CAS  Google Scholar 

  222. S. D. Evans, S. R. Johnson, H. Ringsdorf, L. M. Williams, and H. Wolf, Photoswitching of azobenzene derivatives formed on planar and colloidal surfaces, Langmuir 14, 6436–6440 (1998).

    Article  CAS  Google Scholar 

  223. B. I. Ipe, K. G. Thomas, S. Barazzouk, S. Hotchandani, and P. V. Kamat, Photoinduced charge separation in a fluorophone-gold nanoassembly, J. Phys. Chem. B 106, 18–21 (2002).

    Article  CAS  Google Scholar 

  224. S. Chen and R. W. Murray, Electrochemical quantized capacitance charging of surface ensembles of gold nanoparticles, J. Phys. Chem. B 103, 9996–1000 (1999).

    CAS  Google Scholar 

  225. J. Li, Y. Yamada, K. Murakoshi, and Y. Nakatoa, Sustainable metal nano-contacts showing quntized conductance prepared at a gap of thin metal wires in solution, Chem. Commun., 2170–2171 (2001).

    Google Scholar 

  226. A. Henglein, B. Lindig, and J. Westerhausen, Photochemical electron storage on colloidal metals and hydrogen formation by free radicals, J. Phys. Chem. 85, 1627–1628 (1981).

    CAS  Google Scholar 

  227. G. M. Tsivgoulis and J.-M. Lehn, Photoswitched and functionalized oligothiophenes: synthesis and photochemical and electrochemical properties, Chem. Eur. J. 2, 1399–1406 (1996).

    CAS  Google Scholar 

  228. A. N. Shipway, E. Katz, and I. Willner, Molecular memory and processing devices in solution and on surfaces, in: Structure and Bonding, edited by J.-P. Sauvage (Springer-Verlag, Berlin, 2001), Vol. 99, pp. 237–281.

    Google Scholar 

  229. A. K. Boal and V. M. Rotello, Redox-modulated recognition of flavin by functionalized gold nanoparticles, J. Am. Chem. Soc. 121, 4914–4915 (1999).

    Article  CAS  Google Scholar 

  230. A. K. Boal and V. M. Rotello, Fabrication and self-optimization of multivalent receptors on nanoparticie scaffolds, J. Am. Chem. Soc. 122, 734–735 (2000).

    Article  CAS  Google Scholar 

  231. A. K. Boal and V. M. Rotello, Radial control of recognition and redox processes with multivalent nanoparticie hosts, J. Am. Chem. Soc. 124, 5019–5024 (2002).

    Article  CAS  Google Scholar 

  232. J. Liu, J. Alvarez, W. Ong, and A. E. Kaifer, Network aggregates formed by C 60 and gold nanoparticles capped with γ-cyclodextrin hosts, Nano Lett. 1, 57–60 (2001).

    Google Scholar 

  233. N. O. Fischer, C. M. McIntosh, J. M. Simard, and V. M. Rotello, Inhibition of chymotrypsin through surface binding using nanoparticle-based receptors, Proc. Natl. Acad. Sci. USA 99, 5018–5023 (2002).

    CAS  Google Scholar 

  234. A. K. Boal, F. Ilhan, J. E. DeRouchey, T. Thurn-Albrecht, T. P. Russell, and V. M. Rotello, Self-assembly of nanoparticles into structured spherical and network aggregates, Nature 404, 746–748 (2000).

    CAS  Google Scholar 

  235. A. K. Boal, M. Gray, F. Ilhan, G. M. Clavier, L. Kapitzky, and V. M. Rotello, Bricks and mortar self-assembly of nanoparticles, Tetrahedron 58, 765–770 (2002).

    Article  CAS  Google Scholar 

  236. B. L. Frankamp, O. Uzun, F. Ilhan, A. K. Boal, and V. M. Rotello, Recognition-mediated assembly of nanoparticles into micellar structures with diblock copolymers, J. Am. Chem. Soc. 124, 892–893 (2002).

    CAS  Google Scholar 

  237. A. K. Boal, T. H. Galow, F. Ilhan, and V. M. Rotello, Binary and ternary polymer-mediated ‘bricks and mortar’ self-assembly of gold and silica nanoparticles, Adv. Funct. Mater. 11, 461–465 (2001).

    Article  CAS  Google Scholar 

  238. S.-Y. Lin, S.-W. Liu, C.-M. Lin, and C.-I. Chen, Recognition of potassium ion in water by 15-crown-5 functionalized gold nanoparticles, Anal. Chem. 74, 330–335 (2002).

    CAS  Google Scholar 

  239. Y. Kim, R. C. Johnson, and J. T. Hupp, Gold nanoparticle-based sensing of “spectroscopically silent” heavy metal ions, Nano Lett. 1, 165–167 (2001).

    Google Scholar 

  240. M. Valina-Saba, G. Bauer, N. Stich, F. Pittner, and T. Schalkhammer, A self assembled shell of 11-mercaptoundecanoic aminophenylboronic acids on gold nanoclusters, Mater. Sci. Eng. C 8–9, 205–209 (1999).

    Google Scholar 

  241. J. Liu, J. Alvarez, W. Ong, E. Roman, and A. E. Kaifer, Tuning the catalytic activity of cyclodextrin-modified palladium nanoparticles through host-guest binding interactions, Langmuir 17, 6762–6764 (2001).

    CAS  Google Scholar 

  242. Single Charge Tunneling and Coulomb Blockade Phenomena in Nanostructures, edited by M. H. Devoret and H. Grabert (NATO ASI Series, Plenum Press, New York, 1992) Vol. 294.

    Google Scholar 

  243. A. B. Kharitonov, A. N. Shipway, and I. Willner, An Au nanoparticle/bisbipyridinium cyclophane-functionalized ion-sensitive field-effect transistor for the sensing of adrenaline, Anal. Chem. 71, 5441–5443 (1999).

    Article  CAS  Google Scholar 

  244. A. B. Kharitonov, A. N. Shipway, E. Katz, and I. Willner, Gold-nanoparticle/bis-bipyridinium cyclophane-functionalized ion-sensitive field-effect transistors: Novel assemblies for the sensing of neurotransmitters, Rev. Anal. Chem. 18, 255–260 (1999).

    CAS  Google Scholar 

  245. E. Cattaruzza, G. Battaglin, F. Gonella, R. Polloni, G. Mattei, C. Maurizio, P. Mazzoldi, C. Sada, M. Montagna, C. Tosello, and M. Ferrari, On the optical absorption and nonlinearity of silica films containing metal nanoparticles, Philos. Mag. B 82, 735–744 (2002)

    Article  CAS  Google Scholar 

  246. U. Bach, D. Corr, D. Lupo, F. Pichot, and M. Ryan, Nanomaterials-based electrochromics for paper-quality displays, Adv. Mater. 14, 845–848 (2002).

    Article  CAS  Google Scholar 

  247. O. Antoine and R. Durand, In situ electrochemical deposition of Pt nanoparticles on carbon and inside Nafion, Electrochem. Solid State Lett. 4, A55–A58 (2001).

    Article  CAS  Google Scholar 

  248. Z. Peng, E. Wang, and S. Dong, Incorporation of surface-derivatized gold nanoparticles into electrochemically generated polymer films, Electrochem. Commun. 4, 210–213 (2002).

    Article  CAS  Google Scholar 

  249. V. Pardo-Yissar, R. Gabai, A.N. Shipway, T. Bourenko, and I. Willner, Gold nanoparticle/hydrogel composites with solvent-switchable electronic properties, Adv. Mater. 13, 1320–1323 (2001).

    Article  CAS  Google Scholar 

  250. L. Sheeney-Haj-Ichia, G. Sharabi, and I. Willner, Control of the electronic properties of thermosensitive poly(N-isopropykacrylamide) and Au-nanoparticle/poly(N-isopropylacrylamide composite hydrogels upon phase transition, Adv. Funct. Mater. 12, 27–32 (2002).

    Article  CAS  Google Scholar 

  251. F. Burmeister, C. Schafle, B. Keilhofer, C. Bechinger, J. Boneberg, and P. Liederer, From mesoscopic to nanoscopic surface structures: Lithography with colloid monolayers, Adv. Mater. 10, 495–497 (1998).

    Article  CAS  Google Scholar 

  252. F. Burmeister, W. Badowsky, T. Braun, S. Wieprich, J. Boneberg, and P. Liederer, Colloid monolayer lithography — A flexible approach for nanostructuring of surfaces, Appl. Surf. Sci. 144–145, 461–466 (1999).

    Google Scholar 

  253. F. Burmeister, C. Schäfler, T. Matthes, M. Böhmisch, J. Boneberg, P. Leiderer, Colloid monolayers as versatile lithographic masks, Langmuir 13, 2983–2987 (1997).

    Article  CAS  Google Scholar 

  254. F. Remacle, C.P. Collier, G. Markovich, J. R. Heath, U. Banin, and R. D. Levine, Networks of quantum nanodots: The role of disorder in modifying electronic and optical properties, J. Phys. Chem. B 102, 7727–7734 (1998).

    Article  CAS  Google Scholar 

  255. R. W. Murray, Chemically modified electrodes, Acc. Chem. Res. 13, 135–141 (1980).

    Article  CAS  Google Scholar 

  256. R. W. Murray, Chemically modified electrodes, in: Electroanalytical Chemistry, edited by A.J. Bard (Marcel Dekker, New York, 1984), Vol. 13, pp. 191–368.

    Google Scholar 

  257. J. Schmitt, P. Mächtle, D. Eck, H. Möhwald, and C. A. Helm, Preparation and optical properties of colloidal gold monolayers, Langmuir 15, 3256–3266 (1999).

    Article  CAS  Google Scholar 

  258. A. Doron, E. Katz, and I. Willner, Organization of Au colloids as monolayer films onto ITO glass surfaces — Application of the metal colloid films as base interfaces to construct redox-active monolayers, Langmuir 11, 1313–1317 (1995).

    Article  CAS  Google Scholar 

  259. M. Brust, R. Etchenique, E. J. Calvo, and G. J. Gordillo, The self-assembly of gold and SCd nanoparticle multilayer structures studied by quartz crystal microgravimetry, Chem. Commun., 1949–1950 (1996).

    Google Scholar 

  260. T. Yonezawa, S. Onoue, and T. Kunitake, Growth of closely packed layers of gold nanoparticles on an aligned ammonium surface, Adv. Mater. 10, 414–416 (1998).

    Article  CAS  Google Scholar 

  261. K. C. Grabar, P. C. Smith, M. D. Musick, J. A. Davis, D. G. Walter, M. A. Jackson, A. P. Guthrie, and M. J. Natan, Kinetic control of interparticle spacing in Au colloid-based surfaces: Rational nanometer-scale architecture, J. Am. Chem. Soc. 118, 1148–1153 (1996).

    Article  CAS  Google Scholar 

  262. T. Zhu, X. Fu, T. Mu, J. Wang, and Z. Liu, pH-Dependent adsorption of gold nanoparticles on p-aminothiophenol-modified gold substrates, Langmuir 15, 5197–5199 (1999).

    CAS  Google Scholar 

  263. K. V. Sarathy, P. J. Thomas, G. U. Kulkarni, and C. N. R. Rao, Superlattices of metal and metal-semiconductor quantum dots obtained by layer-by-layer deposition of nanoparticle arrays, J. Phys. Chem. B 103, 399–401 (1999).

    Article  CAS  Google Scholar 

  264. T. Zhu, X. Zhang, J. Wang, X. Fu, and Z. Liu, Assembling colloidal Au nanoparticles with functionalized self-assembled monolayers, Thin Solid Films 327–329, 595–598 (1998).

    Google Scholar 

  265. T. Sagara, N. Kato, and N. Nakashima, Electroreflectance study of gold nanoparticles immobilized on an aminoalkanethiol monolayer coated on a polycrystalline gold electrode surface, J. Phys. Chem. B 106, 1205–1212 (2002).

    Article  CAS  Google Scholar 

  266. K. Bandyopadhyay, V. Patil, K. Vijayamohanan, and M. Sastry, Adsorption of silver colloidal particles through covalent linkage to self-assembled monolayers, Langmuir 13, 5244–5248 (1997).

    CAS  Google Scholar 

  267. K. Bandyopadhyay, V. P. K. Vijayamohanan, and M. Sastry, Adsorption of silver colloidal particles through covalent linkage to self-assembled monolayers, Langmuir 13, 5244–5248 (1997).

    CAS  Google Scholar 

  268. H. Fan and G. P. López, Adsorption of surface-modified colloidal gold particles onto self-assembled monolayers: a model system for the study of interactions of colloidal particles and organic surfaces, Langmuir 13, 119–121 (1997).

    CAS  Google Scholar 

  269. T. Teranishi, M. Hosoe, T. Tanaka, and M. Miyake, Size control of monodispersed Pt nanoparticles and their 2D organization by electrophoretic deposition, J. Phys. Chem. 103, 3818–3827 (1999).

    CAS  Google Scholar 

  270. T. Teranishi, M. Hosoe, and M. Miyake, Formation of monodispersed ultrafine platinum particles and their electrophoretic deposition on electrodes, Adv. Mater. 9, 65–67 (1997).

    Article  CAS  Google Scholar 

  271. M. Giersig and P. Mulvaney, Preparation of ordered colloid monolayers by electrophoretic deposition, Langmuir 9, 3408–3413 (1993).

    Article  CAS  Google Scholar 

  272. M. Giersig and P. Mulvaney, Formation of ordered 2-dimensional gold colloid lattices by electrophoretic deposition, J. Phys. Chem. 97, 6334–6336 (1993).

    Article  CAS  Google Scholar 

  273. J. V. Zoval, J. Lee, S. Gorer, and R. M. Penner, Electrochemical preparation of platinum nanocrystallites with size selectivity on basal plane oriented graphite surfaces, J. Phys. Chem. B 102, 1166–1175 (1998)

    Article  CAS  Google Scholar 

  274. M. O. Finot, G. D. Braybrook, and M. T. McDermott, Characterization of electrochemically deposited gold nanocrystals on glassy carbon electrodes, J. Electroanal. Chem. 466, 234–241 (1999).

    Article  CAS  Google Scholar 

  275. K. H. Ng and R. M. Penner, Electrodeposition of silver-copper bimetallic particles having two archetypes by facilitated nucleation, J. Electroanal. Chem. 522, 86–94 (2002).

    Article  CAS  Google Scholar 

  276. D. Lu, K. Domen, and K. Tanaka, Electrodeposited Au-Fe, Au-Ni, and Au-Co alloy nanoparticles from aqueous electrolytes, Langmuir 18, 3226–3232 (2002).

    CAS  Google Scholar 

  277. S. Peschel and G. Schmid, First steps towards ordered monolayers of ligand-stabilized gold clusters, Angew. Chem. Int. Ed. Engl. 34, 1442–1443 (1995).

    Article  CAS  Google Scholar 

  278. J. Schmitt, G. Decher, W. J. Dressick, S. L. Brandow, R. E. Geer, R. Shashidhar, and J. M. Calvert, Metal nanoparticle/polymer superlattice films: Fabrication and control of layer structure. Adv. Mater. 9, 61–65 (1997).

    Article  CAS  Google Scholar 

  279. S. Rubin, G. Bar, T. N. Taylor, R. W. Cutts, and T. A. Zawodzinski, Jr., Novel approach for the preparation of metal colloid monolayers on modified surfaces, J. Vac. Sci. Technol. A 14, 1870–1877 (1996).

    Article  CAS  Google Scholar 

  280. G. Bar, S. Rubin, R. W. Cutts, T. N. Taylor, and T. A. Zawodzinski, Dendrimer-modified silicon oxide surfaces as platforms for the deposition of gold and silver colloid monolayers: Preparation method, characterization, and correlation between microstructure and optical properties, Langmuir 12, 1172–1179 (1996).

    Article  CAS  Google Scholar 

  281. M. Gao, X. Zhang, B. Yang, and J. Shen, A monolayer of Pbl 2 nanoparticles adsorbed on MD-LB film, J. Chem. Soc., Chem. Commun., 2229–2230 (1994).

    Google Scholar 

  282. K. S. Mayya and M. Sastry, A new technique for the spontaneous growth of colloidal nanoparticle superlattices, Langmuir 15, 1902–1904 (1999).

    Article  CAS  Google Scholar 

  283. M. Sastry, K. S. Mayya, V. Patil, D. V. Paranjape, and S. G. Hegde, Langmuir-Blodgett films of carboxylic acid derivatized silver colloidal particles: Role of subphase pH on degree of cluster incorporation, J. Phys. Chem. B 101, 4954–4958 (1997).

    CAS  Google Scholar 

  284. V. Patil and M. Sastry, Surface derivatization of colloidal silver particles using interdigitated bilayers: A novel strategy for electrostatic immobilization of colloidal particles in thermally evaporated fatty acid fatty amine films, Langmuir 14, 2707–2711 (1998).

    Article  CAS  Google Scholar 

  285. M. Sastry, K. S. Mayya, and V. Patil, Facile surface modification of colloidal particles using bilayer surfactant assemblies: A new strategy for electrostatic complexation in Langmuir-Blodgett films, Langmuir 14, 5921–5928 (1998).

    CAS  Google Scholar 

  286. J. H. Fendler, Self-assembled nanostructured materials, Chem. Mater. 8,1616–1624 (1996).

    Article  CAS  Google Scholar 

  287. L. Motte, F. Billoudet, E. Lacaze, J. Douin, and M.P. Pilena, Self-organization into 2D and 3D superlattices of nanosized particles differing by their size, J. Phys. Chem. B 101, 138–144(1997).

    Article  CAS  Google Scholar 

  288. M. T. Reetz, M. Winter, and B. Tesch, Self-assembly of tetraalkylammonium salt-stabilized giant palladium clusters on surfaces, Chem. Commun., 147–148 (1997).

    Google Scholar 

  289. K. C. Grabar, K. J. Allison, B. E. Baker, R. M. Bright, K. R. Brown, R. G. Freeman, A. P. Fox, C. D. Keating, M. D. Musick, and M. J. Natan, Two-dimensional arrays of colloidal gold particles: A flexible approach to macroscopic metal surfaces, Langmuir 12, 2353–2361 (1996).

    Article  CAS  Google Scholar 

  290. T. Sato, D. Brown, and B. F. G. Johnson, Nucleation and growth of nano-gold colloidal lattices, Chem. Commun., 1007–1008 (1997).

    Google Scholar 

  291. G. Schmid, M. Bäumle, and N. Beyer, Ordered two-dimensional monolayers of AU55 clusters, Angew. Chem. Int. Ed. 39, 181–183 (2000).

    Article  CAS  Google Scholar 

  292. I. Sloufová-Srnová and B. Vlckova, Two-dimensional assembling of Au nanoparticles mediated by tetrapyridylporphine molecules, Nano Lett. 2, 121–125 (2002).

    Google Scholar 

  293. S. He, J. Yao, S. Xie, H. Gao, and S. Pang, Superlattices of silver nanoparticles passivated by mercaptan, J. Phys. D 34, 3425–3429 (2001).

    Article  CAS  Google Scholar 

  294. P. J. Thomas, G. U. Kulkarni, and C. N. R. Rao, An investigation of two-dimensional arrays of thiolized Pd nanocrystals, J. Phys. Chem. B 104, 8138–8144, (2000).

    Article  CAS  Google Scholar 

  295. R. R. Bhat, D. A. Fischer, and J. Genzer, Fabricating planar nanoparticle assemblies with number density gradients, Langmuir 18, 5640–5643 (2002).

    Article  CAS  Google Scholar 

  296. R. Blonder, L. Sheeney, and I. Willner, Three-dimensional redox-active layered composites of Au-Au, Ag-Ag and Au-Ag colloids, Chem. Commun., 1393–1394 (1998).

    Google Scholar 

  297. D. L. Feldheim, K. C. Grabar, M. J. Natan, and T. E. Mallouk, Electron transfer in self-assembled inorganic polyelectrolyte/metal nanoparticle heterostructures, J. Am. Chem. Soc. 118, 7640–7641 (1996).

    Article  CAS  Google Scholar 

  298. M. Lahav, A. N. Shipway, I. Willner, M. B. Nielsen, and J. F. Stoddart, An enlarged bis-bipyridinium cyclophane-Au nanoparticle superstructure for selective electrochemical sensing applications, J. Electroanal. Chem. 482, 217–221 (2000).

    Article  CAS  Google Scholar 

  299. J. Tien, A. Terfort, and G. M. Whitesides, Microfabrication through electrostatic self-assembly, Langmuir 13, 5349–5355 (1997)

    Article  CAS  Google Scholar 

  300. J. F. Hicks, Y. Seok-Shon, and R. W. Murray, Layer-by-layer growth of polymer/nanoparticle films containing monolayer-protected gold clusters, Langmuir 18, 2288–2294 (2002).

    Article  CAS  Google Scholar 

  301. J.-A. He, R. Valluzzi, K. Yang, T. Dolukhanyan, C. Sung, J. Kumar, and S. K. Tripathy, Electrostatic multilayer deposition of a gold-dendrimer nanocomposite, Chem. Mater. 11, 3268–3274 (1999).

    Article  CAS  Google Scholar 

  302. E. Hao and T. Lian, Buildup of polymer/Au nanoparticle multilayer thin films based on hydrogen bonding, Chem. Mater. 12, 3392–3396 (2000).

    Article  CAS  Google Scholar 

  303. T. Cassagneau and J. H. Fendler, Preparation and layer-by-layer self-assembly of silver nanoparticles capped by graphite oxide nanosheets, J. Phys. Chem. B, 103, 1789–1793 (1999).

    Article  CAS  Google Scholar 

  304. S. Malynych, I. Luzinov, and G. Chumanov, Poly(vinyl pyridine) as a universal surface modifier for immobilization of nanoparticles, J. Phys. Chem B 106, 1280–1285 (2002).

    Article  CAS  Google Scholar 

  305. J. Liu, L. Cheng, Y. Song, B. Liu, and S. Dong, Simple preparation method of multilayer polymer films containing Pd nanoparticles, Langmuir 17, 6747–6750 (2001).

    CAS  Google Scholar 

  306. T. C. Wang, M. F. Rubner, and R. E. Cohen, Polyelectrolyte multilayer nanoreactors for preparing silver nanoparticle composites: controlling metal concentration and nanoparticle size, Langmuir 18, 3370–3375 (2002).

    CAS  Google Scholar 

  307. A. N. Shipway, M. Lahav, R. Gabai and I. Willner, Investigations into the Electrostatically-Induced Aggregation of Au-Nanoparticles, Langmuir 16, 8789–8795 (2000).

    Article  CAS  Google Scholar 

  308. T. H. Galow, A. K. Boal, and V. M. Rotello, A “building block” approach to mixed-colloid systems through electrostatic self-organization, Adv. Mater. 12, 576–579 (2000).

    Article  CAS  Google Scholar 

  309. A. N. Shipway, M. Lahav, R. Blonder, and I. Willner, Bis-bipyridinium cyclophane receptor-Au nanoparticle superstructures for electrochemical sensing applications, Chem. Mater. 11, 13–15 (1999).

    Article  CAS  Google Scholar 

  310. M. Lahav, T. Gabriel, A. N. Shipway, and I. Willner, Assembly of aZn(II)-porphyrin-bipyridinium dyad and Au-nanoparticle superstructures on conductive surfaces, J. Am. Chem. Soc. 121, 258–259 (1999).

    CAS  Google Scholar 

  311. M. Lahav, R. Gabai, A. N. Shipway, and I. Willner, Au-colloid-’molecular square’ superstructures: novel electrochemical sensing interfaces, Chem. Comm., 1937–1938 (1999).

    Google Scholar 

  312. J. F. Hicks, F. P. Zamborini, A. J. Osisek, and R. W. Murray, The dynamics of electron self-exchange between nanoparticles, J. Am. Chem. Soc. 123, 7048–7053 (2001).

    CAS  Google Scholar 

  313. W. P. Wuelfing, F. P. Zamborini, A. C. Templeton, X. Wen, H. Yoon, and R. W. Murray, Monolayer-protected clusters: Molecular precursors to metal films, Chem. Mater. 13, 87–95 (2001).

    Article  CAS  Google Scholar 

  314. Y. Fu, H. Xu, S. Bai, D. Qiu, J. Sun, Z. Wang, and X. Zhang, Fabrication of a stable polyelectrolyte/Au nanoparticles multilayer film, Macromol. Rapid Commun. 23, 256–259 (2002).

    Article  CAS  Google Scholar 

  315. B. H. Sohn and B. H. Seo, Fabrication of the multilayered nanostructure of alternating polymers and gold nanoparticles with thin films of self-assembling diblock copolymers, Chem. Mater. 13, 1752–1757 (2001).

    Article  CAS  Google Scholar 

  316. M. D. Musick, C. D. Keating, M. H. Keefe, and M. J. Natan, Stepwise construction of conductive Au colloid multilayers from solution, Chem. Mater. 9, 1499–1501 (1997).

    Article  CAS  Google Scholar 

  317. T. Baum, D. Bethell, M. Brust, and D. J. Schiffrin, Electrochemical charge injection into immobilized nanosized gold particle ensembles: Potential modulated transmission and reflectance spectroscopy, Langmuir 15, 866–871 (1999).

    CAS  Google Scholar 

  318. M. Brust, D. Bethell, C. J. Kiely, and D. J. Schiffrin, Self-assembled gold nanoparticle thin films with nonmetallic optical and electronic properties, Langmuir 14, 5425–5429 (1998).

    Article  CAS  Google Scholar 

  319. M. Lu, X. H. Li, B. Z. Yu, and H. L. Li, Electrochemical behavior of Au colloidal electrode through layer-by-layer self-assembly, J. Colloid Interface Sci. 248, 376–382 (2002).

    Article  CAS  Google Scholar 

  320. N. Fishelson, I. Shkrob, O. Lev, J. Gun, and A. D. Modestov, Studies on charge transport in self-assembled gold-dithiol films: conductivity, photoconductivity, and photoelectrochemical measurements, Langmuir 17, 403–412 (2001).

    Article  CAS  Google Scholar 

  321. M. D. Musick, D. J. Peña, S. L. Botsko, T. M. McEvoy, J. N Richardson, and M. J. Natan, Electrochemical properties of colloidal Au-based surfaces: Multilayer assemblies and seeded colloid films, Langmuir 15, 844–850 (1999).

    Article  CAS  Google Scholar 

  322. J.-Y. Tseng, M.-H. Lin, and L.-K. Chau, Preparation of colloidal gold multilayers with 3-(mercaptopropyl)-trimethoxysilane as a linker molecule, Colloids Surf. A 182, 239–245 (2001).

    Article  CAS  Google Scholar 

  323. R. Chapman and P. Mulvaney, Electro-optical shifts in silver nanoparticle films, Chem. Phys. Lett. 349, 358–362 (2001).

    Article  CAS  Google Scholar 

  324. N. Malikova, I. Pastoriza-Santos, M. Schierhorn, N. A. Kotov, and L. M. Liz-Marzán, Layer-by-layer assembled mixed spherical and planar gold nanoparticles: control of interparticle interactions, Langmuir 18, 3694–3697 (2002).

    Article  CAS  Google Scholar 

  325. M. Brust, C. J. Kiely, D. Bethell, and D. J. Schiffrin, C60 mediated aggregation of gold nanoparticles, J. Am. Chem. Soc. 120, 12367–12368 (1998).

    Article  CAS  Google Scholar 

  326. F. P. Zamborini and R. M. Crooks, Nanometer-scale patterning of metals by electrodeposition from an STM tip in air, J. Am. Chem. Soc. 120, 9700–9701 (1998).

    Article  CAS  Google Scholar 

  327. P. Mesquida and A. Stemmer, Maskless nanofabrication using the electrostatic attachment of gold particles to electrically patterned surfaces, Microelectron. Eng. 61–62, 671–674 (2002).

    Google Scholar 

  328. R. Resch, C, Baur, A. Bugacov, B.E. Koel, A. Madhukar, A. A. G. Requicha, and P. Will, Building and manipulating three-dimensional and linked two-dimensional structures of nanoparticles using scanning force microscopy, Langmuir 14, 6613–6616 (1998).

    Article  CAS  Google Scholar 

  329. S. L. Brandow, W. J. Dressick, C. S. Dulcey, T. S. Koloski, L. M. Shirey, J. Schmidt, and J. M. Calvert, Nanolithography by displacement of catalytic metal clusters using an atomic force microscope tip, J. Vac. Sci. Technol. B 15, 1818–1824 (1997).

    Article  CAS  Google Scholar 

  330. W. Yang, M. Chen, W. Knoll, and H. Deng, Synthesis of hexanedithiolate/decanethiolate mixed monolayer protected gold clusters and scanning tunneling microscope tip induced patterning on the clusters/Au(l 11) surfaces, Langmuir 18, 4124–4130 (2002).

    CAS  Google Scholar 

  331. A. Doron, E. Joselevich, A. Schlittner, and I. Willner, AFM characterization of the structure of Au-colloid monolayers and their chemical etching, Thin Solid Films, 340, 183–188 (1999).

    Article  CAS  Google Scholar 

  332. Y. M. Jung, S. J. Ahn, E. R. Kim, and H. Lee, Gold nanoparticle assemblies on a functionalized surface patterned by AFM lithography, J. Korean Phys. Soc. 40, 712–715 (2002).

    CAS  Google Scholar 

  333. Y. M. Jung, S. J. Ahn, H. J. Chae, H. Lee, E. R. Kim, and H. Lee, The fabrication of gold nanoparticle assemblies on the functionalized surface patterned by AFM lithography, Molec. Cryst. Liquid Cryst. 370, 231–234 (2001).

    CAS  Google Scholar 

  334. M. T. Reetz and M. Winter, Fabrication of metallic and bimetallic nanostructures by electron beam induced metallization of surfactant stabilized Pd and Pd/Pt clusters, J. Am. Chem. Soc. 119, 4539–4540 (1997).

    Article  CAS  Google Scholar 

  335. T. Sato, D. G. Hasko, and H. Ahmed, Nanoscale colloidal particles: Monolayer organization and patterning, J. Vac. Sci. Technol. B 15, 45–48 (1997).

    Article  CAS  Google Scholar 

  336. J. Liu, L. Zhang, P. Mao, D. Chen, N. Gu, J. Ren, Y. Wu, and Z. Lu, Controlled assembly of patterned gold thin films using photolithographed self-assembled monolayers as templates, Chem. Lett., 1147–1148 (1997).

    Google Scholar 

  337. J.-F. Liu, L.-G. Zhang, J.-Y. Ren, Y.-P. Wu, Z.-H. Lu, P.-S. Mao, D.-Y. Chen, Fabrication of colloidal gold micro-patterns using photolithographed self-assembled monolayers as templates, Thin Solid Films 327–329, 176–179 (1998).

    Google Scholar 

  338. T. Vossmeyer, E. DeIonno, and J. R. Heath, Light-directed assembly of nanoparticles, Angew. Chem. Int. Ed Engl. 36, 1080–1083 (1997).

    Article  CAS  Google Scholar 

  339. M. H. V. Werts, M. Lambert, J.-P. Bourgoin, and M. Brust, Nanometer scale patterning of langmuir-Blodgett films of gold nanoparticles by electron beam lithography, Nano Lett. 2, 43–47 (2002).

    Article  CAS  Google Scholar 

  340. V. Erokhin, V. Troitsky, S. Erokhina, G. Mascetti, and C. Nicolini, In-plane patterning of aggregated nanoparticle layers, Langmuir 18, 3185–3190 (2002).

    Article  CAS  Google Scholar 

  341. F. Stellacci, C. A. Bauer, T. Meyer-Friedrichsen, W. Wensellers, V. Alain, S. M. Kuebler, S. J. K. Pond, Y. Zhang, S. R. Marder, and J. W. Perry, Laser and electron-beam induced growth of nanoparticles for 2D and 3D patterning, Adv. Mater. 14, 194–198 (2002).

    Article  CAS  Google Scholar 

  342. W. J. Dressick, C. S. Dulcey, S. L. Brandow, H. Witschi, and P. F. Neeley, Proximity x-ray lithography of siloxane and polymer films containing benzyl chloride functional groups, J. Vac. Sci. Technol. A 17, 1432–1440(1999).

    Article  CAS  Google Scholar 

  343. S. L. Brandow, M.-S. Chen, R. Aggarwal, C. S. Dulcey, J. M. Calvert, and W. J. Dressick, Fabrication of patterned amine reactivity templates using 4-chloromethylphenylsiloxane self-assembled monolayer films, Langmuir 15, 5429–5432 (1999).

    Article  CAS  Google Scholar 

  344. B. E. Baker, N. J. Kline, P. J. Treado, and M. J. Natan, Solution-based assembly of metal surfaces by combinatorial methods, J. Am. Chem. Soc. 118, 8721–8722 (1996).

    Article  CAS  Google Scholar 

  345. P. C. Hidber, W. Helbig, E. Kim, and G. M. Whitesides, Microcontact printing of palladium colloids: Micron-scale patterning by electroless deposition of copper, Langmuir 12, 1375–1380 (1996).

    CAS  Google Scholar 

  346. S. Palacin, P. C. Hildber, J.-P. Bourgoin, C. Miramond, C. Fermon, and G. M. Whitesides, Patterning with magnetic materials at the micron scale, Chem. Mater. 8, 1316–1325 (1996).

    Article  CAS  Google Scholar 

  347. A. M. Bittner, X. C. Wu, and K. Kern, Electroless metallization of dendrimer-coated micropatterns, Adv. Funct. Mater. 12, 432–436 (2002).

    Article  CAS  Google Scholar 

  348. H. S. Shin, H. J. Yang, Y. M. Jung, and S. B. Kim, Direct patterning of silver colloids by microcontact printing: possibility as SERS substrate array, Vibrational Spectr. 29, 79–82 (2002).

    CAS  Google Scholar 

  349. H. Wohltjen and A.W. Snow, Colloidal metal-insulator-metal ensemble chemiresistor sensor, Anal. Chem. 70, 2856–2859 (1998).

    Article  CAS  Google Scholar 

  350. S. D. Evans, S. R. Johnson, Y. L. Cheng, and T. Shen, Vapour sensing using hybrid organic-inorganic nanostructured materials, J. Mater. Chem. 10, 183–188 (2000).

    CAS  Google Scholar 

  351. N. Cioffi, I. Farella, L. Torsi, A. Valentini, and A. Tafuri, Correlation between surface chemical composition and vapor sensing properties of gold-fluorocarbon nanocomposites, Sens. Actual. B 84, 49–54(2002).

    Google Scholar 

  352. V. E. Bochenkov, N. Stephan, L. Brehmer, V. V. Zagorskii, and G. B. Sergeev, Sensor activity of thin polymer films containing lead nanoparticles, Colloids Surf. A 198–200, 911–915 (2002).

    Google Scholar 

  353. E. E. Foos, A. W. Snow, M. E. Twigg, and M. G. Ancona, Thiol-terminated di-, tri-, and tetraethylene oxide functionalized gold nanoparticles: A water-soluble, charge-neutral cluster, Chem. Mater. 14, 2401–2408 (2002).

    Article  CAS  Google Scholar 

  354. F. P. Zamborini, M. C. Leopold, J. F. Hicks, P. J. Kulesza, M. A. Malik, and R. W. Murray, Electron hopping conductivity and vapor sensing properties of flexible network polymer films of metal nanoparticles, J. Am. Chem. Soc. 124, 8958–8964 (2002).

    Article  CAS  Google Scholar 

  355. N. Krasteva, I. Besnard, B. Guse, R. E. Bauer, K. Müllen, A. Yasuda, and T. Vossmeyer, Self-assembled gold nanoparticle/dendrimer composite films for vapor sensing applications, Nano Lett. 2, 551–555 (2002).

    Article  CAS  Google Scholar 

  356. T. Vossmeyer, B. Guse, I. Besnard, R. E. Bauer, K. Müllen, and A. Yasuda, Gold nanoparticle/polyphenylene dendrimer composite films: preparation and vapor-sensing properties, Adv. Mater. 14, 238–242 (2002).

    Article  CAS  Google Scholar 

  357. H. Imahori, T. Azuma, A. Ajavakom, H. Norieda, H. Yamada, and Y. Sakata, An investigation of photocurrent generation by gold electrodes modified with self-assembled monolayers of C 60 , J. Phys. Chem. B 103, 7233–7237 (1999).

    Article  CAS  Google Scholar 

  358. S. N. Rao and D. Fitzmaurice, Heterosupramolecular chemistry: Synthetic strategies for the covalent and noncovalent assembly and organization of nanocrystals and molecules, Helv. Chim. Acta 81, 902–915 (1998).

    Article  CAS  Google Scholar 

  359. M. Lahav, V. Heleg-Shabtai, J. Wasserman, E. Katz, I. Willner, H. Dürr, Y.-Z. Hu, and S. H. Bossmann, Photoelectrochemistry with integrated photosensitizer-electron acceptor and Au-nanoparticle arrays, J. Am. Chem. Soc. 122, 11480–11487 (2000).

    Article  CAS  Google Scholar 

  360. U. Simon, R. Flesch, H. Wiggers, G. Schön, and G. Schmid, Chemical tailoring of the charging energy in metal cluster arrangements by use of bifunctional spacer molecules, J. Mater. Chem. 8, 517–518 (1998).

    Article  CAS  Google Scholar 

  361. U. Simon, G. Schön, and G. Schmid, The application of AU 55 clusters as quantum dots, Angew. Chem. Int. Ed. Engl. 32, 250–254 (1993).

    Article  Google Scholar 

  362. R. S. Ingram, M. J. Hostetler, R. W. Murray, T. G. Schaff, J. T. Khoury, R. L. Whetten, T. P. Bigioni, D. K. Guthrie, and P. N. First, 28 kDa Alkanethiolate-protected Au clusters give analogous solution electrochemistry and STM Coulomb staircases, J. Am. Chem. Soc. 119, 9279–9280 (1997).

    CAS  Google Scholar 

  363. T. Sato, H. Ahmed, D. Brown, and B. F. G. Johnson, Single electron transistor using a molecularly linked gold colloidal particle chain, J. Appl. Phys. 82, 696–701 (1997).

    Article  CAS  Google Scholar 

  364. T. Sato and H. Ahmed, Observation of a Coulomb staircase in electron transport through a molecularly linked chain of gold colloidal particles, Appl. Phys. Lett. 70, 2759–2761 (1997).

    CAS  Google Scholar 

  365. D. L. Klein, P. L. McEuen, J. E. B. Katari, R. Roth, and A. P. Alivisatos, An approach to electrical studies of single nanocrystals, Appl. Phys. Lett. 68, 2574–2576 (1996).

    Article  CAS  Google Scholar 

  366. R. P. Andres, T. Bein, M. Dorogi, S. Feng, J. I. Henderson, C. P. Kubiak, W. Mahoney, R. G. Osifchin, and R. Reifenberger, “Coulomb staircase” at room temperature in a self-assembled molecular nanostructure, Science 272, 1323–1325 (1996).

    CAS  Google Scholar 

  367. J. R. Petta, D. G. Salinas, and D. C. Raloh, Measurements of discrete electronic states in a gold nanoparticle using tunnel junctions formed from self-assembled monolayers, Appl. Phys. Lett. 77, 4419–4421 (2000).

    Article  CAS  Google Scholar 

  368. L. F. Chi, M. Hartig, T. Drechsler, T. Schaak, C. Seidel, H. Fuchs, and G. Schmid, Single-electron tunneling in AU 55 cluster monolayers, Appl. Phys. Lett. 66, S187–S190 (1998).

    CAS  Google Scholar 

  369. U. Simon, Charge transport in nanoparticle arrangements, Adv. Mater. 10, 1487–1492 (1998).

    Article  CAS  Google Scholar 

  370. G. S. McCarty and P. S. Weiss, Scanning probe studies of single nanostructures, Chem. Rev. 99, 1983–1990 (1999).

    Article  CAS  Google Scholar 

  371. R. P. Andres, J. D. Bielefeld, J. I. Henderson, D. B. Janes, V. R. Kolagunta, C. P. Kubiak, W.J. Mahoney, and R. G. Osifchin, Self-assembly of a two-dimensional superlattice ofmolecularly linked metal clusters, Science 273, 1690–1693 (1996).

    CAS  Google Scholar 

  372. J. R. Tucker, Complementary digital logic based on the Coulomb blockade, J. Appl. Phys. 72, 4399–4413 (1992).

    Article  Google Scholar 

  373. A. N. Korotkov, R. H. Chen, and K. Likharev, Possible performance of capacitively coupled single-electron transistors in digital circuits, J. Appl. Phys. 78, 2520–2530 (1995).

    Article  CAS  Google Scholar 

  374. J. B. Barner and S. T. Ruggerio, Observation of the incremental charging of Ag particles by single electrons, Phys. Rev. Lett. 59, 807–810 (1987).

    Article  CAS  Google Scholar 

  375. K. K. Likharev and T. Claeson, Single electronics, Sci. Am. 266, 80–85 (1992).

    Google Scholar 

  376. R. F. Service, Making single electrons compute, Science 275, 303–304 (1997).

    CAS  Google Scholar 

  377. L. C. Brousseau III, Q. Zhao, D. A. Shultz, and D. L. Feldheim, pH-Gated single-electron tunneling in chemically modified gold nanoclusters, J. Am. Chem. Soc. 120, 7645–7646 (1998).

    Article  CAS  Google Scholar 

  378. D. I. Gittins, D. Bethell, D. J. Schiffrin, and R. J. Nichols, A nanometre-scale electronic switch consisting of a metal cluster and redox-addressable groups, Nature 408, 67–69 (2000).

    CAS  Google Scholar 

  379. M. S. Montemerlo, J. C. Love, G. J. Opiteck, D. Goldhaber-Gordon, and J. C. Ellenbogen, Technologies and Designs for Electronic Nanocomputers (Mitre Corp., McLean, VA, 1996).

    Google Scholar 

  380. A. O. Orlov, I. Amlani, G. H. Berstein, C. S. Lent, and G. L. Snider, Realization of a functional cell for quantum-dot cellular automata, Science 277, 928–930 (1997).

    Article  CAS  Google Scholar 

  381. J. Schmelzer, S. A. Brown, A. Wurl, M. Hyslop, and R. J. Blaikie, Finite-size effects in the conductivity of cluster assembled nanostructures, Phys. Rev. Lett. 88, 226802-1–22680-4 (2002).

    Article  CAS  Google Scholar 

  382. F. Patolsky, Y. Weizmann, O. Lioubashevski, and I. Willner, DNA and polylysine templated Au-nanoparticle nano-wires, Angew. Chem. Int. Ed 41, 2323–2327 (2002).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this chapter

Cite this chapter

Katz, E., Shipway, A.N., Willner, I. (2004). Chemically Functionalized Metal Nanoparticles. In: Liz-Marzán, L.M., Kamat, P.V. (eds) Nanoscale Materials. Springer, Boston, MA. https://doi.org/10.1007/0-306-48108-1_2

Download citation

  • DOI: https://doi.org/10.1007/0-306-48108-1_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4020-7366-3

  • Online ISBN: 978-0-306-48108-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics