Skip to main content

Fabrication of Inorganic Nanocomposites Using Self-Assembly and Sol-Gel Processing

  • Chapter
Nanoscale Materials
  • 884 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

10. References

  1. U. Kreibig, and M. Vollmer, Optical Properties of Metal Clusters, Springer, Berlin (1995).

    Google Scholar 

  2. G. Schmid, Clusters and Colloids, VCH, Weinheim (1994).

    Google Scholar 

  3. S. E. Henrichs, J. L. Sample, J. J. Shiang, J. R. Heath, C. P. Collier, and R. J. Saykally, Positive and negative contrast lithography on silver quantum dot monolayers, J. Phys. Chem. B 103, 3524–3528 (1999).

    Article  CAS  Google Scholar 

  4. P. Mulvaney, Surface plasmon spectroscopy of nanosized metal particles, Langmuir 12, 788–800 (1996).

    Article  CAS  Google Scholar 

  5. L. M. Liz-Marzán, M. Giersig, and P. Mulvaney, Synthesis of nanosized gold-silica core-shell particles, Langmuir 12, 4329–4335 (1996).

    Google Scholar 

  6. M. Schierhorn and L. M. Liz-Marzán, Synthesis of bimetallic colloids with tailored intermetallic separation, Nano Lett. 2, 13–16 (2002).

    Article  CAS  Google Scholar 

  7. T. Yonezawa, S. Onoue, and N. Kimizuka, Self-organized superstructures of fluorocarbon-stabilized silver nanoparticles, Adv. Mater. 13, 140–144 (2001).

    Article  CAS  Google Scholar 

  8. S. T. Ahmadi, Z. L. Wang, T. C. Green, A. Henglein, and M. A. El-Sayed, Shape-controlled synthesis of colloidal platinum nanoparticles, Science 272, 1924–1926 (1996).

    CAS  Google Scholar 

  9. J. H. Hodak, A. Henglein, and G. V. Hartland, Photophysics of nanometer sized metal particles: electron-phonon coupling and coherent excitation of breathing vibrational modes, J. Phys. Chem. B 104, 9954–9965 (2000).

    CAS  Google Scholar 

  10. K. G. Thomas, J. Zajicek, and P. V. Kamat, Surface binding properties of tetraoctylammonium bromide-capped gold nanoparticles, Langmuir 18, 3722–3727 (2002).

    CAS  Google Scholar 

  11. P. V. Kamat, M. Flumiani, and A. Dawson, Metal-metal and metal-semiconductor composite nanoclusters, Colloid Surf. A 202, 269–279 (2002).

    Article  CAS  Google Scholar 

  12. M. Antonietti, E. Wenz, L. Bronstein, and M. Seregina, Synthesis and characterization of noble metal colloids in block copolymer micelles. Adv. Mater. 7, 1000–1005 (1995).

    CAS  Google Scholar 

  13. J. P. Spatz, A. Roescher, and M. Moeller, Gold nanoparticles in micellar poly(styrene)-b-poly(ethylene oxide) films. Size and interparticle distance control in monoparticulate films, Adv. Mater. 8, 337–340 (1996).

    Article  CAS  Google Scholar 

  14. J. P. Spatz, S. Máßmer, and M. Möller, Mineralization of gold nanoparticles in a block copolymer microemulsion, Chem. Eur. J. 2, 1552–1555 (1996).

    CAS  Google Scholar 

  15. M. Möller, J. P. Spatz, A. Roescher, S. Mößmer, S. T. Selvan, and H.-A. Kick, Mineralization of gold in block copolymer micelles, Macromol. Symp. 117, 207–218 (1997).

    Google Scholar 

  16. S. T. Selvan, J.P. Spatz, H.A. Klok, and M. Möller, Gold-polypyrrole core-shell particles in diblock copolymer micelles, Adv. Mater. 10, 132–13 (1998).

    Article  CAS  Google Scholar 

  17. S. T. Selvan, Novel nanostructures of gold-polypyrrole composites, J. Chem. Soc. Chem. Commun. 351–352(1998).

    Google Scholar 

  18. S. T. Selvan, T. Hayakawa, M. Nogami, and M. Möller, Block copolymer mediated synthesis of gold quantum dots and novel gold-polypyrrole nanocomposites, J. Phys. Chem. B 103, 7441–7448 (1999).

    CAS  Google Scholar 

  19. B. H. Sohn and R. E. Cohen, Electrical properties of block copolymer containing silver nanoclusters within oriented lamellar microdomains, J. Appl. Polym. Sci. 65, 723–729 (1997).

    Article  CAS  Google Scholar 

  20. Y. N. C. Chan, R. R. Schrock, and R. E. Cohen, Synthesis of single silver nanoclusters within spherical microdomains in block copolymer films, J. Am. Chem. Soc. 114, 7295–7296 (1992).

    Google Scholar 

  21. E. Shevchenko, D. Talapin, A. Kornowski, F. Wiekhorst, J. Kotzler, M. Haase, A. Rogach, and H. Weller, Colloidal crystals of monodisperse FePt nanoparticles grown by a three-layer technique of controlled oversaturation, Adv. Mater. 14, 287–290 (2002).

    Article  CAS  Google Scholar 

  22. A. P. Alivisatos, Perspectives on the physical chemistry of semiconductor nanocrystals, J. Phys. Chem. 100, 13226–13239(1996).

    Article  CAS  Google Scholar 

  23. C. B. Murray, D. J. Norris, and M. G. Bawendi, Synthesis and characterization of nearly monodisperse CdE (E = S, Se, Te) semiconductor nanocrystallites, J. Am. Chem. Soc. 115, 8706–8715 (1993).

    CAS  Google Scholar 

  24. C. B. Murray, C. R. Kagan, and M. G. Bawendi, Self-organization of CdSe nanocrystallites into three-dimensional quantum dot superlattices, Science 270, 1335–1338 (1995).

    Article  CAS  Google Scholar 

  25. B. O. Dabbousi, J. R.-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, and M. G. Bawendi, (CdSe)ZnS core-shell quantum dots — synthesis and characterization of a size series of highly luminescent nanocrystallites, J. Phys.Chem. B 101, 9463–9475 (1997).

    Article  CAS  Google Scholar 

  26. M. A. Hines and P. Guyot-Sionnest, Synthesis and characterization of strongly luminescing ZnS-capped CdSe nanocrystals, J. Phys. Chem. 100, 468–471 (1996).

    Article  CAS  Google Scholar 

  27. M. A. Hines and P. Guyot-Sionnest, Bright UV-blue luminescent colloidal ZnSe nanocrystals, J. Phys. Chem. B 102, 3655–3657 (1998).

    CAS  Google Scholar 

  28. M. Shim and P. Guyot-Sionnest, n-Type colloidal semiconductor nanocrystals, Nature 407, 981–983 (2000).

    CAS  Google Scholar 

  29. V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H.-J. Eisler, and M. G. Bawendi, Optical gain and stimulated emission in nanocrystal quantum dots, Science 290, 314–317 (2000).

    Article  CAS  Google Scholar 

  30. J. Lee, V. C. Sundar, J. R. Heine M. G. Bawendi, and K. F. Jensen, Full color emission from 11-VI semiconductor quantum dot-polymer composites, Adv. Mater. 12, 1102–1105 (2000).

    CAS  Google Scholar 

  31. S. T. Selvan, C. Bullen, M. Ashokkumar, and P. Mulvaney, Synthesis of tunable, highly luminescent QD-glasses through sol-gel processing, Adv. Mat. 13, 985–988(2001).

    Article  CAS  Google Scholar 

  32. M. J. Bruchez, M. Moronne, P. Gin, S. Weiss, and A. P. Alivisatos, Semiconductor nanocrystals as fluorescent biological labels, Science 281,2013–2016 (1998).

    CAS  Google Scholar 

  33. W. C. Chan and S. Nie, Quantum dot bioconjugates for ultrasensitive nonisotopic detection, Science 281, 2016–2018(1998).

    Article  CAS  Google Scholar 

  34. M. Taylor, M. Fang, and S. Nie, Probing specific sequences on single DNA molecules with bioconjugated fluorescent nanoparticles, Anal. Chem. 72, 1979–1986 (2000).

    Article  CAS  Google Scholar 

  35. M. Han, X. Gao, J. Z. Su, and S. Nie, Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules, Nature Biotechnology, 19, 631–635 (2001).

    CAS  Google Scholar 

  36. X. Peng, L. Manna, W. Yang, J. Wickham, E. Scher, A. Kadavanich, and A.P. Alivisatos, Shape control of CdSe nanocrystals, Nature 404, 59–61 (2000).

    CAS  Google Scholar 

  37. D. L. Klein, R. Roth, A. K. L. Lim, A. P. Alivisatos, and P. L. McEuen, A single-electron transistor made from a cadmium selenide nanocrystal, Nature 389, 699–701 (1997).

    CAS  Google Scholar 

  38. H. Mattoussi, J. M. Mauro, E. R. Goldman, G. P. Anderson, V. C. Sundar, F. V. Mikulec, and M. G. Bawendi, Self-assembly of CdSe-ZnS quantum dot bioconjugates using an engineered recombinant protein, J. Am. Chem. Soc. 122, 12142–12150 (2000).

    Article  CAS  Google Scholar 

  39. D. Gerion, F. Pinaud, S.C. Williams, W.J. Parak, D. Zanchet, S, Weiss, A.P. Alivisatos, Synthesis and properties of biocompatible water-soluble silica-coated CdSe/ZnS semiconductor quantum dots, J. Phys. Chem. 105, 8861–8871 (2001).

    CAS  Google Scholar 

  40. C. Pacholski, A. Kornowski, and H. Weller, Self-assembly of ZnO: from nanodots to nanorods, Angew. Chemie, Int. Ed. 41, 1188–1191 (2002).

    CAS  Google Scholar 

  41. D. V. Talapin, A. L. Rogach, E. V. Shevchenko, A. Kornowski, M. Haase, and H. Weller, Dynamic distribution of growth rates within the ensembles of colloidal Il–VI and III–V semiconductor nanocrystals as a factor governing their photoluminescence efficiency, J. Am. Chem. Soc. 124, 5782–5790 (2002).

    Article  CAS  Google Scholar 

  42. Z. A. Peng and X. Peng, Nearly monodisperse and shape-controlled CdSe nanocrystals via alternative routes: nucleation and growth, J. Am. Chem. Soc. 124, 3343–3353 (2002).

    CAS  Google Scholar 

  43. J. P. Spatz, S. Moessmer, C. Hartmann, M. Moeller, T. Herzog, M. Krieger, H.-G. Boyen, P. Ziemann, and B. Kabius, Ordered deposition of inorganic clusters from micellar block copolymer films, Langmuir 16, 407–415 (2000).

    Article  CAS  Google Scholar 

  44. J. P. Spatz, S. Moessmer, M. Moeller, M. Kocher, D. Neher, and G. Wegner, Controlled mineralization and assembly of hydrolysis-based nanoparticles in organic solvents combining polymer micelles and microwave techniques, Adv. Mater. 10, 473–475 (1998).

    CAS  Google Scholar 

  45. M. Moeller, H. Kuenstle, and M. Kunz, Inorganic nanoclusters in organic glasses — novel materials for electro-optical applications, Synth. Met. 41, 1159–1162 (1991).

    CAS  Google Scholar 

  46. R. E. Cohen, Block copolymers as templates for functional materials, Current Opinion in Solid State & Materials Science 4, 587–590 (2000).

    Google Scholar 

  47. R. S. Kane, R. E. Cohen, and R. Silbey, Synthesis of doped ZnS nanoclusters within block copolymer nanoreactors, Chem. Mater. 11, 90–93 (1999).

    Article  CAS  Google Scholar 

  48. B. H. Sohn, R. E. Cohen, and G. C. Papaefthymiou, Magnetic properties of iron oxide nanoclusters within microdomains of block copolymers, J. Magn. Magn. Mater. 182, 216–224 (1998).

    Article  CAS  Google Scholar 

  49. M. Moffitt and A. Eisenberg, Size control of nanoparticles in semiconductor-polymer composites. 1. Control via multiplet aggregation numbers in styrene-based random ionomers, Chem. Mater. 7, 1178–84 (1995).

    CAS  Google Scholar 

  50. M. Moffitt, L. McMahon, V. Pessel, and A. Eisenberg, Size control of nanoparticles in semiconductor-polymer composites. 2. Control via sizes of spherical ionic microdomains in styrene-based diblock ionomers, Chem. Mater. 7, 1185–92 (1995).

    CAS  Google Scholar 

  51. L. Qi, H. Coelfen, and M. Antonietti, Synthesis and characterization of CdS nanoparticles stabilized by double-hydrophilic block copolymers, Nano Lett. 1, 61–65 (2001).

    Article  CAS  Google Scholar 

  52. M. Breulmann, S. A. Davis, S. Mann, H.-P. Hentze, and M. Antonietti, Polymer-gel templating of porous inorganic macro-structures using nanoparticle building blocks, Adv. Mater. 12, 502–507 (2000).

    Article  CAS  Google Scholar 

  53. S. Klingelhoefer, W. Heitz, A. Greiner, S. Oestreich, S. Foerster, and M. Antonietti, Preparation of palladium colloids in block copolymer micelles and their use for the catalysis of the Heck reaction, J. Am. Chem. Soc. 119, 10116–10120 (1997).

    CAS  Google Scholar 

  54. M. Antonietti, S. Forster, and S. Oestreich, Micellization of amphiphilic block copolymers and use of their micelles as nanosized reaction vessels, Macromol. Symp. 121, 75–88 (1997).

    CAS  Google Scholar 

  55. F. Caruso, Nanoengineering of particle surfaces, Adv. Mater. 13, 11–22 (2001).

    CAS  Google Scholar 

  56. F. Caruso, M. Spasova, V. Salgueiriño-Maceira, and L.M. Liz-Marzán, Multilayer Assemblies of Silica-Encapsulated Gold Nanoparticles on Decomposable Colloid Templates, Adv. Mater. 13, 1090–1095 (2001).

    CAS  Google Scholar 

  57. F. Aliev, M. A. Correa-Duarte, A. Mamedov, J. Ostrander, M. Giersig, L. M. Liz-Marzán, and N. A. Kotov, Layer-by-layer assembly of core-shell magnetite nanoparticles: Effect of silica coating on interparticle interactions and magnetic properties, Adv. Mater. 11, 1006–1010 (1999).

    Article  CAS  Google Scholar 

  58. I. Pastoriza-Santos, D. S. Koktysh, A. A. Mamedov, M. Giersig, N. A. Kotov, and L. M. Liz Marzán, One-Pot Synthesis of Ag@TiO2 Core-Shell Nanoparticles and Their Layer-by-Layer Assembly, Langmuir, 16, 2731–2735 (2000).

    Article  CAS  Google Scholar 

  59. I. L. Radtchenko, G. B. Sukhorukov, N. Gaponik, A. Kornowski, A. L. Rogach, and H. Mohwald, Core-shell structures formed by the solvent-controlled precipitation of luminescent CdTe nanocrystals on latex spheres, Adv. Mater. 13, 1684–1687(2001).

    Article  CAS  Google Scholar 

  60. B. Smarsly, S. Polarz, and M. Antonietti, Preparation of porous silica materials via sol-gel nanocasting of nonionic surfactants: a mechanistic study on the self-aggregation of amphiphiles for the precise prediction of the mesopore size, J. Phys. Chem. B 105, 10473–10483 (2001).

    CAS  Google Scholar 

  61. R. A. Caruso, M. Antonietti, Sol-gel nanocoating: an approach to the preparation of structured materials, Chem. Mater. 13, 3272–3282 (2001).

    CAS  Google Scholar 

  62. L. M. Bronstein, S. Polarz, B. Smarsly, and M. Antonietti, Sub-nanometer noble-metal particle host synthesis in porous silica monoliths. Adv. Mater. 13, 1333–1336 (2001).

    CAS  Google Scholar 

  63. C. J. Brinker and G. W. Scherer, “Sol-Gel Science”, Academic Press, New York, 1990.

    Google Scholar 

  64. H. B.-Levy and D. Avnir, Entrapment of organic molecules within metals: dyes in silver, Chem. Mater. 14, 1736–1741 (2002).

    Article  CAS  Google Scholar 

  65. C. Rottman, G. Grader, Y. D. Hazan, S. Melchior, and D. Avnir, Surfactant-induced modification of dopants reactivity in sol-gel matrixes, J. Am. Chem. Soc. 121, 8533–8543 (1999).

    Article  CAS  Google Scholar 

  66. D. Avnir, Organic chemistry within ceramic matrixes: doped sol-gel materials, Ace. Chem. Res. 28, 328–334(1995).

    CAS  Google Scholar 

  67. R. Hernandez, A.-C. Franville, P. Minoofar, B. Dunn, and J. I. Zink, Controlled placement of luminescent molecules and polymers in mesostructured sol-gel thin films, J. Am. Chem. Soc. 123, 1248–1249 (2001).

    Article  CAS  Google Scholar 

  68. R. Reisfeld, Prospects of sol-gel technology towards luminescent materials, Opt. Mater. 16, 1–7 (2001).

    CAS  Google Scholar 

  69. M. Nogami, K. Nagasaka, and M. Takata, CdS microcrystal-doped silica glass prepared by the sol-gel process, J. Non-Cryst. Solids 122, 101–106 (1990).

    Article  CAS  Google Scholar 

  70. L. Spanhel, E. Arpac, and H. Schmidt, Semiconductor clusters in the sol-gel process: synthesis and properties of CdS nanocomposites, J. Non-Cryst. Solids 147&148, 657–662 (1992).

    Google Scholar 

  71. M. Nogami, S. T. Selvan, and H. Song, in Handbook of Advanced Electronic and Photonic Materials and Devices, H. S. Nalwa (Editor), Academic Press, New York, Vol. 5, Chapter 5, pp. 141–162 (2001).

    Google Scholar 

  72. M. M. Collinson, in Handbook of Advanced Electronic and Photonic Materials and Devices, H. S. Nalwa (Editor), New York, Vol. 5, Chapter 6, pp. 163–194 (2001).

    Google Scholar 

  73. V. C. Costa, Y. Shen, A. M. M. Santos, and K. L. Bray, Luminescence measurements on Sm2+-doped sol-gel glasses, J. Non-Cryst. Solids 304, 238–243 (2002).

    CAS  Google Scholar 

  74. A. Imhof and D. J. Pine, Ordered macroporous materials by emulsion templating, Nature 389, 948–951 (1997).

    CAS  Google Scholar 

  75. M. Su, X. Liu, S.-Y. Li, V. P. Dravid, and C. A. Mirkin, Moving beyond molecules: patterning solid-features via dip-pen nanolithography with sol-based inks, J. Am. Chem. Soc. 124, 1560–1561 (2002).

    CAS  Google Scholar 

  76. J. P. Spatz, T. Herzog, S. Moessmer, P. Ziemann, and M. Moeller, Micellar inorganic-polymer hybrid systems. A tool for nanolithography, Adv. Mater. 11, 149–153 (1999).

    CAS  Google Scholar 

  77. J. P. Spatz, P. Eibeck, S. Moessmer, M. Moeller, T. Herzog, and P. Ziemann, Ultrathin diblock copolymer/titanium laminates. A tool for nanolithography, Adv. Mater. 10, 849–852 (1998).

    CAS  Google Scholar 

  78. R. A. Caruso and M, Antonietti, Silica films with bimodal pore structure prepared by using membranes as templates and amphiphiles as porogens, Adv. Func. Mater. 12, 307–312 (2002).

    Article  CAS  Google Scholar 

  79. H.-P. Hentze and M. Antonietti, Porous polymers and resins for biotechnological and biomedical applications, Reviews in Molecular Biotechnology 90, 27–53 (2002).

    Article  CAS  Google Scholar 

  80. M. Yamane and Y. Asahara, Glasses for Photonics, Cambridge University Press, Cambridge (2000).

    Google Scholar 

  81. D. R. Uhlmann and H. Yinnon, Glass Science and Technology, Vol. 1, Academic Press, San Diego, CA (1983).

    Google Scholar 

  82. T. Fujii, Y. Hisakawa, E. J. Winder, and A. B. Ellis, Effect of heat and gases on thephotoluminescenceof CdS quantum dots confined in silicate glasses prepared by the sol-gel method, Bull. Chem. Soc. Jpn. 68, 1559–1564 (1995).

    CAS  Google Scholar 

  83. R. Reisfeld and H. Minti, Nonlinear properties of semiconductor quantum dots in glasses prepared by the sol-gel method, J. Sol-gel Sci. Technol. 2, 641–645 (1994).

    Article  CAS  Google Scholar 

  84. R. Reisfeld, H. Minti, M. Eyal, and V. Chernyak, Nonlinear properties of semiconductor quantum dots and organic molecules in glasses prepared by the sol-gel method, Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. B 5, 339–360(1993).

    CAS  Google Scholar 

  85. K.V. Yumashev, V.S. Gurin, P.V. Prokoshin, V.B. Prokopenko, and A.A. Alexeenko, Nonlinear optical properties and laser applications of copper chalcogenide quantum dots, Physica Status Solidi B: Basic Research224, 815–818 (2001)

    Google Scholar 

  86. S. T. Selvan, M. Nogami, A. Nakamura, and Y. Hamanaka, A facile sol-gel method for the encapsulation of gold nanoclusters in silica gels and their optical properties, J. Non-Cryst. Solids 255, 254–258 (1999).

    Google Scholar 

  87. S. T. Selvan, Y. Ono, and M. Nogami, Polymer-protected gold clusters in silica glass, Mater. Lett. 37, 156–161 (1998).

    Google Scholar 

  88. S. T. Selvan, T. Hayakawa, M. Nogami, Y. Kobayashi, L. M. Liz-Marzán, Y. Hamanaka, and A. Nakamura, Sol-gel derived gold nanoclusters in silica glass possessing large optical nonlinearities, J. Phys. Chem. B 106, 10157–10162 (2002).

    Article  CAS  Google Scholar 

  89. Y. Kobayashi, M. A. Correa-Duarte, and L. M. Liz-Marzán, Sol-gel processing of silica-coated gold nanoparticles, Langmuir, 17, 6375–6379 (2001).

    Article  CAS  Google Scholar 

  90. J. Butty, N. Peyghambarian, Y. H. Kao, and J. D. Mackenzie, Room temperature optical gain in sol-gel derived CdS quantum dots, Appl. Phys. Lett. 69, 3224–3226 (1996).

    Article  CAS  Google Scholar 

  91. J. Butty, Y. Z. Hu, N. Peyghambarian, Y. H. Kao, and J. D. Mackenzie, Quasicontinuos gain in sol-gel derived CdS quantum dots, Appl. Phys. Lett. 67, 2672–2674 (1995).

    Article  CAS  Google Scholar 

  92. N. Peyghambarian, Semiconductor quantum dots in glass: open problems and challenges, Glass Sci. Technol. 70C, 313–320 (1997).

    CAS  Google Scholar 

  93. K. Kang, A. D. Kepner, Y. Z. Hu, S. W. Koch, N. Peyghambarian, C.-Y. Li, T. Takada, Y. Kao, and J. D. Mackenzie, Room temperature spectral hole burning and elimination of photodarkening in sol-gel derived CdS quantum dots, Appl. Phys. Lett. 64, 1487–1489(1994).

    Article  CAS  Google Scholar 

  94. C. Chia, Y. H. Kao, Y. Xu, and J. D. Mackenzie, Cadmium telluride quantum dot-doped glass by the sol-gel technique, Proc. SPIE-Int. Soc. Opt. Eng. 3136 (Sol-gel Optics IV), 337–347 (1997).

    CAS  Google Scholar 

  95. W. Stöber, A. Fink, and E. Bonn, Controlled growth of monodisperse silica spheres in the micron size range, J. Colloid Interface Sci. 26, 62–69 (1968).

    Google Scholar 

  96. N. A. M. Verhaegh and A. van Blaaderen, Dispersions of rhodamine-labeled silica spheres: synthesis, characterization, and fluorescence confocal scanning laser microscopy, Langmuir 10, 1427–1438 (1994).

    Article  CAS  Google Scholar 

  97. C. Pathmamanoharan P. Wijkens, D. M. Grove, and A. P. Philipse, Paramagnetic silica particles: synthesis and grafting of a silane coupling agent containing nickel ions onto colloidal silica particles, Langmuir, 12, 4372–4377(1996).

    Article  CAS  Google Scholar 

  98. M. Giersig, T. Ung, L. M. Liz-Marzán, and P. Mulvaney, Direct observation of chemical reactions in silica-coated gold and silver nanoparticles, Adv. Mater. 9, 570–575 (1997).

    CAS  Google Scholar 

  99. M. A. Correa-Duarte, M. Giersig, and L. M. Liz-Marzán, Stabilization of CdS semiconductor nanoparticles against photodegradation by a silica coating procedure, Chem. Phys. Lett. 286, 497–501 (1998).

    Article  CAS  Google Scholar 

  100. E. Yablonovitch, Inhibited spontaneous emission in solid-state physics and electronics, Phys. Rev. Lett. 58, 2059–2062(1987).

    Article  CAS  Google Scholar 

  101. A. Moroz, Three-dimensional complete photonic-band-gap structures in the visible, Phys. Rev. Lett. 83, 5274–5277(1999).

    Article  CAS  Google Scholar 

  102. K. Yoshino, Y. Shimoda, Y. Kawagishi, K. Nakayama, and M. Ozaki, Appl. Phys. Lett. 75, 932–934 (1999).

    Article  CAS  Google Scholar 

  103. C. Graf and A. van Blaaderen, Metallodielectric colloidal core-shell particles for photonic applications, Langmuir 18, 524–534 (2002).

    Article  CAS  Google Scholar 

  104. K. P. Velikov and A. van Blaaderen, Synthesis and characterization of monodisperse core-shell colloidal spheres of zinc sulfide and silica, Langmuir 17, 4779–4786 (2001).

    Article  CAS  Google Scholar 

  105. A.L. Rogach, D. Nagesha, J.W. Ostrander, M. Giersig, and N.A. Kotov, Raisin bun-type composite spheres of silica and semiconductor nanocrystals, Chem. Mater. 12, 2676–2685 (2000).

    CAS  Google Scholar 

  106. F. García-Santamaría, V. Salgueiriño-Maceira, C. López, and L. M. Liz-Marzán, Synthetic opals based on silica-coated gold nanoparticles, Langmuir, 18, 4519–4522 (2002).

    Google Scholar 

  107. Special issue on Photonic Crystals, Adv. Mater. 13, 6 (2001).

    Google Scholar 

  108. W. Wang and S. A. Asher, Photochemical incorporation of silver quantum dots in monodisperse silica colloids for photonic crystal applications, J. Am. Chem. Soc. 123, 12528–12535(2001).

    CAS  Google Scholar 

  109. Y. Xia, B. Gates, Y. Yin, and Y. Lu, Monodisperse colloidal spheres: Old materials with new applications, Adv. Mater. 12, 693–713 (2000).

    Article  CAS  Google Scholar 

  110. V. Pillai and D. O. Shah, Industrial Applications of Microemulsions, (C. Solans and H. Kunieda, Eds), Surfactant Science Series, Marcel Dekker, New York, vol. 66, (1997).

    Google Scholar 

  111. M. Bourrel and R. S. Schechter, (Eds), Microemulsions and Related Systems, Surfactant Science Series, Marcel Dekker: New York, vol. 30, (1988).

    Google Scholar 

  112. F. J. Arriagada and K. Osseo-Asare, Synthesis of nanosize silica in a nonionic water-in-oil microemulsion: effects of the water/surfactant molar ratio and ammonia concentration, J. Colloid and Int. Sci, 211, 210–220 (1999).

    CAS  Google Scholar 

  113. S. Chang, L. Liu, and S.A. Asher, Preparation and properties of tailored morphology, monodisperse colloidal silica-cadmium sulfide nanocomposites, J. Am. Chem. Soc. 116, 6739–6744 (1994).

    CAS  Google Scholar 

  114. M. Lal, L. Levy, K. S. Kim, G. S. He, X. Wang, Y. H. Min, S. Pakatchi, and P. N. Prasad, Silica nanobubbles containing an organic dye in a multilayered organic/inorganic heterostructure with enhanced luminescence, Chem. Mater. 12, 2632–2639 (2000).

    Article  CAS  Google Scholar 

  115. S. C. Farmer and T. E. Patten, Photoluminescent polymer/quantum dot composite nanoparticles Chem. Mater. 13, 3920–3926 (2001).

    Article  CAS  Google Scholar 

  116. S. T. Selvan, C. Bullen, D. Dunstan, and P. Mulvaney, Highly-luminescent, water-soluble, silica coated CdSe @ ZnS quantum dots through a facile inverse microemulsion approach, Angew. Chemie. Submitted (2002).

    Google Scholar 

  117. S. T. Selvan, A. Mani, S. Pitchumani, and K.L.N. Phani, Synthesis of polyparaphenylene by electropoly-merization in microemulsion medium: morphology and crystalline character, J. Electroanal. Chem. 384, 183–186 (1995).

    Article  Google Scholar 

  118. A. Mani, S. T. Selvan, K, L. N. Phani, and S. Pitchumani, Studies on the generation of polyaniline microstructures using microemulsion polymerisation, J. Mater. Sci. Lett. 17, 385–387 (1998).

    CAS  Google Scholar 

  119. A. Mani, S. T. Selvan, and K. L. N. Phani, Solid state structural aspects of electrochemically prepared poly(p-phenylene) thin films — crystalline order and spherulite morphology, J. Solid State Electrochem, 2, 242–246 (1998).

    Article  CAS  Google Scholar 

  120. S. T. Selvan, A, Mani, K. Athinarayanasamy, K. L. N. Phani,and S. Pitchumani, Synthesis of crystalline polyaniline, Mater. Res. Bull. 30, 699–705 (1995).

    Article  CAS  Google Scholar 

  121. K. L. N. Phani, S. Pitchumani, S. Ravichandran, S. T. Selvan, and S. Bharathey, Microemulsion based electrosynthesis of polyparaphenylene, J. Chem. Soc. Chem. Commun. 179–181 (1993).

    Google Scholar 

  122. I. Tanahashi, Y. Manabe, T. Tohda, S. Sasaki, and A. Nakamura, Optical nonlinearities of Au/SiO2 composite thin films prepared by a sputtering method, J. Appl. Phys. 79, 1244–1249 (1996).

    Article  CAS  Google Scholar 

  123. M. J. Bloemer, J. W. Haus, and P. R. Ashley, Degenerate four-wave mixing in colloidal gold as a function of particle size, J. Opt. Soc. Am. B 7, 790–795 (1990).

    Article  CAS  Google Scholar 

  124. K. Uchida, K. Kaneko, S. Omi, C. Hata, H. Tanji, Y. Asahara, A. J. Ikushima, T. Tokizaki, and A. Nakamura, Optical nonlinearities of a high concentration of small metal particles dispersed in glass: copper and silver particles, J. Opt. Soc. Am. B 11, 1236–1243 (1994).

    CAS  Google Scholar 

  125. T. Yazawa, K. Kadono, H. Tanaka, T. Sakaguchi, S. Tsubota, K. Kuraoka, M. Miya, and D. Wang, Preparation and optical property of monolithic silica gel uniformly dispersed with gold colloid from aqueous solution, J. Non-Cryst. Solids 170, 105–108 (1994).

    Article  CAS  Google Scholar 

  126. F. Hache, D. Ricard, C. Flytzanis, and U. Kreibig, The optical Kerr effect in small metal particles and metal colloids: the case of gold, Appl. Phys. A 47, 347–357 (1988).

    Article  Google Scholar 

  127. J. Matsuoka, R. Mizutani, S. Kaneko, H. Nasu, K. Kamiya, K. Kadano, T. Sakaguchi, and M. Miya, Sol-gel processing and optical nonlinearity of gold colloid-doped silica glass, J. Ceram. Soc. Jpn. 101, 53–58 (1993).

    CAS  Google Scholar 

  128. K. L. Frindell, M. H. Bartl, A. Popitsch, and G. D. Stucky, Sensitized luminescence of trivalent europium by three-dimensionally arranged anatase nanocrystals in mesostructured titania thin films, Angew. Chem. Int. Ed. 41, 960–962 (2002).

    Article  Google Scholar 

  129. S. T. Selvan, T. Hayakawa, and M. Nogami, Remarkable influence of silver islands on the enhancement of fluorescence from Eu3+ ion-doped silica gels, J. Phys. Chem. B 103, 7064–7067 (1999).

    CAS  Google Scholar 

  130. T. Hayakawa, S. T. Selvan, and M. Nogami, Field enhancement effect of small Ag particles on the fluorescence from Eu3+-doped SiO2 glass, Appl. Phys. Lett. 74, 1513–1515 (1999).

    Article  CAS  Google Scholar 

  131. T. Hayakawa, S. T. Selvan, and M. Nogami, Enhanced fluorescence from Eu3+ owing to surface plasma oscillation of silver particles in glass, J. Non-Cryst. Solids 259, 16–22 (1999).

    Article  CAS  Google Scholar 

  132. S. T. Selvan, T. Hayakawa, and M. Nogami, Enhanced fluorescence from Eu3+-doped silica gels by adsorbed CdS nanoparticles, J. Non-Cryst. Solids 291, 137–141 (2001).

    Article  CAS  Google Scholar 

  133. T. Hayakawa, S. T. Selvan, and M. Nogami, Influence of adsorbed CdS nanoparticles on 5D0 → 7Fj emissions in Eu3+-doped silica gel, J. Luminescence, 87–89, 532–534 (2000).

    Google Scholar 

  134. T. Hayakawa, S. T. Selvan, and M. Nogami, Energy transfer between Eu3+ ion and CdS quantum dot in sol-gel derived CdS/SiO2:Eu3+ gel, J. Sol-Gel Sci. Tec. 19, 779–783 (2000).

    CAS  Google Scholar 

  135. S.T. Selvan, C. Bullen, and P. Mulvaney, Unpublished.

    Google Scholar 

  136. K. T. Shimizu, R. G. Neuhauser, C. A. Leatherdale, S. A. Empedocles, W. K. Woo, and M. G. Bawendi, Blinking statistics in single semiconductor nanocrystal quantum dots, Phys. Rev. B 63, 205316-1-5 (2001).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this chapter

Cite this chapter

Selvan, S.T. (2004). Fabrication of Inorganic Nanocomposites Using Self-Assembly and Sol-Gel Processing. In: Liz-Marzán, L.M., Kamat, P.V. (eds) Nanoscale Materials. Springer, Boston, MA. https://doi.org/10.1007/0-306-48108-1_12

Download citation

  • DOI: https://doi.org/10.1007/0-306-48108-1_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4020-7366-3

  • Online ISBN: 978-0-306-48108-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics