Skip to main content

Magnetic Thin Films

  • Chapter
Book cover Nanoscale Materials
  • 922 Accesses

6. Conclusion

Magnetic monolayers offer a huge playground for the basic understanding of magnetic interactions. To obtain reliable data it is all-important to consider the temperature and thickness dependence of the magnetic quantities which are investigated. Magnetic monolayers -when prepared under proper conditions- are magnetically alive! There are no non-magnetic monolayers. The experiment has to be capable of detecting the remanent magnetic state of low dimensional systems in situ in UHV at low temperatures which remains a challenging task.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

7. References

  1. J. A. C. Bland, B. Heinrich (eds.), Ultrathin magnetic structures I & II (Springer Verlag, Berlin Heidelberg, 1994).

    Google Scholar 

  2. H.-J. Elmers, Ferromagnetic monolayers, Int. J. Mod. Phys. B 9, 3115–3180 (1995).

    CAS  Google Scholar 

  3. U. Gradmann, Magnetism in ultrathin transition metal films, in: Handbook of Magnetic Materials, Vol.7 (Elsevier Science Publishers B. V., 1993) pp. 1–96.

    Article  CAS  Google Scholar 

  4. D. Sander, The correlation between mechanical stress and magnetic anisotropy in ultrathin films, Rep. Prog. Phys. 62, 1–50 (1999).

    Article  Google Scholar 

  5. C. M. Schneider and J. Kirschner, Magnetism at surfaces and in ultrathin films, in Handbook of Surface Science, Vol. 2 (Elsevier Science B. V., 2000) pp. 511–668.

    CAS  Google Scholar 

  6. M. Farle, Ferromagnetic resonance of ultrathin metallic layers, Rep. Prog. Phys. 61, 755–826 (1998).

    Article  CAS  Google Scholar 

  7. B. Hillebrands, Brillouin light scattering from layered magnetic structures, in Topics in Applied Physics, Vol. 75 (Springer-Verlag Berlin Heidelberg 2000) pp. 175–289.

    Google Scholar 

  8. K. De’Bell, A. B. Maclsaac, and J. P. Whitehead, Dipolar effects in magnetic thin films and quasi-two-dimensional systems, Rev. Mod. Phys. 72, 225–257 (2000).

    Google Scholar 

  9. P Poulopoulos and K Baberschke, Magnetism in thin films, J. Phys.: Condens. Matter 11, 9495–9515 (1999).

    Article  CAS  Google Scholar 

  10. J. Nogués and I. K. Schuller, Exchange bias, J. Magn. Magn. Mater. 192, 203–232 (1999).

    Google Scholar 

  11. V. S. Speriosu, D. A. Herman, Jr., I. L. Sanders, and T. Yogi, Magnetic thin films in recording technology, IBMJ. Res. Develop. 44, 186–204 (2000).

    CAS  Google Scholar 

  12. I. K. Schuller, S. Kim, and C. Leighton, Magnetic superlattices and multilayers, J.Magn. Magn. Mater. 200, 571–582 (1999).

    Article  CAS  Google Scholar 

  13. H. Brune, Microscopic view of epitaxial metal growth: nucleation and aggregation, Surf. Sci. Rep. 31, 121–229 (1998).

    CAS  Google Scholar 

  14. B. A. Joyce, Molecular beam epitaxy, Rep. Prog. Phys. 48, 1637–1697 (1985).

    Article  CAS  Google Scholar 

  15. W. Weiss and W. Ranke, Surface chemistry and catalysis on well-defined epitaxial iron-oxide layers, Progr. Surf. Sci. 70, 1–151 (2002).

    Article  CAS  Google Scholar 

  16. J. A. Venables, G. D. T. Spiller, and M. Hanbucken, Nucleation and growth of thin films, Rep. Prog. Phys. 47, 399–459 (1984).

    Article  Google Scholar 

  17. P. Politi, G. Grenet, A. Marty, A. Ponchet and J. Villain, Instabilities in crystal growth by atomic or molecular beams, Phys. Rep. 324, 271–404 (2000).

    Article  CAS  Google Scholar 

  18. M. Bäumer and H.-J. Freund, Metal deposits on well-ordered oxide films, Progr. Surf. Sci. 61, 127–198 (1999).

    Google Scholar 

  19. H. Ibach, The role of surface stress in reconstruction, epitaxial growth and stabilization of mesoscopic structures, Surf. Sci. Rep. 29, 193–263 (1997), and Erratum Surf. Sci. Rep. 35, 71–73 (1999).

    Article  CAS  Google Scholar 

  20. P. Ohresser, J. Shen, J. Barthel, M. Zheng, Ch. V. Mohan, M. Klaua, and J. Kirschner, Growth, structure, and magnetism of fcc Fe ultrathin films on Cu(111) by pulsed laser deposition, Phys. Rev. B 59 3696–3706 (1999).

    Article  CAS  Google Scholar 

  21. H. Fritzsche, J. Kohlhepp, and U. Gradmann, Epitaxial strain and magnetic anisotropy in ultrathin Co films onW(110), phys. Rev. B 51, 15933–15941 (1995).

    CAS  Google Scholar 

  22. E. Bauer, Low energy electron microscopy, Rep. Prog. Phys. 57, 895–938 (1994).

    Article  CAS  Google Scholar 

  23. A. Ney, P. Poulopoulos, and K. Baberschke, Surface and interface magnetic moments of Co/Cu(001), Europhys. Lett. 54, 820–825 (2001).

    Article  CAS  Google Scholar 

  24. H. Fritzsche, H. J. Elmers, and U. Gradmann, Magnetic anisotropies of Fe(110) interfaces, J. Magn. Magn. Mater. 135, 343–354 (1994); H. J. Elmers and U. Gradmann, Magnetic anisotropies in iron(110) films on tungsten(110), Appl. Phys. A: Solids Surf. 51, 255–263 (1990).

    Article  CAS  Google Scholar 

  25. K. Wagner, N. Weber, H. J. Elmers, and U, Gradmann, Magnetization of free Fe(110) surfaces from thin film magnetometry, J. Magn. Magn. Mater. 167, 21–26 (1997).

    Article  CAS  Google Scholar 

  26. C. Turtur and G. Bayreuther, Magnetic moments in ultrathin Cr. films on Fe (100) Phys. Rev. Lett. 72, 1557–1560 (1994); P. J. Flanders, An alternating gradient magnetometer, J. Appl. Phys. 63, 3940–3945 (1988).

    Article  CAS  Google Scholar 

  27. P. Srivastava, F. Wilhelm, A. Ney, M. Farle, H. Wende, N. Haack, G. Ceballos, and K. Baberschke, Magnetic moments and Curie temperatures on Ni and Co thin films and coupled trilayers, Phys, Rev. B 58, 5701–5706 (1998).

    Article  CAS  Google Scholar 

  28. C. T. Chen, Y.U. Idzerda, H.-J. Lin, N.V. Smith, G. Meigs, E. Chaban, G.H. Ho, E. Pellegrin, and F. Sette, Experimental confirmation of the X-ray magnetic circular dichroism sum rules for iron and cobalt, Phys. Rev. Lett. 75, 152–155 (1995).

    CAS  Google Scholar 

  29. K. Nawrath, H. Fritzsche, F. Klose, J. Nowikow, and H. Maletta, In situ magnetometry with polarized neutrons on thin magnetic films, Phys. Rev. B 60, 9525–9531 (1999).

    Article  CAS  Google Scholar 

  30. One should note that in-situ susceptibility measurements near the Curie temperature are available and have been discussed by K. Babersche, The magnetism ofNickel monolayers, Appl. Phys. A 62, 417–427 (1996).

    Google Scholar 

  31. A. Ney, P. Poulopoulos, M. Farle, and K. Baberschke, Absolute determination of Co magnetic moments: ultrahigh-vacuum high-Tc SQUID magnetometry, Phys. Rev. B 62, 11336–11339 (2000).

    Article  CAS  Google Scholar 

  32. B. T. Thole, P. Carra, F. Sette, and G. van der Laan, X-ray circular dichroism as a probe of orbital magnetization, Phys. Rev. Lett. 68, 1943–1946 (1992).

    Article  CAS  Google Scholar 

  33. P. Carra, B. T. Thole, M. Altarelli, and X. Wang, X-ray circular dichroism and local magnetic fields, Phys. Rev. Lett. 70, 694–697 (1993).

    Article  CAS  Google Scholar 

  34. C. Binns, K. W. Edmonds, S. H. Baker, M. J. Maher, S. C. Thornton, O. Tjernberg, and N. B. Brookes, Magnetism in nanoscale Fe clusters studied by dichroism in x-ray absorption and photoemission, Lecture Notes in Physics 565, 355–360 (Springer 2001).

    CAS  Google Scholar 

  35. G. A. Held, M. G. Samant, J. Stöhr, S. S. P. Parkin, B. D. Hermsmeier, M. van Schilfgaarde, and R. Nakajima, X-ray magnetic circular dichroism study of the induced spin polarization of Cu in Co/Cu and Fe/Cu multilayers, Z Phys. B 100, 335–341 (1996).

    Article  CAS  Google Scholar 

  36. F. Wilhelm, P. Poulopoulos, G. Ceballos, H. Wende, K. Baberschke, P. Srivastava, D. Benea, H. Ebert, M. Angelakeris, N. K. Flevaris, D. Niarchos, A. Rogalev, and N. B. Brookes, Layer-resolved magnetic moments in Ni/Pt multilayers, Phys. Rev. Lett. 85, 413–416 (2000).

    Article  CAS  Google Scholar 

  37. F. Wilhelm, P. Poulopoulos, H. Wende, A. Scherz, K. Baberschke, M. Angelakeris, N. K. Flevaris, and A. Rogalev, Systematics of the induced magnetic moments in 5d layers and the violation of the third Hund’s rule, Phys. Rev. Lett. 87, 207202/1–207202/4 (2001).

    CAS  Google Scholar 

  38. M. Tischer, O. Hjortstam, D. Arvanitis, J. Hunter Dunn, F. May, K. Baberschke, J. Trygg, J. M. Wills, B. Johansson, and O. Eriksson, Enhancement of orbital magnetism at surfaces: Co on Cu(100), Phys. Rev. Lett. 75, 1602–1605 (1995), erratum: Phys. Rev. Lett. 76, 1403 (1996).

    Article  CAS  Google Scholar 

  39. R. Pentchevaand M. Scheffler, Initial adsorption of Co onCu(001): A first-principles investigation, Phys. Rev. B 65, 155418 (2002); F. Nouvertné, U. May, M. Bamming, A. Rampe, U. Korte, G. Güntherodt, R. Pentcheva, and M. Scheffler, Atomic exchange processes and bimodal initial growth ofCo/Cu(001) Phys. Rev. B 60, 14382–14386 (1999).

    Google Scholar 

  40. D. P. Pappas, G. A. Prinz, and M. B. Ketchen, Superconducting quantum interference device magnetometry during ultrahigh vacuum growth, Appl. Phys. Lett. 65, 3401–3403 (1994).

    Article  CAS  Google Scholar 

  41. M. B. Stearns, in Magnetic Properties ofMetals, Landolt-Bornstein, New Series, Group III, Vol. 19, Pt. a ∼Springer, Berlin, 1986, pp. 37, 53.

    Google Scholar 

  42. A. Ney, K. Lenz, P. Poulopoulos, and K. Baberschke, Absolute magnetometry on ultrathin 3d-metal films by UHV-SQUID, J. Magn. Magn. Mater. 240, 343–345 (2002).

    Article  CAS  Google Scholar 

  43. A. E. Garcia, V. Gonzáles-Robles, and R. Baquero, Ferromagnetism in 4d(Tc, Ru, Rh, Pd) and 5d(Ir, Pt) transition-metal monolayers on a Cu(001) substrate, Phys. Rev. B 59, 9392–9401 (1999).

    CAS  Google Scholar 

  44. R. Pfandzelter, G. Steierl, and C. Rau, Evidence for 4d ferromagnetism in 2D systems: Ru monolayers on C(0001) substrates, Phys. Rev. Lett. 74, 3467–3470 (1995).

    Article  CAS  Google Scholar 

  45. H. P. J. Wijn, Magnetic Properties of Metals,Subvolume a: 3d, 4d and 5d Elements, Alloys and Compounds, Landolt-Börnstein, Vol III/19a, (Springer, Berlin, Heidelberg, 1986).

    Google Scholar 

  46. K. Baberschke, Anisotropy in magnetism, Lecture Notes in Physics 580, pp. 27–45 (Springer Verlag, 2001).

    Article  CAS  Google Scholar 

  47. H.-E. Nigh, S. Legvold, and F.-H. Spedding, Magnetization and electrical resistivity of gadolinium single crystals, Phys. Rev. 132, 1092–1097 (1963).

    Article  CAS  Google Scholar 

  48. B. Coqblin, The Electronic Structure of Rare-Earth Metals and Alloys: the Magnetic Heavy Rare-Earths (Academic, London, 1977).

    Google Scholar 

  49. S.-V. Vonsovskii, Magnetism (John Wiley & Sons, New York, 1974).

    Google Scholar 

  50. W.-P. Mason, Derivation of magnetostriction and anisotropic energies for hexagonal, tetragonal, and orthorombic crystals, Phys. Rev. 96, 302–310 (1954).

    Article  CAS  Google Scholar 

  51. R. M. Bozorth, Magnetostriction and crystal anisotropy of single crystals of hexagonal cobalt, Phys.Rev. 96 311–316 (1954).

    Article  CAS  Google Scholar 

  52. P. Bruno, Tight-binding approach to the orbital magnetic moment and magnetocrystalline anisotropy of transition-metal monolayers Phys. Rev. B 39, 865 (1989).

    Google Scholar 

  53. O. Hjorstam, K. Baberschke, J. M. Wills, B. Johanson, and O. Eriksson, Magnetic anisotropy and magnetostriction in tetragonal and cubic Ni, Phys. Rev. B 55, 15026–15032 (1997).

    Google Scholar 

  54. L. Néel, Aniotropie de la surface J. Phys. Rad. 15, 225 and 376 (1954).

    Google Scholar 

  55. U. Gradmann, T. Dürkop, and H. J. Elmers, Magnetic moments and anisotropies in smooth and rough surfaces and interfaces, J. Magn. Magn. Mater. 165, 56–61 (1997).

    Article  CAS  Google Scholar 

  56. P. Krams, B. Hillebrands, G. Güntherodt, and H. P. Oepen, Magnetic anisotropies of ultrathin Co films on Cu(1113) substrates, Phys. Rev. B 49, 3633–3636 (1994).

    Article  CAS  Google Scholar 

  57. M. T. Johnson, P. J. H. Bloemen, F. J. A. den Broeder, and J. J. de Vries, Magnetic anisotropy in metallic multilayers, Rep. Prog. Phys. 59, 1409–1458 (1996).

    Article  CAS  Google Scholar 

  58. M. Farle, W. Platow, E. Kosubek, and K, Baberschke, Magnetic anisotropy of Co/Cu(111) ultrathin films, Surf. Sci. 439 (1999) 146–152.

    Article  CAS  Google Scholar 

  59. U. Bovensiepen, Hyuk J. Choi, and Z. Q. Qui, Step-induced magnetic anisotropy in vicinal Ni/Cu(001) and its effect on the spin-reorientation transition, Phys. Rev. B 61, 3235–3238 (2000).

    Article  CAS  Google Scholar 

  60. R. K. Kawakami, E. J. Escorcia-Aparicio, and Z. Q. Qiu, Symmetry-induced magnetic anisotropy in Fe films grown on stepped Ag(001), Phys. Rev. Lett 77 2570–2573 (1996).

    Article  CAS  Google Scholar 

  61. J. Chen, and J. L. Erskine, Surface-step-induced magnetic anisotropy in thin epitaxial iron films on tungsten(001), Phys. Rev. Lett. 68, 1212–1215 (1992).

    CAS  Google Scholar 

  62. P. Bruno, Magnetic surface anisotropy of cobalt and surface roughness effects within Neel’s model, J. Phys. F 18, 1291–1298 (1988).

    Article  CAS  Google Scholar 

  63. H. Fritsche, J. Kohlhepp, H. J. Elmers, and U. Gradmann, Angular dependence of perpendicular magnetic surface anisotropy and the spin-reorientation transition, Phys. Rev. B 49, 15665–15668 (1994).

    Google Scholar 

  64. D. P. Pappas, Temperature dependent magnetic surface anisotropy in ultrathin Fe films, J. Vac. Sci. Technol. B 14, 3203–3206 (1996).

    Article  CAS  Google Scholar 

  65. A. Aspelmeier, M. Tischer, M. Farle, M. Russo, K. Baberschke, and D. Arvanitis, ac susceptibility measurements of magnetic monolayers: MCXD, MOKE, and mutual inductance, J. Magn. Magn. Mater. 146, 256–266 (1995), and references therein.

    Article  CAS  Google Scholar 

  66. H. J. G. Draaisma and W. J. M. de Jonge, Surface and volume anisotropy from dipole-dipole interactions in ultrathin ferromagnetic films, J. Appl. Phys. 64 3610–3613 (1988).

    Article  CAS  Google Scholar 

  67. R. Vollmer, Th. Gutjahr-Löser, J. Kirschner, S. van Dijken, and B. Poelsema, Spin-reorientation transition in Ni films on Cu(001): The influence of H2 adsorption, Phys. Rev. B 60, 6277–6280 (1999).

    Article  CAS  Google Scholar 

  68. T. J. Kreutz, T. Greber, P. Aebi, and J. Osterwalder, Temperature dependent electronic structure of Nickel metal, Phys. Rev. B 58, 1300–1317 (1998).

    Article  CAS  Google Scholar 

  69. U. Bovensiepen, C. Rüdt, P. Poulopoulos, and K. Baberschke, AC-susceptibility ofNi/W(110) ultrathin magnetic films: determination of the Curie temperature and critical behaviour, J. Magn. Magn. Mater. 231, 65–73 (2001).

    Article  CAS  Google Scholar 

  70. K. Baberschke, The magnetism of nickel monolayers, Appl. Phys. A 62, 417–427 (1996).

    Article  Google Scholar 

  71. J. Kohlhepp, H. J. Elmers, S. Cordes, and U. Gradmann, Power laws of magnetization in ferromagnetic monolayers and the two-dimensional Ising model, Phys. Rev. B 45, 12 287–12 291 (1992).

    Article  Google Scholar 

  72. P. Poulopoulos, M. Farle, U. Bovensiepen, and K. Baberschke, Evidence for domain formation near the Curie temperature in ultrathin Ni/Cu (001) films with perpendicular anisotropy, Phys. Rev. B 55, R1 1961–R1 1964 (1997).

    Article  CAS  Google Scholar 

  73. L. Szunyogh, B. Ujfalussy, C. Blaas, U. Pustogowa, C. Sommers, P. Weinberger, Oscillatory behavior of the magnetic anisotropy energy in Cu(100)/Co n multilayer systems, Phys. Rev. B 56, 14036–14044 (1997)

    Article  CAS  Google Scholar 

  74. R. M. Moon, Distribution of Magnetic Moment in Hexagonal Cobalt, Phys. Rev. 136, A195–A202 (1964)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this chapter

Cite this chapter

Farle, M. (2004). Magnetic Thin Films. In: Liz-Marzán, L.M., Kamat, P.V. (eds) Nanoscale Materials. Springer, Boston, MA. https://doi.org/10.1007/0-306-48108-1_17

Download citation

  • DOI: https://doi.org/10.1007/0-306-48108-1_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4020-7366-3

  • Online ISBN: 978-0-306-48108-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics