Skip to main content

Assemblies of Magnetic Particles

Synthesis and production

  • Chapter
Nanoscale Materials

5. Conclusions

In this chapter, we have presented both the key theoretical principles behind magnetic assembly as well as some experimental data proving the validity of the methods discussed. The MDT, ESA and NSL methods are inherently more advantageous in comparison to self assembly methods, because they offer better control over the assembly process and greater reproducibility of results. In particular, while the ESA technique can generate large amounts of nanostructures and the NSL technique can produce large arrays of two-dimensional nanostructures, both schemes benefit from ease of sample handling. Of course, all the methods have great promise in aiding the development of technologies relevant to the electronics, pharmaceutical, and biosciences industries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

7. References

  1. For reviews see e.g. a) C. J. Brinker and G. W. Scherer, Sol-Gel Science (Academic Press Inc., San Diego, 1990); b) H.-D. Dörfler, Grenzflächen-und Kolloidchemie (VCH, Weinheim, 1994), (in German); c) Clusters and Colloids, edited by G. Schmid (VCH, Weinheim, 1994); d) Nanoparticles and Nanostructured Films, edited by J. H. Fendler (Wiley-VCH, Weinheim, 1998); e) Handbook of Surfaces and Interfaces of Materials, edited by H. S. Nalwa (Academic Press, San Diego, 2001); f) P. Moriarty, Nanostructured materials, Rep. Prog. Phys. 64, 297–381 (2001); g) Special issue on New Aspects of Nanocrystal Research, MRS Bull. 26(12) (2001).

    Google Scholar 

  2. a) D. Weller and A. Moser, Thermal effect limits in ultra-high density magnetic recording, IEEE Trans. Magn. 35, 4423–4439 (1999); b) D. J. Sellmyer, M. Yu, and M. D. Kirby, Nanostructured magnetic films for extremely high density recording, Nanostruct. Mater. 12, 1021–1026 (1999).

    Article  CAS  Google Scholar 

  3. R. E. Rosensweig, Ferrohydrodynamics (Dover Publishing, New York, 1998).

    Google Scholar 

  4. a) Y. Z. Shao, J. K. L. Lai, and C. H. Shek, Preparation of nanocomposite working substances for room-temperature magnetic refrigeration, J. Magn. Magn. Mater. 163, 103–108 (1996); b) V. K. Pecharsky and K. A. Gschneidner Jr., Magnetocaloric effect and magnetic refrigeration, J. Magn. Magn. Mater. 200, 44–56 (1999); c) T. A. Yamamoto, M. Tanaka, Y. Misaka, T. Nakagawa, T. Nakayama, K. Niihara, and T. Numazawa, Dependence of the magnetocaloric effect in superparamagnetic nanocomposites on the distribution of magnetic moment size, Scripta Materialia 46, 89–94 (2002).

    Article  CAS  Google Scholar 

  5. a) M. Ronay, Preparation of magnetic particles and magnetic fluids by chemical reaction in a magnetic field, IBM Technol. Discl. Bull. 19, 2753–2763 (1976); b) C. Kormann, E. Schwab, F.-W. Raulfs, and K. H. Beck, Magnetic ink concentrate, U.S. Patent 5,500,141 (1996).

    Google Scholar 

  6. J. C. Lodder, D. J. Monsma, R. Vlutters, and T. Shimatsu, The spin-valve transistor: technologies and progress, J. Magn. Magn. Mater. 198–199, 119–124 (1999).

    Google Scholar 

  7. A. Jordan, R. Scholz, P. Wust, H. Schirra, T. Schiestel, H. Schmidt, and R. Felix, Endocytosis of dextran and silan-coated magnetite nanoparticles and the effect of intracellular hyperthermia on human mammary carcinoma cells in vitro, J. Magn. Magn. Mater. 194, 185–196 (1999).

    Article  CAS  Google Scholar 

  8. M. Y. Mapra, I. J. Körner, M. Hildebrandt, R. Bargou, D. Krahl, P. Reichardt, and B. Dörken, Monitoring of tumor cell purging after highly efficient immunomagnetic selection of CD34 cells from leukapheresis products in breast cancer patients: comparison of immunocytochemical tumor cell staining and reverse transcriptase-polymerase chain reaction, Blood 89(1), 337–344 (1997).

    Google Scholar 

  9. a) S. W. Charles and R.E. Rosensweig, Magnetic fluids bibliography, J. Magn. Magn. Mater. 39, 192–220 (1983); b) S. Kamiyama and R. E. Rosensweig, Magnetic fluids bibliography, J. Magn. Magn. Mater. 65, 403–439 (1987); c) E. Blum, R. Osols, and R. E. Rosensweig, Magnetic fluids bibliography, J. Magn. Magn. Mater. 85, 305–378 (1990); d) V. Cabuil, S. Neveu, and R. E. Rosensweig, Magnetic fluids bibliography, J. Magn. Magn. Mater. 122, 439–482 (1993); e) S. P. Bhatnagar and R. E. Rosensweig, Magnetic fluids bibliography, J. Magn. Magn. Mater. 149, 199–232 (1995); f) L. Vékás, V. Sofonea, and O. Balau, Magnetic fluids bibliography, J. Magn. Magn. Mater. 201, 454–489 (1999).

    Article  Google Scholar 

  10. a) S. A. lakovenko, A. S. Trifonov, M. Giersig, A. Mamedov, D. K. Nagesha, V. V. Hanin, E. C. Soldatov, and N. A. Kotov, One-and two-dimensional arrays of magnetic nanoparticles by the Langmuir-Blodgett technique, Adv. Mater. 11, 388–392 (1999); b) T. Fried, G. Shemer, and G. Markovich, Ordered two-dimensional arrays offerrite nanoparticles,Adv. Mater. 13, 1158–1161 (2001).

    Google Scholar 

  11. a) M. A. Correa-Duarte, M. Giersig, N. A. Kotov, and L. M. Liz-Marzán, Control of packing order of self-assembled monolayers of magnetite nanoparticles with and without SiO2 coating by microwave irradiation, Langmuir 14, 6430–6435; b) F. G. Aliev, M. A. Correa-Duarte, A. Mamedov, J. W. Ostrander, M. Giersig, L. M. Liz-Marzán, and N. A. Kotov, Layer-by-layer assembly of core-shell magnetite nanoparticles: effect of silica coating on interparticle interactions and magnetic properties, Adv. Mater. 11, 1006–1010 (1999); c) F. Caruso, M. Spasova, A. Susha, M. Giersig, and R. A. Caruso, Magnetic nanocomposite particles and hollow spheres constructed by a sequential layering approach, Chem. Mater. 13, 109–116 (2001); d) E. L. Bizdoaca, M. Spasova, M. Farle, M. Hilgendorff, and F. Caruso, Magnetically directed self-assembly of submicron spheres with a Fe3O4 nanoparticle shell, J. Magn. Magn. Mater. 240, 44–46 (2002).

    Google Scholar 

  12. M. Giersig and P. Mulvaney, Ordered two-dimensional gold colloid lattices by electrophoretic deposition, J. Phys. Chem 97, 6334–6336 (1993).

    Article  CAS  Google Scholar 

  13. a) M. Giersig and M. Hilgendorff, The preparation of ordered colloidal magnetic particles by magnetophoretic deposition, J. Phys. D: Appl. Phys. 32, L111–L113 (1999); b) M. Hilgendorff, B. Tesche and M. Giersig, Creation of 3-d crystals from cobalt nanoparticles in external magnetic fields, Aust. J. Chem. 54, 497–501 (2001).

    Article  CAS  Google Scholar 

  14. Handbook of Surfaces and Interfaces of Materials, edited by H. S. Nalwa (Academic Press, San Diego, 2001) vol. 3.

    Google Scholar 

  15. a) R. D. Shull and L. H. Bennet, Nanocomposite magnetic materials, Nanostruct. Mater. 1, 83–88 (1992); b) G. R Harp, S. S. P. Parkin, W. L. O’Brian, and B. P. Tonner, Induced Rh magnetic moments in Fe-Rh and Co-Rh alloys using X-ray magnetic circular dicroism, Phys. Rev. B 51, 12037–12040 (1995); c) G. Moraïtis, H. Dreyssé, and M. A. Khan, Band theory of induced magnetic moments in CoM (M = Rh, Ru) alloys, Phys. Rev. B 54, 7140–7142 (1996).

    CAS  Google Scholar 

  16. a) J. Rivas, R. D. Sánchez, A. Fondado, C. Izco, A. J. García-Bastida, J. García-Otero, J. Mira, D. Baldomir, A. Gonzáles, I. Lado, M. A. López-Quintela, and S. B. Oseroff, Structural and magnetic characterization of Co particles coated with Ag, J. Appl. Phys. 76, 6564–6566 (1994); b) S. Sun, C. D. Murray, D. Weller, L. Folks, and A. Moser, Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices, Science 287, 1989–1992 (2000); c) J.-I. Park, and J. Cheon, Synthesis of “solid solution” and “core-shell” type cobalt-platinum magnetic nanoparticles via transmetallation reaction, J. Am. Chem. Soc. 123, 5743–5746 (2001); d) C. J. O’Conner, V. Kolesnichenko, E. Carpenter, C. Sangregorio, W. Zhou, A. Kumbhar, J. Sims, and F. Agnoli, Fabrication and properties of magnetic particles with nanometer dimensions, Synth. Met. 122, 547–557 (2001); e) H. Bönnemann, Nanostructured metal colloids — chemistry and potential applications, in Handbook of Surfaces and Interfaces of Materials, edited by H. S. Nalwa (Academic Press, San Diego 2001), vol. 3, pp. 41–64; f) M. C. Fromen, A. Serres, D. Zitoun, M. Respaud, C. Amiens, B. Chaudret, P. Lecante, and M. J. Casanove, Structural and magnetic study of bimetallic Co1-xRhx particles, J. Magn. Magn. Mater. 242–245, 610–612 (2001); g) N. S. Sobal, M. Hilgendorff, H. Möhwald, M. Giersig, M. Spasova, T. Radetic, and M. Farle, Synthesis and structure of colloidal bimetallic nanocrystals: the non-alloying system Ag/Co, Nano Lett. 2, 621–624 (2002).

    Article  CAS  Google Scholar 

  17. N. Buske, H. Sonntag, and T. Götze, Magnetic fluids-their preparation, stabilization and applications in colloid science, Colloids Surf. A 12, 195–202 (1984).

    CAS  Google Scholar 

  18. D. V. Talapin, A. L. Rogach, M. Haase, and H. Weller, Evolution of an ensemble of nanoparticles in a colloidal solution: Theoretical study, J. Phys. Chem. B 105, 12278–12285 (2001).

    CAS  Google Scholar 

  19. a) L. Katsikas, A. Eichmüller, M. Giersig, and H. Weller, Discrete exitonic transitions in quantum-sized CdS particles, Chem. Phys. Lett. 172, 201–204 (1990); b) M. Respaud, J. M. Broto, H. Rakoto, A. R. Fert, L. Thomas, B. Barbara, M. Verelst, E. Snoeck, P. Lecante, A. Mosset, J. Osuna, T. Quid Ely, C. Amiens, and B. Chaudret, Surface effects on the magnetic properties of ultrafine cobalt particles, Phys. Rev. B 57, 2925–2935 (1998); c) D. P. Dinega and M. G. Bawendi, Eine aus der Lösung zugängliche neue Kristallstruktur von Cobalt, Angew. Chem. 111, 1906–1909; A solution-phase chemical approach to a new crystal structure of cobalt, Angew. Chem. Int. Ed. 38, 1788–1791 (1999); d) I. G. Dance, R. G. Garbutt, and T. D. Bailey, Aggregated structures of the compounds Cd(SC6H4X-4)2 in DMF solution, Inorg. Chem. 29, 603–608 (1990).

    Article  CAS  Google Scholar 

  20. J. N. Israelachvili, Intermolecular and Surface Forces (Academic Press, San Diego, 1992).

    Google Scholar 

  21. R. Tadmor, The London-van der Waals interaction energy between objects of various geometries, J. Phys.: Condens. Matter 13, L195–L202 (2001).

    Article  CAS  Google Scholar 

  22. a) D. Y. C. Chan, D. Henderson, J. Barojas, and A. M. Homola, The stability of a colloidal suspension of coated magnetic particles in an aqueous solution, J. Res. Develop. 29, 11–17 (1985); b) A. P. Philipse, M. P. B. van Bruggen, and C. Pathmamanoharan, Magnetic silica dispersions: preparation and stability of surface-modified silica particles with a magnetic core, Langmuir 10, 92–99 (1994).

    Google Scholar 

  23. D. Lacoste and T. C. Lubensky, Phase transition in a ferrofluid at magnetic-field induced microphase separation, Phys. Rev. E 64, 41506 (8) (2001).

    Google Scholar 

  24. D. R. Crow, Principles and Applications of Electrochemistry (Chapman and Hall, London, 1979).

    Google Scholar 

  25. R. Charmas, Four-layer complexation model for ion adsorption at energetically heterogeneous metal oxide/electrolyte interfaces, Langmuir 15, 5635–5648 (1999).

    Article  CAS  Google Scholar 

  26. L. M. Liz-Marzán, M. A. Correa-Duarte, Isabel Pastoriza-Santos, P. Mulvaney, T. Ung, M. Giersig, and N. A. Kotov, Core-shell nanoparticles and assemblies thereof, in Handbook of Surfaces and Interfaces of Materials, edited by H. S. Nalwa (Academic Press, San Diego 2001), vol. 3, pp. 189–237.

    Google Scholar 

  27. a) A. Henglein, Small-particle research: physicochemical properties of extremely small colloidal metal and semiconductor particles, Chem. Rev. 89, 1861–1873 (1989); b) L. Spanhel and M. A. Anderson, Semiconductor clusters in the sol-gel process: quatized aggregation, gelation, and crystal growth in concentrated ZnO colloids, J. Am. Chem. Soc. 113, 2826–2833 (1991); c) H. Weller, Kolloidale Halbleiter-Q-Teilchen: Chemie im Übergangsbereich zwischen Festkörper und Molekül, Angew. Chem. 105, 43–55 (1993), Angew. Chem. Int. Ed. 32, 41–53 (1993); d) C. B. Murray, C. R. Kagan, and M. G. Bawendi, Synthesis and characterization of monodisperse nanocrystals and close packed nanocrystal assemblies, Annu. Rev. Mater. Sci. 30, 545–610 (2000).

    Article  CAS  Google Scholar 

  28. W. Ostwald, Die Welt der vernachlässigten Dimensionen (Steinkopf, Dresden, 1915).

    Google Scholar 

  29. E. Papirer, P. Horny, H. Balard, R. Anthore, C. Petipas, and A. Martinet, The preparation ofaferrofluid by decomposition of dicobalt octacarbonyl, J. Colloid Interface Sci. 94, 207–228 (1993).

    Google Scholar 

  30. S. Sun and C. B. Murray, Synthesis of monodisperse cobalt nanocrystals and their assembly into magnetic superlattices, J. Appl. Phys. 85, 4325–4330 (1999).

    CAS  Google Scholar 

  31. a) K. R. Brown and M. J. Natan, Hydroxylamine seeding of colloidal Au nanoparticles in solution and on surfaces, Langmuir 14, 726–728 (1998); b) N. R. Jana, L. Gearheart, and C. J. Murphy, Evidence for seed-mediated nucleation in the chemical reduction of gold salts to gold nanoparticles, Chem. Mater. 13, 2313–2322 (2001); c) H. Yu, P. C. Gibbons, K. F. Kelton, and W. E. Buhro, Heterogeneous seeded growth: a potentially general synthesis of monodisperse metallic nanoparticles, J. Am. Chem. Soc. 123, 9198–9199 (2001).

    CAS  Google Scholar 

  32. A. Fojtik, H. Weller, U. Koch, and A. Henglein, Photo-chemistry of colloidal metal sulfides 8. photo-physics of extremely small cds particles: Q-state CdS and magic agglomeration numbers, Ber. Bunsenges. Phys. Chem. 88, 969–977 (1984).

    CAS  Google Scholar 

  33. a) V. Ptatschek, T. Schmidt, M. Lerch, G. Müller, L. Spanhel, A. Emmerling, J. Fricke, A. H. Foitzik, and E. Langer, Quatized aggregation phenomena in II-VI-semiconductor colloids, Ber. Bunsenges. Phys. Chem. 102, 85–95 (1998); b) C. Lorenz, A. Emmerling, J. Fricke, T. Schmidt, M. Hilgendorff, L. Spanhel, and G. Müller, Aerogels containing strongly photoluminescing zinc oxide nanocrystals, J. Non-Cryst. Solids. 238, 1–5 (1998).

    CAS  Google Scholar 

  34. a) A. Henglein and M. Giersig, Formation of colloidal silver nanoparticles: capping action of citrate, J. Phys. Chem. B 103, 9533–9539 (1999); b) Z. A. Peng and X. Peng, Mechanisms of the shape evolution of CdS nanocrystals, J. Am. Chem. Soc. 123, 1389–1395 (2001).

    CAS  Google Scholar 

  35. G. Wedler, Lehrbuch der Physicalischen Chemie (VCH, Weinheim, 1987).

    Google Scholar 

  36. R. Massart and V. Cabuil, Synthèse en milieu alcalin de magnétite colloïdale: contrôle du rendement et de la taille des particules, J. Chim. Phys. 84, 967–973 (1987).

    CAS  Google Scholar 

  37. a) J. P. Chen, C. M. Sørensen, and K. J. Klabunde, Enhanced magnetization of nanoscale colloidal nanoparticles, Phys. Rev. B 51, 11527–11532 (1995); b) M.-P. Pileni, Magnetic fluids: fabrication, magnetic properties, and organization of nanocrystals, Adv. Funct. Mater. 11, 323–336 (2001).

    CAS  Google Scholar 

  38. a) M. Giersig and M. Hilgendorff, Ordered colloidal magnetic particles by magnetophoretic deposition, in Cluster and Nanostructure Interfaces, edited by P. Jena, S. N. Khanna, and B. K. Rao (World Scientific, Singapore, 2000), pp. 203–208; b) C. B. Murray, S. Sun, H. Doyle, and T. Betley, Monodisperse 3d transition-metal (Co, Ni, Fe) nanoparticles, MRS Bull. 26, 985–991 (2001); c) J. Osuna, D. de Caro, C. Amiens, B. Chaudret, E. Snoeck, M. Respaud, J.-M. Broto, and A. Frert, Synthesis, characterization, and magnetic properties of cobalt nanoparticles from an organometallic precursor, J. Phys. Chem. 100, 14571–14574 (1996).

    Google Scholar 

  39. a) T. W. Smith and D. Wychick, Colloidal iron dispersions prepared via the polymer-catalyzed decomposition of iron pentacarbonyl, J. Phys. Chem. 84, 1621–1629 (1980); b) K. S. Suslick, M. Fang, and T. Hyeon, Sonochemical Synthesis of iron colloids, J. Am. Chem. Soc. 118, 11960–11961 (1996).

    Article  CAS  Google Scholar 

  40. a) S. R. Hoon, M. Kilner, G. J. Russel, and B. K. Tanner, Preparation and properties of nickel ferrofluids, J. Magn. Magn. Mater. 39, 107–110 (1983); b) N. Cordente, M. Respaud, F. Senocq, M.-J. Casanove, C. Amiens, and B. Chaudret, Synthesis and magnetic properties of nickel rods, Nano Lett. 1, 565–568 (2001).

    CAS  Google Scholar 

  41. I. Nakatani, M. Hijikata, and K. Ozawa, Iron-nitride magnetic fluids prepared by vapour-liquid reaction and their magnetic properties, J. Magn. Magn. Mater. 122, 10–14 (1993).

    Article  CAS  Google Scholar 

  42. M. Giersig and M. Hilgendorff, On the road from single, nanosized, magnetic clusters to multidimensional nanostructures, Colloids Surf. A 202, 207–213 (2002).

    Article  CAS  Google Scholar 

  43. M. Hilgendorff and M. Giersig, Synthesis of colloidal magnetic nanoparticles: properties and applications, NATO ASI Series, in press.

    Google Scholar 

  44. a) R. V. Upadhyay, K. J. Davies, S. Wells, and S. W. Charles, Preparation and characterization of ultra-fine MnFe2O4 and MnxFe1-xO4 spinel systems: II. Magnetic fluids, J. Magn. Magn. Mater. 139, 249–254 (1995); b) K. J. Davies, S. Wells, R. V. Upadhyay, S. W. Charles, K. O’Grady, M. El Hilo, T. Meaz, and S. Mørup, The observation of multi-axial anisotropy in ultrafine cobalt ferrite particles used in magnetic fluids, J. Magn. Magn. Mater. 149, 14–18 (1995); c) P. C. Fannin, S. W. Charles, and J. L. Dormann, Field dependence of the dynamic properties of colloidal suspensions of Mn0.66Zn0.34Fe2O4 and Ni0.5Zn0.5Fe2O4 particles, J. Magn. Magn. Mater. 201, 98–101 (1999).

    Article  CAS  Google Scholar 

  45. a) K. J. Davies, S. Wells, and S. W. Charles, The effect of temperature and oleate adsorption on the growth of maghemite particles, J. Magn. Magn. Mater. 122, 24–28; (1993) b) I. MĂlĂescu, L. Gabor, F. Claici, and N. Ştefu, Study of some magnetic properties of ferrofluids filtered in magnetic field gradient, J. Magn. Magn. Mater. 222, 8–12 (2000).

    Article  CAS  Google Scholar 

  46. a) H. Bönnemann, W. Brijoux, R. Brinkmann, E. Dijius, T. Jou§en, and B. Korall, Erzeugung von kolloidalen Übergangsmetallen in organischer Phase und ihre Anwendung in der Katalyse, Angew. Chem. 103, 1344–1346 (1991), Angew. Chem. Int. Ed. 30, 1344–1346 (1991); b) J. Fink, C. J. Kiely, D. Bethell, and D. J. Schiffrin, Self-organization of nanosized gold particles, Chem. Mater. 10, 922–926 (1998).

    Google Scholar 

  47. D. I. Gittins. and F. Caruso, Spontaneous phase transfer of nanoparticulate metals from organic to aqueous media, Angew. Chem. Int. Ed. 40, 3001–3004 (2001).

    Article  CAS  Google Scholar 

  48. C. B. Murray, S. Sun, W. Gaschler, H. Doyle, T. A. Betley, C. R. and Kagan, Colloidal synthesis of nanocrystals and nanocrystal superlattices, IBM J. Res. Dev. 45, 47–56. (2001).

    Article  CAS  Google Scholar 

  49. V. F. Puntes, K. M. Krishnan, and P. Alivisatos, Synthesis, self-assembly, and magnetic behavior of a two-dimensional superlattice of single-crystal ε-Co nanoparticles, Appl. Phys. Lett. 78, 2187–2189 (2001).

    Article  CAS  Google Scholar 

  50. H. Laidler and K. O’Grady, Crystallographic effects in Co alloy media, http://www.datatech-online.com 1, 93–97 (1998).

    Google Scholar 

  51. O. Adeyeye, J.A.C. Bland, and C. Daboo, Magnetic properties of arrays of “holes” in Ni80Fe20 films, Appl. Phys. Lett. 70, 3164–3166, (1977).

    Google Scholar 

  52. a) J. Rybczynski, M. Giersig, Nanosphere litography: fabrication of large periodic magnetic particles arrays using nanosphere mask, submitted (2002). b) J. Rybczynski, M. Giersig, Nanosphere lithography-Fabrication of various periodic magnetic particle arrays using versatile nanosphere masks, in: Low-Dimensional Systems: Theory, Preparation and Some Applications, edited by L. M. Liz-Marzán and M. Giersig, NATO ASI Series 2003, in press.

    Google Scholar 

  53. a) U. Wiedwald, M. Spasowa, M. Farle, M Hilgendorff, M. Giersig, Ferromagnetic resonance of monodisperse Co particles, J.Vac.Sci. Technol. A, 19, 1773–1776, (2001), b) M. Spasova, U. Wiedwald, R. Ramchal, M. Farle, M. Hilgendorff, M. Giersig, J. Magn. Magn. Mater., 240, 40–43, (2002).

    Article  CAS  Google Scholar 

  54. S. H. Park, B. Gates, Y. Xia, A three-dimensional photonic crystal operating in the visible region, Adv. Mat. 11, 462–466 (1999).

    Article  CAS  Google Scholar 

  55. B. Gates, Y. Xia, Photonic crystals that can be addressed with an external magnetic field, Adv Mat. 13, 1605–1608 (2001).

    Article  CAS  Google Scholar 

  56. Y. Xia, B. Gates, Y. Yin, Current chemistry. Building complex structures from monodisperse spherical colloids, Aust J. Chem. 54, 287–290 (2001).

    Article  CAS  Google Scholar 

  57. J. G. Wen, Z. P. Huang, D. Z. Wang, J. H. Chen, S. X. Yang, Z. F. Ren, J. H. Wang, L. E. Calvet, J. Chen, J. F. Klemic, M. A. Reed, Growth and characterization of aligned carbon nanotubes from patterned nickel nanodots and uniform thin films, J. Mater. Res. 16, 3246–3253 (2001).

    CAS  Google Scholar 

  58. M. E. Read, W. G. Schwarz, M. J. Kremer, J. D. Lennhoff, D. L. Carnahan, K. Kempa, Z. F. Ren, Carbon nanotube-based cathodes for microwave tubes, Proc 2001 Part. Accelerator Conf., Chicago 1026–1028 (2001).

    Google Scholar 

  59. M. Giersig, P. Mulvaney, Formation of ordered two-dimensional gold colloid lattices by electrophoretic deposition, J. Phys. Chem. 97(24), 6334–6336 (1993).

    Article  CAS  Google Scholar 

  60. A. Rogach, A. Susha, F. Caruso, G. Sukhorukov, A. Kornowski, S. Kershaw, H. Möhwald, A. Eychmüller, and H. Weller, Nano-and microengineering: 3-D colloidal photonic crystals prepared from sub-μm-sized polystyrene latex spheres pre-coated with luminiscent polyelectrolyte/nanocrystal shells, Adv. Mat. 12 333–337 (2000).

    Article  CAS  Google Scholar 

  61. H. W. Deckman and J. H. Dunsmuir, Natural lithography, Appl. Phys. Lett. 41, 377–379 (1982).

    Article  CAS  Google Scholar 

  62. a) J. C. Hulteen and P. R. Van Duyne, Nanosphere lithography: A materials general fabrication process for periodic particle array surfaces, J. Vac. Sci. Techn. A, 13, 1553–1558 (1995); b) J. C. Hulteen, D. A. Treichel, M. T. Smith, M. L. Duval, T. R. Jensen, and R. P. Van Duyne, Nanosphere lithography: size-tunable silver nanoparticle and surface cluster arrays, J. Phys. Chem. 103, 3854–3863 (1999); c) M. Winzer, M. Kleiber, N. Dix, and R. Wiesendanger, Fabrication of nano-dot and nano-ring-arrays by nanosphere lithography, Appl. Phys. A 63, 617–619 (1996).

    Article  Google Scholar 

  63. a) R. Micheletto, H. Fukuda, and M. Ohtsu, A simple method for the production of a two-dimensional, ordered array of small particles, Langmuir 11, 3333–3336 (1995); b) J. Boneberg, F. Burmeister, C. Schäfle, and P. Leiderer, The formation of nano-dot and nano-ring structures in colloidal monolayer lithography, Langmuir 13, 7080–7084 (1997); c) F. Burmeister, W. Badowsky, T. Braun, S. Wieprich, J. Boneberg, and P. Leiderer, Colloid monolayer lithography — a flexible approach for nanostructuring of surfaces, App. Surf. Sci. 144–145, 461–466 (1999); d) F. Burmeister, C. Schäfle, B. Keilhofer, K. M. Bechinger, J. Boneberg, and P. Leiderer, From mesoscopic to nanoscopic surface structures: Lithography with colloid monolayers, Adv. Mat. 10, 495–497 (1998); e) N. D. Denkov, O. D. Velev, P. A. Kralchevsky, I. B. Ivanov, H. Yoshimura, and K. Nagayama, Mechanism of formation of two-dimensional crystals from latex particles on substrates, Langmuir 8, 3183–3190 (1992); f) S. Rakers, L. F. Chi, and H. Fuchs, Influence of the evaporation rate on the packing order of polydisperse latex monofilms, Langmuir 13, 7121–7124 (1997); g) E. Adachi, A. S. Dimitrov, and K. Nagayama, Stripe patterns formed on a glass surface during droplet evaporation, Langmuir 11, 1057–1060 (1995).

    Article  CAS  Google Scholar 

  64. Y. Lu, Y. Yin, B. Gates, and Y. Xia, Growth of large crystals of monodispersed spherical colloids in fluidic cells fabricated using non-photolithographic method, Langmuir 17, 6344–6350 (2001).

    CAS  Google Scholar 

  65. S. H. Park and Y. Xia, Assembly of mesoscale particles over large areas and its application in fabricating tunable optical filters, Langmuir 15, 266–273 (1999).

    CAS  Google Scholar 

  66. F. Burmeister, C. Schäfle, T. Matthes, M. Böhmisch, J. Boneberg, and P. Leiderer, Colloid monolayer as versative lithographic masks, Langmuir 13, 2983–2987 (1997).

    Article  CAS  Google Scholar 

  67. F. Caruso, Nanoengineering of particle surfaces, Adv. Mater. 13, 11–22, (2001).

    CAS  Google Scholar 

  68. a) F. Caruso, E. Donath, and H. Möhwald, Influence of polyelectrolyte multilayer coatings on Förster resonance energy transfer between 6-carboxyfluorescein and rhodamine B-labeled particles in aqueous solution, J. Phys. Chem. B 102, 2011–2016, (1998); b) E. Donath, G. B. Sukhorukov, F. Caruso, S.A. Davis, and H. Möhwald, Novel hollow polymer shells by colloid-templated assembly of polyelectrolytes, Angew. Chem., Intl. Ed. 37, 2201–2205, (1998).

    Article  CAS  Google Scholar 

  69. a) F. Caruso, R.A. Caruso and H. Möhwald, Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating, Science, 282, 1111–1114, (1998); b) A. Susha, F. Caruso, A.L. Rogach, G. B. Sukhorukov, A. Kronowski, H. Möhwald, M. Giersig, A. Eichmülller, and H. Weller, Formation of luminescent spherical core-shell particles by the consecutive absorption of polyelectrolyte and CdTe(S) nanocrystals on latex colloids, Colloids Surf. A, 163(1), 39–44, (2000); c) F. Caruso, A. S. Susha, M. Giersig, and H. Möhwald, Magnetic core-shell particles: preparation of magnetite multilayers on polymer latex microspheres, Adv. Mater. 11, 950 (1999).

    Article  CAS  Google Scholar 

  70. a) F. Caruso and H. Möhwald, Protein multilayer formation on colloids through a stepwise self-assembly technique, J. Am. Chem. Soc. 121, 6039–6046 (1999); b) F.Caruso, H.Fidler, and K. Haage, Assembly of β-glucosidase multilayers on spherical colloidal particles and their use as active catalysts, Colloids Surf. A, 169, 287–293 (2000).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this chapter

Cite this chapter

Hilgendorff, M., Giersig, M. (2004). Assemblies of Magnetic Particles. In: Liz-Marzán, L.M., Kamat, P.V. (eds) Nanoscale Materials. Springer, Boston, MA. https://doi.org/10.1007/0-306-48108-1_15

Download citation

  • DOI: https://doi.org/10.1007/0-306-48108-1_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4020-7366-3

  • Online ISBN: 978-0-306-48108-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics