Skip to main content

New Applications and Properties of Langmuir-Blodgett Films

  • Chapter
Nanoscale Materials

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

6. References

  1. G. L. Gaines, Jr. Insoluble Monolayers At Liquid-Gas Interfaces, (Interscience Publishers, 1966).

    Google Scholar 

  2. G. G. Roberts, Langmuir-Blodgett Films (Plenum Publ. Co., New York, 1990).

    Google Scholar 

  3. H. Kuhn and D. Möbius, in Investigations of Surfaces and Interfaces, 2nd Ed., edited by B. W. Rossiter, R. C. Baetzold (John Wiley & Sons, Inc., New York, 1993) Vol. IXB, p. 375.

    Google Scholar 

  4. H. Kuhn, Functionalized monolayer assembly manipulation, Thin Solid Films 99, 1–16 (1983).

    Article  CAS  Google Scholar 

  5. H. Grüniger, D. Möbius, and H. Meyer, Enhanced light reflection by dye monolayers at the air-water interface, J. Chem. Phys. 79, 3701–3710 (1983).

    Google Scholar 

  6. U. Lehmann, Aggregation of cyanine dyes at Langmuir-Blodgett monolayers, Thin Solid Films 160, 257–269 (1988).

    Article  CAS  Google Scholar 

  7. H. Hada, R. Hanawa, A. Haraguchi, and Y. Yonezawa, Preparation of the J-aggregate of cyanine dyes by means of the Langmuir-Blodgett technique, J. Phys.Chem. 89, 560–562 (1985).

    Article  CAS  Google Scholar 

  8. Y. Yonezawa, D. Möbius, and H. Kuhn, Scheibe-aggregate monolayers ofcyanine dyes without long alkyl chains, Ber. Bunsenges. Phys. Chem. 90, 1183–1188 (1986).

    CAS  Google Scholar 

  9. W. Cordroch, and D. Möbius, Incorporation of non-amphiphilic compounds into host monolayers, Thin Solid Films 210/211, 135–137 (1992).

    Article  Google Scholar 

  10. D. Janietz in: Handbook of Surfaces and Interfaces of Materials, edited by H. S. Nalwa (Academic Press, San Diego, 2001), Vol. 1, pp. 423–445

    Google Scholar 

  11. K. Hiltrop, J. Hasse, and H. Stegemeyer, On the alignment of thermotropic nematic and smectic liquid crystals on lecithin coated surfaces, Ber. Bunsen-Ges. Phys. Chem. 98, 209–213 (1994).

    CAS  Google Scholar 

  12. V. S. U. Fazio, L. Komitov, and S. T. Lagerwall, Alignment and alignment dynamics of nematic liquid crystals on Langmuir-Blodgett monolayers, Liq. Cryst. 24, 427–433 (1998).

    Article  CAS  Google Scholar 

  13. V. S. U. Fazio, L. Komitov, and S. T. Lagerwall, Alignment of nematic liquid crystals on mixed Langmuir-Blodgett monolayers, Thin Solid Films 327–329, 681–685 (1998).

    Google Scholar 

  14. K. Ichimura, Y. Suzuki, T. Seki, A. Hosoki, and K. Aoki, Reversible Change in Alignment Mode of Nematic Liquid crystals regulated photochemically by “command surfaces” modified with an azobenzene monolayer, Langmuir 4, 1214–1216 (1988).

    Article  CAS  Google Scholar 

  15. K. Aoki, T. Seki, Y. Suzuki, T. Tamaki, A. Hosoki, and K. Ichimura, Factors affecting photoinduced alignment regulation of cyclohexanecarboxylate-type nematic liquid crystals by azobenzene molecular films, Langmuir 8, 1007–1013 (1992).

    CAS  Google Scholar 

  16. T. Seki, M. Sakuragi, Y. Kawanishi, Y. Suzuki, T. Tamaki, R. Fukuda, and K. Ichimura, “Command surfaces” of Langmuir-Blodgett films. Photoregulations of liquid crystal alignment by molecularly tailored surface azobenzene layers, Langmuir 9, 211–218 (1993).

    Article  CAS  Google Scholar 

  17. T. Ubukata, T. Seki, and K. Ichimura, Modeling the interface region of command surface 1. Structural evaluations of azobenzene/liquid crystal hybrid Langmuir monolayers, J. Phys. Chem. B 104, 4141–4147 (2000).

    CAS  Google Scholar 

  18. T. Ubukata, T. Seki, S. Morino, and K. Ichimura, Modeling the interface region of command surface 2. Spectroscopic evaluations of azobenzene/liquid crystal hybrid Langmuir-Blodgett films under illumination, J. Phys. Chem. B 104, 4148–4154 (2000)

    CAS  Google Scholar 

  19. V. S. U. Fazio, L. Komitov, S.T. Lagerwall, and D. Mobius, D. Incorporation of a non-amphiphilic nematic liquid crystal into a host monolayer, Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A 351, 403–410 (2000).

    CAS  Google Scholar 

  20. M. Petty, Langmuir-Blodgett Films (Cambridge University Press, Cambridge, UK, 1996).

    Google Scholar 

  21. A. T. Ivanova, M. L. Kurnaz, and D. K. Schwartz, Temperature and flow rate dependence of the velocity profile during channel flow of a Langmuir monolayer, Langmuir 15, 4622–4624 (1999).

    Article  CAS  Google Scholar 

  22. A. T. Ivanova and D. K. Schwartz, Transient behavior of the velocity profile in channel flow of a Langmuir monolayer, Langmuir 16, 9433–9438 (2000).

    CAS  Google Scholar 

  23. J. Ignés-Mullol and D. K. Schwartz, Alignment of hexatic Langmuir monolayer under shear. Phys. Rev. Lett. 85, 1476–1479 (2000).

    Google Scholar 

  24. J. Ignés-Mullol and D. K. Schwartz, Molecular orientation in Langmuir monolayers under shear, Langmuir 17, 3017–3029 (2001).

    Google Scholar 

  25. J. Ignés-Mullol and D. K. Schwartz, Shear induced molecular precession in a hexatic Langmuir monolayer, Nature 410, 348–351 (2001).

    Google Scholar 

  26. T. Maruyama, G. Fuller, C. Frank, and C. Robertson, Flow-induced molecular orientation of a Langmuir films, Science 274, 233–235 (1996).

    Article  CAS  Google Scholar 

  27. T. Maruyama, J. Lauger, G. G. Fuller, C.W. Frank, and C. R. Robertson, Orientation of a Fatty Acid Monolayer: Effect of Flow Type, Langmuir 14, 1836–1845 (1998).

    Article  CAS  Google Scholar 

  28. Y. A. Ono, in: Electroluminescence in Encyclopedia of Applied Physics, edited by G. L. Trigg (VCH, Weinheim, 1993), vol. 5, p. 295.

    Google Scholar 

  29. J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, and A. B. Holmes, Light-emitting diodes based on conjugated polymers, Nature 347, 539–541 (1990).

    Article  CAS  Google Scholar 

  30. D. Braun and A. J. Heeger, Appl. Phys. Lett. 58, 1982-(1991).

    Article  CAS  Google Scholar 

  31. C. Hosokawa, N. Kawasaki, S. Sakamoto, and T. Kusumoto, Bright blue electroluminescence from hole transporting polycarbonate, Appl. Phys. Lett. 61, 2503–2505 (1992).

    Article  CAS  Google Scholar 

  32. H. Vestweber, A. Greiner, U. Lemmer, R. F. Mahrt, R. Richert, W. Heitz, and H. Bässler, Progress towards processible materials for light-emitting devices using poly(p-phenylphenylenevinylene, Adv. Mater. 4, 661–662 (1992).

    Article  CAS  Google Scholar 

  33. C. W. Tang and S. A. VanSlyke, Organic electroluminescent diodes, Appl. Phys. Lett. 51, 913–915 (1987).

    CAS  Google Scholar 

  34. C. Adachi, T. Tsutsui, and S. Saito, Organic electroluminescent device having a hole conductor as an emitting layer, Appl. Phys. Lett, 55, 1489–1491 (1989).

    Article  CAS  Google Scholar 

  35. R. H. Friend, R. W. Gymer, A. B. Holmes, J. H. Burroughes, R. N. Marks, C. Taliani, D. D. C. Bradley, D. A. Dos Santos, J. L. Brédas, M. Lögdlund, and W. R. Salaneck, Electroluminescence in conjugated polymers, Nature 397, 121–128 (1999).

    Article  CAS  Google Scholar 

  36. G. Destriau, Scintillations of zinc sulfides with α-rays, J. Chim. Phys. 33, 587–625 (1936).

    CAS  Google Scholar 

  37. T. Christ, F. Geffart, B. Glüsen, A. Kettnre, G. Lüssem, O. Schäfer, V. Stümpflen, J. H. Wendorff, and V. V. Tsukruk, Analysis of light emitting diodes by X-ray reflectivity measurements, Thin Solid Films 302, 214–222 (1997).

    Article  CAS  Google Scholar 

  38. M. Pope, H. P. Kallmann, and P. Magnante, Electroluminescence in organic crystals, J. Chem. Phys. 38, 2042–2043 (1963)

    Article  CAS  Google Scholar 

  39. W. Helfrich and W. G. Schneider, Recombination radiation in anthracene crystals, Phys. Rev. Lett. 14, 229–231 (1965).

    Article  CAS  Google Scholar 

  40. U. Mitschke and P. Bäuerle, The electroluminiscence of organic materials, J. Mater. Chem. 10, 1471–1507 (2000).

    Article  CAS  Google Scholar 

  41. M. Gross, D. C. Müller, H. G. Nothofer, U. Scherf, D. Neher, C. Bräuchle, and K. Meerholz, Improving the performance of doped π-conjugated polymers for use in organic light-emitting diodes, Nature 405, 661–665 (2000).

    Article  CAS  Google Scholar 

  42. G. Y. Jung, C. Pearson, L. E. Horsburgh, I. D. W. Samuel, A. P. Monkman, and M. C. Petty, The effect of insulating spacer layers on the electrical properties of polymeric Langmuir-Blodgett film light emitting devices, J. Phys. D: Appl. Phys. 33, 1029–1035 (2000).

    CAS  Google Scholar 

  43. J. Kido, and Y. lizumi, Fabrication of highly efficient organic electroluminescent devices, Appl. Phys. Lett. 73, 2721–2723 (1998).

    CAS  Google Scholar 

  44. J. Kido, and T. Matsumoto, Organic electroluminescence devices having a metal-doped electron-injecting layer, Appl. Phys. Lett. 73, 2866–2868 (1998).

    CAS  Google Scholar 

  45. J. D. Hong, D. Kim, K. Cha, and J. I. Jin, Spectroscopic studies on ultrathin poly(p-phenylenevinylene) film deposited by self-assembly and spin-coating methods, Synth. Met. 84, 815–816 (1997).

    Article  CAS  Google Scholar 

  46. M. Gao, B. Richter, S. Kirstein, and H. Möhwald, Electroluminescence studies on self-assembly films of PPV and CdSe nanoparticles, J. Phys. Chem. B 102, 4096–4103 (1998).

    CAS  Google Scholar 

  47. I. Benjamin, H. Hong, Y. Avny, D. Davidov, and R. Neumann, Poly(phenylenevinylene) analogs with ring-substituted polar side-chains and their use in the formation of hydrogen-bonding based self-assembled multilayers, J. Mater. Chem. 8, 919–924 (1998).

    Article  CAS  Google Scholar 

  48. A. Wu, and M. Kakimoto, LEDs based on poly(p-phenylenevinylene) and polyimide Langmuir-Blodgett (LB) films, Adv. Mater. 7, 812–814 (1995).

    Article  CAS  Google Scholar 

  49. Y. Liu, Q. Li, Y. Xu, X. Jiang, and D. Zhu, Light emitting diodes based on high electron affinity polymer Langmuir-Blodgett films, Synth. Met. 85, 1279–1280 (1997).

    CAS  Google Scholar 

  50. T. Östergard, J. Paloheimo, A. J. Pal, and H. Stubb, Langmuir-Blodgett light-emitting diodes of poly(3-hexylthiophene): electro-optical characteristics related to structure, Synt. Metals 88, 171–177 (1997).

    Google Scholar 

  51. A. Chowdhury, J. Chowdhury, P. Pal, and A. J. Pal, Light-emitting diodes from molecularly thin porphyrin derivative effect of molecular packing, SolidState Commun. 107, 725–729 (1998).

    CAS  Google Scholar 

  52. J. Simmeer, B. Glüsen, W. Paulus, A. Kettner, P. Schuhmacher, D. Adam. K. H. Etzbach, K. Siemensmeyer, J. H. Wendorff, H. Ringsdorf, and D. Haarer, Transient photoconductivity in a discotic hexagonal plastic crystal, Adv. Mater. 8, 815–819 (1996).

    Google Scholar 

  53. I. H. Stapff, V. Stümpflen, J. H. Wendorff, D. B. Spohn, and D. Möbius, Multilayer light emitting diodes based on columnar discotics, Liquid Cryst. 23, 613–617 (1997).

    CAS  Google Scholar 

  54. G. Xu, Z. Bao, and J. T. Groves, Langmuir-Blodgett films of regioregular poly(3-hexylthiophene) as field-effect transistors, Lanmguir 16, 1834–1841 (2000).

    CAS  Google Scholar 

  55. A. Bolognesi, C. Botta, G. Bajo, R. Österbacka, T. Östergård, and H. Stubb, Photoluminesence and electroluminescence in Langmuir-Blodgett films of poly(3-decylmethoxythiophene), Synt. Metals 98, 123–127 (1998).

    CAS  Google Scholar 

  56. D. Zhang, Y. Xu, L. Ding; Y. Liui, and D. Zhu, Magnetic LB films of bis-radicals (nitronyl nitroxide and imino nitroxide) substituted benzene with long alkyl chain, Chem. Phys. Lett. 304, 236–240 (1999).

    CAS  Google Scholar 

  57. J. Le Moigne, J. L. Gallani, P. Wautelet, M. Moroni, L. Oswald, C. Cruz, Y. Galerne, J. C. Arnault, R. Duran, and M. Garrett, Nitronyl nitroxide and imino nitroxide mono-and biradicals in Langmuir and Langmuir-Blodgett films, Langmuir 14, 7484–7492 (1998).

    Google Scholar 

  58. J. L. Gallani, J. Le Moigne, L. Oswald, M. Bernard, and P. Turek, Induced ferromagnetic interactions in Langmuir-Blodgett films of an organic radical, Langmuir 17, 1104–1109 (2001).

    Article  CAS  Google Scholar 

  59. M. Clemente-León, C. Mingotaud, B. Agricole, C. J. Gómez-Garcia, E. Coronado, and P. Delhaes, Application of the Langmuir-Blodgett technique to polyoxometalates: towards new magnetic films, Angew. Chem., Int. Ed. Engl. 36, 1114–1116 (1997).

    Google Scholar 

  60. M. Clemente-León, C. Mingotaud, B. Agricole, C. J. Gómez-Garcia, E. Coronado, and P. Delhaes, Toward New organic/inorgnaic superlattices: Keggin polyoxometalates in Langmuir and Langmuir-Blodgett films, Langmuir 13, 2340–2347 (1997).

    Google Scholar 

  61. M. Clemente-León, C. Mingotaud, C. J. Gómez-Garcia, E. Coronado, and P. Delhaes, Polyoxometalates in Langmuir-Blodgett films: toward new magnetic materials, Thin Solid Films, 327–329, 439–442 (1998).

    Google Scholar 

  62. C. Mingotaud, C. Lafuente, J. Amiell, and P. Delhaes, Ferromagnetic Langmuir-Blodgett film based on Prussian blue, Langmuir, 15, 289–292 (1999).

    Article  CAS  Google Scholar 

  63. C. Lafuente, C. Mingotaud, and P. Delhaes, A Langmuir-Blodgett film presenting ferromagnetic state below 25 K, Chem. Phys. Lett. 302, 523–527 (1999).

    Article  CAS  Google Scholar 

  64. Clemente-León, H. Soyer, E. Coronado, C. Mingotaud, C. J. Gómez-Garcia, and P. Delhaes, Langmuir-Blodgett films of single-molecule nanomagnets, Angew. Chem., Int. Ed. Engl. 37, 2842–2845 (1998).

    Google Scholar 

  65. S. Lefebure, C. Menager, V. Cabuil, M. Assenheimer, F. Gallet, and C. Flament, Monolayers of monodispersed magnetic nanoparticles coated with a surfactant, J. Phys. Chem. B 102, 2733–2738 (1998).

    Article  CAS  Google Scholar 

  66. T. Fried, G. Shemer, and G. Markovich, Ordered two-dimensional arrays of ferrite nanoparticles, Adv. Mater. 13, 1158–1161 (2001).

    Article  CAS  Google Scholar 

  67. S. A. Iakovenko, A. S. Trifonov, M. Giersig, A. Mamedov, D. K. Nagesha, V. V. Hanin, E. C. Soldatov, and N. A. Kotov, One-and two-dimensional arrays of magnetic nanoparticles by the Langmuir-Blodgett technique, Adv. Mater. 11, 388–391 (1999).

    Article  CAS  Google Scholar 

  68. S. R. Marder, in: Inorganic Materials 2nd Edition, edited by D. W. Bruce and D. O’Hare (John Wiley & Sons, New York, 1996), pp 122–169.

    Google Scholar 

  69. M. Pope and C. E. Swenberg, Electronic Processes in Organic Crystals and Polymers (Oxford Science Pub., 1999), pp. 1136–1180.

    Google Scholar 

  70. M. Matsumoto, H. Tachibana, and T. Nakamura in Organic Conductors, edited by J.-P. Farges (Marcel Dekker, New York, 1994), pp. 759–790.

    Google Scholar 

  71. J. Zyss, Molecular Nonlinear Optics (Academic Press, New York, 1993).

    Google Scholar 

  72. H. S. Nalwa and S. Miyata, Nonlinear Optics of Organic Molecules and Polymers (CRC Press, Boca Raton, Fl, 1997).

    Google Scholar 

  73. Y. Liu and D. Zhu, in: Handbook of Surfaces and Interfaces of Materials, edited by H. S. Nalwa (Academic Press, San Diego, 2001), pp. 425–429.

    Google Scholar 

  74. F. Fernández. Lázaro, M. A. Díaz-García, A. Sastre, P. Delhaes, C. Mingotaud, F. Agullo-López, and T. Torres, Síntesis and third-order NLO properties in LB films of triazolehemiporphyrazines, Synt. Metals 93, 213–218 (1998).

    Google Scholar 

  75. S. Schrader, V. Zauls, B. Dietzel, C. Flueraru, D. Prescher, J. Reiche, H. Motschmann, and L. Brehmer, Linear and nonlinear optical properties of Langmuir-Blodgett multilayers from chromophores-containing maleic acid anhydride polymers, Materials Science and Engineering C 8–9, 527–537 (1999).

    Google Scholar 

  76. P. N. Prasad and D. J. Williams, Introduction to Nonliner Optical Effects in Molecules and Polymers (John Wiley, New York, 1991).

    Google Scholar 

  77. R. H. Tredgold, Ordered organic multilayers, J. Mater. Chem. 5, 1095–1106 (1995).

    Article  CAS  Google Scholar 

  78. H. Schwartz, R. Mazor, V. Khodorkovsky, L. Shapiro, J. T. Klug, E. Kovalev, G. Meshulam, G. Berkovic, Z. Kloter, and S. Efrima, Langmuir and Langmuir-Blodgett films of NLO active 2-(p-N-alkyl-N-methylamino)benzylidene-1,3-indandione—π- A curves, UV-Visible spectra, and SHG behaviour, J. Phys. Chem. B 105, 5914–5921 (2001).

    Article  CAS  Google Scholar 

  79. G. G. Roberts, Electronic and Photonic Applications of Polymers (ACS Publishers, Washington, DC, 1988).

    Google Scholar 

  80. C. Bosshard, K. Shutter, P. Pretre, J. Hulliger, M. Flörsheimer, P. Kaatz, and P. Günter, Organic Nonlinear Optical Materials (Gordon and Breach, New York, 1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this chapter

Cite this chapter

Prieto, I., Martín, M.T., Camacho, L. (2004). New Applications and Properties of Langmuir-Blodgett Films. In: Liz-Marzán, L.M., Kamat, P.V. (eds) Nanoscale Materials. Springer, Boston, MA. https://doi.org/10.1007/0-306-48108-1_14

Download citation

  • DOI: https://doi.org/10.1007/0-306-48108-1_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4020-7366-3

  • Online ISBN: 978-0-306-48108-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics