Skip to main content

Multiobjective Combinatorial Optimization — Theory, Methodology, and Applications

  • Chapter

Part of the book series: International Series in Operations Research & Management Science ((ISOR,volume 52))

Abstract

This chapter provides an annotated bibliography of multiple objective combinatorial optimization, MOCO. We present a general formulation of MOCO problems, describe their main characteristics, and review the main properties and theoretical results. One section is devoted to a brief description of the available solution methodology, both exact and heuristic. The main part of the chapter consists of an annotation of the existing literature in the field organized problem by problem. We conclude the chapter by stating open questions and areas of future research. The list of references comprises more than 400 entries.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R.M.S. Abd El-Aal. An interactive technique for the cutting stock problem with multiple objectives. European Journal of Operational Research, 78(3):304–317, 1994.

    MATH  Google Scholar 

  2. F. Ben Abdelaziz, J. Chaouachi, and S. Krichen. A hybrid heuristic for multiobjective knapsack problems. In S. Voss, S. Martello, I. Osman, and C. Roucairol, editors, Meta-Heuristics: Advances and Trends in Local Search Paradigms for Optimization, pages 205–212. Kluwer Academic Publishers, Dordrecht, 1999.

    Google Scholar 

  3. P. Agrell, M. Sun, and A. Stam. A tabu search multi-criteria decision model for facility location planning. In Proceedings of the 1997 DSI Annual Meeting, San Diego, California, volume 2, pages 908–910. Decision Sciences Institute, Atlanta, GA, 1997.

    Google Scholar 

  4. R.K. Ahuja. Minimum cost-reliability ratio path problem. Computers and Operations Research, 15(1):83–89, 1988.

    Article  MATH  Google Scholar 

  5. M.J. Alves and J. Climaco. An interactive method for 0–1 multiobjective problems using simulated annealing and tabu search. Journal of Heuristics, 6(3):385–403, 2000.

    Article  MathSciNet  Google Scholar 

  6. K.A. Andersen, K. Joernsten, and M. Lind. On bicriterion minimal spanning trees: An approximation. Computers and Operations Research, 23:1171–1182, 1996.

    Article  MathSciNet  Google Scholar 

  7. Y.P. Aneja and K.P.K. Nair. Bicriteria transportation problem. Management Science, 25:73–78, 1979.

    MathSciNet  Google Scholar 

  8. J.L. Arthur and K.D. Lawrence. Multiple goal production and logistics planning in a chemical and pharmaceutical company. Computers and Operations Research, 9(2):127–137, 1982.

    Article  Google Scholar 

  9. J.L. Arthur and A. Ravindran. A multiple objective nurse scheduling problem. AIIE Transactions, 13:55–60, 1981.

    Google Scholar 

  10. P. Aumüller and L. Bittner. Effiziente, optimale efficziente Wege in Graphen und diskret-differentielle Prozesse mit verktorwertigem Funktional. Mathematische Operationsforschung und Statistik, Series Optimization, 13(3):393–408, 1982.

    MathSciNet  Google Scholar 

  11. J.A. Azevedo and E.Q.V. Martins. An algorithm for the multiobjective shortest path problem on acyclic networks. Investigação Operacional, 11(1):52–69, 1991.

    Google Scholar 

  12. M. Azizoglu, S.K. Kondakci, and M. Köksalan. Bicriteria scheduling: Minimizing flowtime and maximum earliness on a single machine. In J. Climaco, editor, Multicriteria Analysis, pages 279–288. Springer Verlag, Berlin, 1997.

    Google Scholar 

  13. M.A. Badri. A two-stage multiobjective scheduling model for [faculty-course-time] assignments. European Journal of Operational Research, 94(1): 16–28, 1997.

    Google Scholar 

  14. M.A. Badri, D.L. Davis, D.F. Davis, and J. Hollingsworth. A multi-objective course scheduling model: combining faculty preferences for courses and times. Computers and Operations Research, 25(4): 303–316, 1998.

    Article  Google Scholar 

  15. M.A. Badri, A.K. Mortagy, and C.A. Alsyed. A multi-objective model for locating fire stations. European Journal of Operational Research, 110(2):243–260, 1998.

    Article  Google Scholar 

  16. A. Baykasoglu. Goal programming using the multiple objective tabu search. Journal of the Operational Research Society, 52(12):1359–1369, 2001.

    Article  MATH  Google Scholar 

  17. A. Baykasoglu. MOAPPS 1.0: Aggregate production planning using the multiple objective tabu search. International Journal of Production Research, 39(16):3685–3702, 2001.

    Article  MATH  Google Scholar 

  18. A. Baykasoglu, S. Owen, and N. Gindy. A taboo search based approach to find the Pareto optimal set in multiple objective optimisation. Journal of Engineering Optimization, 31:731–748, 1999.

    Google Scholar 

  19. E.M.L. Beale. Note on “A special multi-objective asignment problem” by D.J. White. Journal of the Operational Research Society, 35(8):769–770, 1984.

    Google Scholar 

  20. P.J. Bentley and J.P. Wakefield. An analysis of multiobjective optimization within genetic algorithms. Technical Report ENG-PJB96, The University of Huddersfield, UK, 1996.

    Google Scholar 

  21. D. Bertsekas. Dynamic Programming. Prentice Hall, Englewood Cliffs, NJ, 1987.

    Google Scholar 

  22. K. Bhaskar. A multiple objective approach to capital budgeting. Accounting and Business Research, pages 25–46, winter 1979.

    Google Scholar 

  23. B. Boffey. Multiobjective routing problems. Top, 3(2): 167–220, 1995.

    MathSciNet  MATH  Google Scholar 

  24. P.C. Borges and M.P. Hansen. A basis for future successes in multiobjective combinatorial optimization. Technical Report IMM-REP-1998-8, Institute of Mathematical Modelling, Technical University of Denmark, Lyngby, 1998.

    Google Scholar 

  25. P. Brandimarte and M. Calderini. A hierarchical bicriterion approach to integrated process plan selection and job shop scheduling. International Journal of Production Research, 33(1):161–181, 1995.

    Google Scholar 

  26. J. Brumbaugh-Smith and D. Shier. An empirical investigation of some bicriterion shortest path algorithms. European Journal of Operational Research, 43(2):216–224, 1989.

    Article  MathSciNet  Google Scholar 

  27. R.E. Burkard, G. Rote, G. Ruhe, and N. Sieber. Algorithmische Untersuchungen zu bikriteriellen kostenminimalen Flüssen in Net-zwerken. Wissenschaftliche Zeitung der technischen Hochschule Leipzig, 13(6):333–341, 1989.

    Google Scholar 

  28. E.K. Burke, Y. Bykov, and S. Petrovic. A multi-criteria approach to examination timetabling. In E.K. Burke and W. Erben, editors, The Practice and Theory of Automated Timetabling III. Selected Papers from the 3rd International Conference on the Practice and Theory of Automated Timetabling (PATAT 2000), Konstanz, Germany, 16–18 August 2000, volume 2079 of Lecture Notes in Computer Science, pages 118–131. Springer Verlag, Berlin, 2000.

    Google Scholar 

  29. E.K. Burke, P. Cowling, J.D. Landa Silva, and S. Petrovic. Combining hybrid meta heuristics and populations for the multiobjective optimisation of space allocation problems. In L. Spector, D. Whitley, D. Goldberg, E. Cantu-Paz, I. Parmee, and H.-G. Beyer, editors, Proceedings of the Genetic and Evolutionary Computation Conference 2001 (GECCO 2001). San Francisco, USA, 7–11 July 2001, pages 1252–1259. Morgan Kaufmann, San Francisco, CA, 2001.

    Google Scholar 

  30. H.I. Calvete and M. Mateo. An approach for the network flow problem with multiple objectives. Computers and Operations Research, 22(9):971–983, 1995.

    Article  Google Scholar 

  31. H.I. Calvete and M. Mateo. A sequential network-based approach for the multiobjective network flow problem with preemptive priorities. In M. Tamiz, editor, Multi-Objective Programming and Goal Programming — Theory and Applications, volume 432 of Lecture Notes in Economics and Mathematical Systems, pages 74–86. Springer Verlag, Berlin, 1996.

    Google Scholar 

  32. P.M. Camerini, G. Galbiati, and F. Maffioli. The complexity of multi-constrained spanning tree problems. In L. Lovasz, editor, Theory of Algorithms, pages 53–101. North-Holland, Amsterdam, 1984.

    Google Scholar 

  33. M.E. Captivo, J. Climaco, J. Figueira, E. Martins, and J.L. Santos. Solving multiple criteria {0, 1}-knapsack problems using a labeling algorithm. Technical Report 2, Faculdade de Economia, Unversidade de Coimbra, Portugal, 2000.

    Google Scholar 

  34. R.L. Carraway, T.L. Morin, and H. Moskovitz. Generalized dynamic programming for multicriteria optimization. European Journal of Operational Research, 44:95–104, 1990.

    Article  MathSciNet  Google Scholar 

  35. V. Chankong and Y.Y. Haimes. Multiobjective Decision Making: Theory and Methodology. Elsevier Science Publishing Co., New York, NY, 1983.

    Google Scholar 

  36. A. Charnes, W.W. Cooper, R.J. Niehaus, and A. Stredry. Static and dynamic assignment models with multiple objectives and some remarks on organization design. Management Science, 15:365–375, 1969.

    Google Scholar 

  37. C.L. Chen and R. Bulfin. Complexity of multiple machines, multi-criteria scheduling problems. European Journal of Operational Research, 70:115–125, 1993.

    Google Scholar 

  38. K.I. Cho and S.H. Kim. An improved interactive hybrid method for the linear multi-objective knapsack problem. Computers and Operations Research, 24(11):991–1003, 1997.

    Article  MathSciNet  Google Scholar 

  39. C. Chu and J. Antonio. Approximation algorithms to solve real-life multicriteria cutting stock problems. Operations Research, 47(4):495–508, 1999.

    Google Scholar 

  40. S.C.K. Chu. A goal programming model for crew duties generation. Journal of Multi-Criteria Decision Analysis, 10(3):143–151, 2001.

    Article  MATH  Google Scholar 

  41. S. Chung, H.W. Hamacher, F. Maffioli, and K.G. Murty. Note on combinatorial optimization with max-linear objective functions. Discrete Applied Mathematics, 42:139–145, 1993.

    Article  MathSciNet  Google Scholar 

  42. J. Climaco, C. Henggeler Antunes, and M. Alves. Interactive decision support for multiobjective transportation problems. European Journal of Operational Research, 65:58–67, 1993.

    Google Scholar 

  43. J. Climaco, C. Ferreira, and M.E. Captivo. Multicriteria integer programming: An overview of the different algorithmic approaches. In J. Climaco, editor, Multicriteria Analysis, pages 248–258. Springer Verlag, Berlin, 1997.

    Google Scholar 

  44. J.C.M. Climaco and E.Q.V. Martins. A bicriterion shortest path algorithm. European Journal of Operational Research, 11:399–404, 1982.

    MathSciNet  Google Scholar 

  45. C.A. Coello. An empirical study of evolutionary techniques for multiobjective optimization in engineering design. PhD thesis, Department of Computer Science, Tulane University, New Orleans, LA, 1996.

    Google Scholar 

  46. C.A. Coello. A comprehensive survey of evolutionary-based multiobjective optimization techniques. Knowledge and Information Systems, 1(3):269–308, 1999.

    Google Scholar 

  47. C.A. Coello. An updated survey of GA-based multiobjective optimization techniques. ACM Computing Surveys, 32(2): 109–143, 2000.

    Article  ADS  Google Scholar 

  48. C.A. Coello. List of references on evolutionary multiobjective optimization. http://www.lania.mx/~ccoello/EMOO/, 2001.

  49. H.W. Corley. Efficient spanning trees. Journal of Optimization Theory and Applications, 45(3):481–485, 1985.

    Article  MathSciNet  MATH  Google Scholar 

  50. H.W. Corley and I.D. Moon. Shortest paths in networks with vector weights. Journal of Optimization Theory and Applications, 46(1):79–86, 1985.

    MathSciNet  Google Scholar 

  51. J.M. Coutinho-Rodrigues, J.C.N. Climaco, and J.R. Current. An interactive bi-objective shortest path approach: Searching for unsupported nondominated solutions. Computers and Operations Research, 26(8):789–798, 1999.

    Article  Google Scholar 

  52. R.G. Cox. Routing of hazardous material. PhD thesis, School of Civil and Environmental Engineering, Cornell University, Ithaca, NY, 1984.

    Google Scholar 

  53. J. Current and M. Marsh. Multiobjective transportation network design: Taxonomy and annotation. European Journal of Operational Research, 65:4–19, 1993.

    Google Scholar 

  54. J. Current and H. Min. Multiobjective design of transportation networks: Taxonomy and annotation. European Journal of Operational Research, 26:187–201, 1986.

    Article  MathSciNet  Google Scholar 

  55. J. Current, H. Min, and D. Schilling. Multiobjective analysis of facility location decisions. European Journal of Operational Research, 49:295–307, 1990.

    Article  Google Scholar 

  56. J. Current, C. ReVelle, and J. Cohon. The application of location models to the multiobjective design of transportation networks. Regional Science Review, 14, 1985.

    Google Scholar 

  57. J.R. Current, J.L. Cohon, and C.S. ReVelle. The shortest covering path problem: An application of locational constraints to network design. Journal of Regional Science, 24:161–183, 1984.

    Google Scholar 

  58. J.R. Current, C.S. ReVelle, and J.L. Cohon. The maximum covering/shortest path problem: A multiobjective network design and routing formulation. European Journal of Operational Research, 21:189–199, 1985.

    Article  MathSciNet  Google Scholar 

  59. J.R. Current, C.S. ReVelle, and J.L. Cohon. The median shortest path problem: A multiobjective approach to analyze cost vs. accesibility in the design of networks. Transportation Science, 21(3): 188–197, 1987.

    MathSciNet  Google Scholar 

  60. J.R. Current, C.S. ReVelle, and J.L. Cohon. The minimum-covering/shortest path problem. Decision Science, 19:490–503, 1988.

    Google Scholar 

  61. J.R. Current, C.S. ReVelle, and J.L. Cohon. An interactive approach to identify the best compromise solution for two objective shortest path problems. Computers and Operations Research, 17(2):187–198, 1990.

    Article  MathSciNet  Google Scholar 

  62. P. Czyzak and A. Jaszkiewicz. A multiobjective metaheuristic approach to the localization of a chain of petrol stations by the capital budgeting model. Control and Cybernetics, 25(1):177–187, 1996.

    Google Scholar 

  63. P. Czyzak and A. Jaszkiewicz. Pareto simulated annealing. In G. Fandel and T. Gal, editors, Multiple Criteria Decision Making. Proceedings of the XIIth International Conference, Hagen (Germany), volume 448 of Lecture Notes in Economics and Mathematical Systems, pages 297–307, 1997.

    Google Scholar 

  64. P. Czyzak and A. Jaszkiewicz. Pareto simulated annealing — A metaheuristic technique for multiple objective combinatorial optimization. Journal of Multi-Criteria Decision Analysis, 7(1):34–47, 1998.

    Google Scholar 

  65. H.G. Daellenbach and C.A. DeKluyver. Note on multiple objective dynamic programming. Journal of the Operational Research Society, 31:591–594, 1980.

    Google Scholar 

  66. G. Dahl, K. Jörnsten, and A. Lokketangen. A tabu search approach to the channel minimization problem. In Proceedings of the International Conference on Optimization Techniques and Applications (ICOTA’95), 5–8 July 1995, Chengdu, China, pages 369–377. World Scientific, Singapore, 1995.

    Google Scholar 

  67. S.K. Das, A. Goswami, and S.S. Alam. Multiobjective transportation problem with interval cost, source and destination parameters. European Journal of Operational Research, 117:100–112, 1999.

    Article  Google Scholar 

  68. M.S. Daskin and E.H. Stren. A hierarchical objective set covering model for emergency medical service vehicle deployment. Transportation Science, 15(2): 137–152, 1981.

    MathSciNet  Google Scholar 

  69. H.M. Dathe. Zur Lösung des Zuordnungsproblems bei zwei Zielgrößen. Zeitschrift für Operations Research, 22:105–118, 1978.

    MATH  Google Scholar 

  70. D. De Luca Cardillo and T. Fortuna. A DEA model for the efficiency evaluation of nondominated paths on a road network. European Journal of Operational Research, 121:549–558, 2000.

    MathSciNet  Google Scholar 

  71. R.F. Deckro, R.W. Spahr, and J.E. Hebert. Preference trade-offs in capital budgeting decisions. IIE Transactions, 17(4):332–337, 1985.

    Google Scholar 

  72. M. Dell’Amico and F. Maffioli. On some multicriteria arborescence problems: Complexity and algorithms. Discrete Applied Mathematics, 65:191–206, 1996.

    Google Scholar 

  73. M. Dell’Amico and F. Maffioli. Combining linear and non-linear objectives in spanning tree problems. Journal of Combinatorial Optimization, 4(2):253–269, 2000.

    Google Scholar 

  74. M. Dell’Amico, F. Maffioli, and S. Martello, editors. Annotated Bibliographies in Combinatorial Optimization. J. Wiley & Sons, Chichester, 1997.

    Google Scholar 

  75. R. Dial. A model and algorithm for multicriteria route-mode choice. Transportation Research, 13B:311–316, 1979.

    Google Scholar 

  76. L.C. Dias and J.N. Climaco. Shortest path problems with partial information: Models and algorithms for detecting dominance. European Journal of Operational Research, 121:16–31, 2000.

    Article  MathSciNet  Google Scholar 

  77. J.A. Diaz. Solving multiobjective transportation problems. Eko-nomicko Mathematicky Obzor, 14:267–274, 1978.

    MATH  Google Scholar 

  78. J.A. Diaz. Finding a complete description of all efficient solutions to a multiobjective transportation problem. Ekonomicko Mathe-maticky Obzor, 15:62–73, 1979.

    MATH  Google Scholar 

  79. K.N. Dutta and S. Sahu. A multigoal heuristic for facilities design problems: MUGHAL. International Journal of Production Research, 20:147–154, 1982.

    Google Scholar 

  80. R.F. Dyer, E.H. Foreman, and M.A. Mustafa. Decision support for media selection. Journal of Advertising, 21(1):59–72, 1992.

    Google Scholar 

  81. M. Eben-Chaime. Parametric solution for linear bicriteria knapsack models. Management Science, 42(11):1565–1575, 1996.

    MATH  Google Scholar 

  82. S.C. Egly and J.R. Wright. Microcomputer-based multiobjective personnel management model. Journal of Computing in Civil Engineering, 1:114–127, 1987.

    Article  Google Scholar 

  83. M. Ehrgott. Lexicographic max-ordering — A solution concept for multicriteria combinatorial optimization. In D. Schweigert, editor, Methods of Multicriteria Decision Theory, Proceedings of the 5th Workshop of the DGOR-Working Group Multicriteria Optimization and Decision Theory, pages 55–66. University of Kaiser-slautern, 1995.

    Google Scholar 

  84. M. Ehrgott. On matroids with multiple objectives. Optimization, 38(1):73–84, 1996.

    MathSciNet  MATH  Google Scholar 

  85. M. Ehrgott. A characterization of lexicographic max-ordering solutions. In A. Göpfert, J. Seeländer, and C. Tammer, editors, Methods of Multicriteria Decision Theory, Proceedings of the 6th Workshop of the DGOR-Working Group Multicriteria Optimization and Decision Theory Alexisbad 1996, volume 2389 of Deutsche Hochschulschriften, pages 193–202. Hänsel-Hohenhausen, Egels-bach, 1997.

    Google Scholar 

  86. M. Ehrgott. Multiple Criteria Optimization — Classification and Methodology. Shaker Verlag, Aachen, 1997.

    Google Scholar 

  87. M. Ehrgott. Discrete decision problems, multiple criteria optimization classes and lexicographic max-ordering. In T.J. Stewart and R.C. van den Honert, editors, Trends in Multicriteria Decision Making, volume 465 of Lecture Notes in Economics and Mathematical Systems, pages 31–44. Springer Verlag, Berlin, 1998.

    Google Scholar 

  88. M. Ehrgott. Integer solutions of multicriteria network flow problems. Investigação Operacional, 19:229–243, 1999.

    Google Scholar 

  89. M. Ehrgott. Approximation algorithms for combinatorial multi-criteria optimization problems. International Transcations in Operational Research, 7:5–31, 2000.

    MathSciNet  Google Scholar 

  90. M. Ehrgott and X. Gandibleux. Bounds and bound sets for biob-jective combinatorial optimization problems. In M. Köksalan and S. Zionts, editors, Multiple Criteria Decision Making in the New Millenium, volume 507 of Lecture Notes in Economics and Mathematical Systems, pages 242–253. Springer Verlag, Berlin, 2001.

    Google Scholar 

  91. M. Ehrgott, H.W. Hamacher, K. Klamroth, S. Nickel, A. Schöbel, and M.M. Wiecek. A note on the equivalence of balance points and Pareto solutions in multiple-objective programming. Journal of Optimization Theory and Applications, 92(1):209–212, 1997.

    Article  MathSciNet  Google Scholar 

  92. M. Ehrgott and K. Klamroth. Connectedness of efficient solutions in multiple criteria combinatorial optimization. European Journal of Operational Research, 97:159–166, 1997.

    Article  Google Scholar 

  93. M. Ehrgott and K. Klamroth. Nonconnected efficiency graphs in multiple criteria combinatorial optimization. In R. Caballero, F. Ruiz, and R.E. Steuer, editors, Advances in Multiple Objective and Goal Programming, volume 455 of Lecture Notes in Economics and Mathematical Systems, pages 140–150. Springer Verlag, Berlin, 1997.

    Google Scholar 

  94. M. Ehrgott, S. Nickel, and H.W. Hamacher. Geometric methods to solve max-ordering location problems. Discrete Applied Mathematics, 93:3–20, 1999.

    Article  MathSciNet  Google Scholar 

  95. M. Ehrgott and D.M. Ryan. Bicriteria robustness versus cost optimisation in tour of duty planning at Air New Zealand. In Proceedings of the 35th Annual Conference of the Operational Research Society of New Zealand, pages 31–39. ORSNZ, Auckland, 2000.

    Google Scholar 

  96. M. Ehrgott and A.J.V. Skriver. Solving biobjective combinatorial max-ordering problems by ranking methods and a two-phases approach. Technical Report 2001-1, Department of Operations Research, University of Aarhus, Denmark, 2001.

    Google Scholar 

  97. M. Ehrgott and D. Tenfelde. Nadir values: Computation and use in compromise programming. Report in Wirtschaftsmathematik 60/2000, University of Kaiserslautern, Department of Mathematics, 2000.

    Google Scholar 

  98. M. Ehrgott and D. Tenfelde-Podehl. Computing nadir values in three objectives. In M. Köksalan and S. Zionts, editors, Multiple Criteria Decision Making in the New Millenium, volume 507 of Lecture Notes in Economics and Mathematical Systems, pages 219–228. Springer, Berlin, 2001.

    Google Scholar 

  99. S. Eilon. Multicriteria warehouse location. International Journal of Physical Distribution and Materials Management, 12(1):42–45, 1982.

    Google Scholar 

  100. N. El-Sherbeny. Resolution of a vehicle routing problem with a multi-objective simulated annealing method. PhD thesis, Faculté des Sciences, Université de Mons-Hainaut. Mons, Belgique, 2001.

    Google Scholar 

  101. W.F.A. El-Wahed. A multi-objective transportation problem under fuzziness. Fuzzy Sets and Systems, 117:27–33, 2000.

    Google Scholar 

  102. V.A. Emelichev and V.A. Perepelitsa. Complexity of vector optimization problems on graphs. Optimization, 22:903–918, 1991.

    MathSciNet  Google Scholar 

  103. V.A. Emelichev and V.A. Perepelitsa. On cardinality of the set of alternatives in discrete many-criterion problems. Discrete Mathematics and Applications, 2(5):461–471, 1992.

    Article  MathSciNet  Google Scholar 

  104. V.A. Emelichev and V.G. Pokhilko. Sensitivity analysis of efficient solutions of the vector problem of minimisation of linear forms on a set of permutations. Discrete Mathematics and Applications, 10(4):367–378, 2000.

    MathSciNet  Google Scholar 

  105. P. Engrand. A multi-objective approach based on simulated annealing and its application to nuclear fuel management. In Proceedings of the 5th ASME/SFEN/JSME International Conference on Nuclear Engineering. Icone 5, Nice, France 1997, pages 416–423. American Society of Mechanical Engineers, New York, NY, 1997.

    Google Scholar 

  106. P. Engrand and X. Mouney. Une méthode originate d’optimisation multi-objectif. Technical Report 98NJ00005, EDF-DER Clamart, France, 1998.

    Google Scholar 

  107. T. Erlebach, H. Kellerer, and U. Pferschy. Approximating multi-objective knapsack problems. In F. Dehne, J.R. Sack, and R. Tamassia, editors, Algorithms and Data Structures. 7th International Workshop, Providence, RI, August 8–10, 2001, volume 2125 of Lecture Notes in Computer Science, pages 210–221. Springer Verlag, Berlin, 2001.

    Google Scholar 

  108. J. Figueira. L’approche interactive dans le cas des problémes de flot multicritéres. PhD thesis, Université Paris-Dauphine, Paris, France, 1996.

    Google Scholar 

  109. J. Figueira. On the integer bi-criteria network flow problem: A branch-and-bound approach. Technical Report 3, Faculdade de Economia, Universidade de Coimbra, Portugal, 2000.

    Google Scholar 

  110. J. Figueira, M.E. Captivo, and J. Climaco. Sur le problème des chemins bi-critères: Une approche interactive a posteriori. Technical Report 149, LAMSADE, Université de Paris Dauphine, 1997.

    Google Scholar 

  111. J. Figueira, H. M’Silti, and P. Tolla. Using mathematical programming heuristics in a multicriteria network flow context. Journal of the Operational Research Society, 49:878–885, 1998.

    Article  Google Scholar 

  112. R. Fischer and K. Richter. Solving a multiobjective traveling salesman problem by dynamic programming. Mathematische Operationsforschung und Statistik, Series Optimization, 13(2):247–252, 1982.

    MathSciNet  Google Scholar 

  113. C.M. Fonseca and P.J. Fleming. Genetic algorithms for multiobjective optimization: Formulation, discussion and generalization. In S. Forrest, editor, Proceedings of the Fifth International Conference on Genetic Algorithms, San Mateo, California, 1993. University of Illinois at Urbana-Champaign, pages 416–423. Morgan Kaufman, San Francisco, CA, 1993.

    Google Scholar 

  114. C.M. Fonseca and P.J. Fleming. An overview of evolutionary algorithms in multiobjective optimization. Evolutionary Computation, 3(1):1–16, Spring 1995.

    Google Scholar 

  115. J.C. Fortenberry and J.F. Cox. Multicriteria approach to the facilities layout problem. International Journal of Production Research, 23:773–782, 1985.

    Google Scholar 

  116. T.L. Friesz. Multi-objective optimization in transportation: The case of equilibrium network design. In J.N. Morse, editor, Organizations: Multiple Agents with Multiple Criteria, volume 190 of Lecture Notes in Economics and Mathematical Systems, pages 116–127. Springer Verlag, Berlin, 1983.

    Google Scholar 

  117. T.L. Friesz, G. Ananndalingam, N.J. Mehta, K. Nam, S.J. Shah, and R.L. Tobin. The multiobjective equilibrium network design problem revisited: A simulated annealing approach. European Journal of Operational Research, 65(1):44–57, 1993.

    Article  Google Scholar 

  118. T.L. Friesz and P.T. Harker. Multi-objective design of transportation networks: The case of spatial price equilibrium. In P. Hansen, editor, Essays and Surveys on Multiple Criteria Decision Making, volume 209 of Lecture Notes in Economics and Mathematical Systems, pages 86–93. Springer Verlag, Berlin, 1983.

    Google Scholar 

  119. T.L. Friesz and P.T. Harker. Multicriteria spatial price equilibrium network design: Theory and computational results. Transportation Research, 17B:411–426, 1983.

    Google Scholar 

  120. T.L. Friesz, F.A. Toureilles, and A.F.W. Han. Comparison of multicriteria optimization methods in transport project evaluation. Transportation Research Record, 751:38–41, 1980.

    Google Scholar 

  121. B. Fruhwirth, R.E. Burkard, and G. Rote. Approximation of convex curves with application to the bicriterial minimum cost flow problem. European Journal of Operational Research, 42:326–388, 1989.

    Article  MathSciNet  Google Scholar 

  122. V. Gabrel and D. Vanderpooten. Generation and selection of efficient paths in a multiple criteria graph: The case of daily planning the shots taken by a satellite with an interactive procedure. Technical Report 136, LAMSADE, Université Paris Dauphine, 1996.

    Google Scholar 

  123. R.J. Gallagher and O.A. Saleh. Constructing the set of efficient objective values in linear multiple objective transportation problems. European Journal of Operational Research, 73:150–163, 1994.

    Article  Google Scholar 

  124. X. Gandibleux. Quick evaluation of the efficient solution set for the biojective knapsack problem. In Köksalan M. and Zionts S., editors, Multiple Criteria Decision Making in the New Millennium, volume 507 of Lecture Notes in Economics and Mathematical Systems, pages 254–264. Springer Verlag, Berlin, 2001.

    Google Scholar 

  125. X. Gandibleux and A. Fréville. Tabu search based procedure for solving the 0/1 multiobjective knapsack problem: The two objective case. Journal of Heuristics, 6(3):361–383, 2000.

    Google Scholar 

  126. X. Gandibleux, N. Mezdaoui, and A. Fréville. A tabu search procedure to solve multiobjective combinatorial optimization problems. In R. Caballero, F. Ruiz, and R. Steuer, editors, Advances in Multiple Objective and Goal Programming, volume 455 of Lecture Notes in Economics and Mathematical Systems, pages 291–300. Springer Verlag, Berlin, 1997.

    Google Scholar 

  127. X. Gandibleux, H. Morita, and N. Katoh. The supported solutions used as a genetic information in a population heuristic. In E. Zit-zler, K. Deb, L. Thiele, C.A. Coello Coello, and D. Corne, editors, First International Conference on Evolutionary Multi-Criterion Optimization, volume 1993 of Lecture Notes in Computer Science, pages 429–442. Springer Verlag, Berlin, 2001.

    Google Scholar 

  128. M.R. Garey and D.S. Johnson. Computers and Intractability — A Guide to the Theory of NP-Completeness. Freeman, San Francisco, CA, 1979.

    Google Scholar 

  129. M. Gen, K. Ida, and J. Kim. A spanning tree-based genetic algorithm for bicriteria topological network design. In Proceedings of the 5th IEEE Conference on Evolutionary Computation, pages 15–20. IEEE Press, Piscataway, NJ, 1998.

    Google Scholar 

  130. M. Gen and Y.Z. Li. Solving multi-objective transportation problems by spanning tree-based genetic algorithm. In I.C. Parmee, editor, Adaptive Computing in Design and Manufacture: The Integration of Evolutionary and Adaptive Computing Technologies with Product/System Design and Realisation, pages 95–108. Springer Verlag, Berlin, 1998.

    Google Scholar 

  131. M. Gen and Y.Z. Li. Spanning tree based genetic algorithm for bicriteria transportation problem. Computers and Industrial Engineering, 35(3/4):531–534, 1998.

    Google Scholar 

  132. A.M. Geoffrion. Proper efficiency and the theory of vector maximization. Journal of Mathematical Analysis and Applications, 22:618–630, 1968.

    Article  MathSciNet  MATH  Google Scholar 

  133. K.C. Gilbert, D. Holmes, and R.E. Rosenthal. A multi-objective discrete optimisation model for land allocation. Management Science, 31(12):1509–1522, 1985.

    Google Scholar 

  134. F. Glover and M. Laguna. Tabu Search. Kluwer Academic Publishers, Dordrecht, 1997.

    Google Scholar 

  135. J.M. Godart. Problèmes d’optimisation combinatoire à caractère économique dans le secteur du tourisme (organisation de voyages). PhD thesis, Faculté Warocqué des sciences économiques, Université de Mons-Hainaut. Mons, Belgique, 2001.

    Google Scholar 

  136. D.E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley Publishing Co., Reading, MA, 1989.

    Google Scholar 

  137. D. Granot. A new exchange property for matroids and its application to max-min problems. Zeitschrift für Operations Research, 28:41–45, 1984.

    MathSciNet  MATH  Google Scholar 

  138. M. Gravel, W.L. Price, and C. Gagné. Scheduling continuous casting of aluminium using a multiple-objective ant colony optimization metaheuristic. European Journal of Operational Research, to appear, 2002.

    Google Scholar 

  139. G.I. Green, C.S. Kim, and S.M. Lee. A multicriteria warehouse location model. International Journal of Physical Distribution and Materials Management, 11(1):5–13, 1981.

    Google Scholar 

  140. J.J. Grefenstette. GENESIS: A system for using genetic search procedures. In Proceedings of the 1984 Conference on Intelligent Systems and Machines, pages 161–165, 1984.

    Google Scholar 

  141. A. Gupta and A. Warburton. Approximation methods for multiple criteria travelling salesman problems. In Y. Sawaragi, editor, Towards Interactive and Intelligent Decision Support Systems: Proceedings of the 7th International Conference on Multiple Criteria Decision Making, Kyoto, volume 285 of Lecture Notes in Economics and Mathematical Systems, pages 211–217. Springer Verlag, Berlin, 1986.

    Google Scholar 

  142. W. Habenicht. Quad trees — A datastructure for discrete vector optimization problems. In P. Hansen, editor, Essays and Surveys on Multiple Criteria Decision Making, volume 209 of Lecture Notes Economics and Mathematical Systems, pages 136–145. Springer Verlag, Berlin, 1983.

    Google Scholar 

  143. D.K. Haider and A. Majumber. A method for selecting optimum number of stations for a rapid transit line: An application in Calcutta tube rail. In N.K. Jaiswal, editor, Scientific Management of Transport Systems, pages 97–108. North-Holland, Amsterdam, 1981.

    Google Scholar 

  144. N.G. Hall and R.A. Vohra. Pareto optimality and a class of set covering problems. Annals of Operations Research, 43:279–284, 1993.

    Article  MathSciNet  Google Scholar 

  145. H.W. Hamacher. Determining minimal cuts with a minimal number of arcs. Networks, 12:493–504, 1982.

    MathSciNet  MATH  Google Scholar 

  146. H.W. Hamacher. K best network flows. Annals of Operations Research, 57:65–72, 1995. Special Volume “Industrial Systems”.

    Article  MathSciNet  MATH  Google Scholar 

  147. H.W. Hamacher, M. Labbé, and S. Nickel. Multicriteria network location problems with sum objectives. Networks, 33:79–92, 1999.

    Article  MathSciNet  Google Scholar 

  148. H.W. Hamacher, M. Labbé, S. Nickel, and A.J.V. Skriver. Multi-criteria semi-obnoxious network location problems (MSNLP) with sum and center objectives. Working Paper 2000/6, Department of Operations Rsearch, University of Aarhus, Denmark, 2000.

    Google Scholar 

  149. H.W. Hamacher and G. Ruhe. On spanning tree problems with multiple objectives. Annals of Operations Research, 52:209–230, 1994.

    Article  MathSciNet  Google Scholar 

  150. E.L. Hannan. Allocation of library funds for books and standing orders — A multiple objective formulation. Computers and Operations Research, 5:109–114, 1978.

    Article  Google Scholar 

  151. T. Hanne. On the convergence of multiobjective evolutionary algorithms. European Journal of Operational Research, 117:553–564, 1999.

    Article  MATH  Google Scholar 

  152. T. Hanne. Global multiobjective optimization using evolutionary algorithms. Journal of Heuristics, 6(3):347–360, 2000.

    Article  MATH  Google Scholar 

  153. M.P. Hansen. Metaheuristics for multiple objective combinatorial optimization. PhD thesis, Institute of Mathematical Modelling, Technical University of Denmark, Lyngby, Denmark, 1998. Report IMM-PHD-1998-45.

    Google Scholar 

  154. M.P. Hansen. Tabu search for multiobjective combinatorial optimization: TAMOCO. Control and Cybernetics, 29(3):799–818, 2000.

    MathSciNet  MATH  Google Scholar 

  155. M.P. Hansen. Use of substitute scalarizing functions to guide a local search based heuristics: The case of moTSP. Journal of Heuristics, 6(3):419–431, 2000.

    Article  MATH  Google Scholar 

  156. M.P. Hansen and A. Jaszkiewicz. Evaluating the quality of approximations to the non-dominated set. Technical Report IMM-REP-1998-7, Institute of Mathematical Modelling, Technical University of Denmark, Lyngby, 1998.

    Google Scholar 

  157. P. Hansen. Bicriterion path problems. In G. Fandel and T. Gal, editors, Multiple Criteria Decision Making Theory and Application, volume 177 of Lecture Notes in Economics and Mathematical Systems, pages 109–127. Springer Verlag, Berlin, 1979.

    Google Scholar 

  158. P. Hansen, J.F. Thisse, and R.E. Wendell. Efficient points on a network. Networks, 16:357–368, 1986.

    MathSciNet  Google Scholar 

  159. M. Hapke, A. Jaszkiewicz, and R. Slowinski. Fuzzy project scheduling with multiple criteria. In Proceedings of Sixth IEEE International Conference on Fuzzy Systems, FUZZ-IEEE’97, July 1–5, Barcelona, Spain, pages 1277–1282. IEEE Service Center, Piscataway, NJ, 1997.

    Google Scholar 

  160. M. Hapke, A. Jaszkiewicz, and R. Slowinski. Fuzzy multi-mode resource-constrained project scheduling with multiple objectives,. In J. Weglarz, editor, Recent Advances in Project Scheduling, pages 355–382. Kluwer Academic Publishers, Dordrecht, 1998.

    Google Scholar 

  161. M. Hapke, A. Jaszkiewicz, and R. Slowinski. Interactive analysis of multiple-criteria project scheduling problems. European Journal of Operational Research, 107(2):315–324, 1998.

    Article  Google Scholar 

  162. M. Hapke, A. Jaszkiewicz, and R. Slowinski. Pareto simulated annealing for fuzzy multi-objective combinatorial optimization. Journal of Heuristics, 6(3):329–354, 2000.

    Article  Google Scholar 

  163. M. Hapke, P. Kominek, A. Jaszkiewicz, and R. Slowinski. Integrated tools for software project scheduling under uncertainty. In P. Brucker, S. Heitmann, J. Hurink, and S. Knust, editors, Proceedings of the 7th International Workhop on Project Management and Scheduling PMS’2000, Osnabrück, Germany, April 17–19, pages 149–151, 2000.

    Google Scholar 

  164. R.M. Harnett and J.P. Ignizio. A heuristic program for the covering problem with multiple objectives. In J.L. Cochrane and M. Ze-leny, editors, Multiple Criteria Decision Making, pages 738–740. University of South Carolina Press, Columbia, SC, 1973.

    Google Scholar 

  165. R. Hartley. Vector optimal routing by dynamic programming. In P. Serafini, editor, Mathematics of Multiobjective Optimization, volume 289 of CISM International Centre for Mechanical Sciences — Courses and Lectures, pages 215–224. Springer Verlag, Wien, 1985.

    Google Scholar 

  166. M.I. Henig. The shortest path problem with two objective functions. European Journal of Operational Research, 25:281–291, 1985.

    MathSciNet  Google Scholar 

  167. M.I. Henig. Efficient interactive methods for a class of multiattribute shortest path problems. Management Science, 40(7):891–897, 1994.

    MATH  Google Scholar 

  168. A. Hertz, B. Jaumard, C. Ribeiro, and W. Formosinho Filho. A multi-criteria tabu search approach to cell formation problems in group technology with multiple objectives. RAIRO — Recherche Opérationnelle/Operations Research, 28(3):303–328, 1994.

    Google Scholar 

  169. M.J. Hodgson, K.E. Rosing, and A.L.G. Storrier. Testing a bi-criterion location-allocation model with real-world network traffic: The case of Edmonton, Canada. In J. Climaco, editor, Multicriteria Analysis, pages 484–495. Springer Verlag, Berlin, 1997.

    Google Scholar 

  170. S.C. Hong and Y.B. Park. A heuristic for bi-objective vehicle routing with time window constraints. International Journal of Production Economics, 62:249–258, 1999.

    Article  Google Scholar 

  171. J.A. Hoogeveen. Single-Machine Bicriteria Scheduling. PhD thesis, Technische Universiteit Eindhoven, The Netherlands, 1992.

    Google Scholar 

  172. J. Horn, N. Nafpliotis, and D.E. Goldberg. A niched Pareto genetic algorithm for multiobjective optimization. In Proceedings of the First IEEE Conference on Evolutionary Computation, IEEE World Congress on Computational Intelligence, Orlando, FL, 29 June–1 July 1994, volume 1, pages 82–87. IEEE Service Center, Piscataway, NJ, 1994.

    Google Scholar 

  173. F. Huarng, P. Pulat, and A. Ravindran. An algorithm for bicriteria integer network flow problem. In Proceedings of the 10th International Conference on Multiple Criteria Decision Making, Taipei, Taiwan, volume III, pages 305–318, 1992.

    Google Scholar 

  174. F. Huarng, P.S. Pulat, and L.S. Shih. A computational comparison of some bicriterion shortest path algorithms. Journal of the Chinese Institute of Industrial Engineers, 13(2):121–125, 1996.

    MathSciNet  Google Scholar 

  175. K. Huckert, R. Rhode, O. Roglin, and R. Weber. On the interactive solution to a multicriteria scheduling problem. Zeitschrift für Operations Research, 24:47–60, 1980.

    MathSciNet  Google Scholar 

  176. J.W. Hultz, D. Klingman, T.G. Ross, and R.M. Soland. An interactive computer system for multicriteria faciliy location. Computers and Operations Research, 8(4):249–261, 1981.

    Article  Google Scholar 

  177. V.A. Hutson and C.S. ReVelle. Maximal direct covering tree problem. Transportation Science, 23:288–299, 1989.

    MathSciNet  Google Scholar 

  178. V.A. Hutson and C.S. ReVelle. Indirect covering tree problems on spanning tree networks. European Journal of Operational Research, 65:20–32, 1993.

    Article  Google Scholar 

  179. J.P. Ignizio. Goal Programming and Extensions. Lexington Books, Lexington, KY, 1976.

    Google Scholar 

  180. J.P. Ignizio. An approach to the modelling and analysis of multi-objective generalized networks. European Journal of Operational Research, 12:357–361, 1983.

    Article  MathSciNet  MATH  Google Scholar 

  181. J.P. Ignizio, D.F. Palmer, and C.M. Murphy. A multicriteria approach to supersystem architecture definition. IEEE Transactions on Computers, 31:410–418, 1982.

    Google Scholar 

  182. S. Iredi, D. Merkle, and M. Middendorf. Bi-criterion optimization with multi colony ant algorithms. In E. Zitzler, K. Deb, L. Thiele, C.A. Coello Coello, and D. Corne, editors, First International Conference on Evolutionary Multi-Criterion Optimization, volume 1993 of Lecture Notes in Computer Science, pages 359–372. Springer Verlag, Berlin, 2001.

    Google Scholar 

  183. H. Isermann. Proper efficiency and the linear vector maximum problem. Operations Research, 22:189–191, 1974.

    MathSciNet  MATH  Google Scholar 

  184. H. Isermann. The enumeration of all efficient solutions for a linear multiple-objective transportation problem. Naval Research Logistics Quarterly, 123–139:123-39, 1979.

    Google Scholar 

  185. F.R. Jacobs. A layout planning system with multiple criteria and a variable domain representation. Management Science, 33(8): 1020–1034, 1987.

    MATH  Google Scholar 

  186. H.K. Jain and A. Dutta. Distributed computer system design: A multicriteria decision-making methodology. Decision Sciences, 17:437–453, 1986.

    Google Scholar 

  187. A. Jaszkiewicz. A metaheuristic approach to multiple objective nurse scheduling. Foundations of Computing and Decision Sciences Journal, 22(3): 169–184, 1997.

    MATH  Google Scholar 

  188. A. Jaszkiewicz. Genetic local search for multiple objective combinatorial optimization. Working paper RA-014/98, Institute of Computing Science; Poznan University of Technology, Poland, 1998.

    Google Scholar 

  189. A. Jaszkiewicz. Comparison of local search-based metaheuristics on the multiple objective knapsack problem. Foundations of Computing and Decision Sciences Journal, 26(1):99–120, 2001.

    Google Scholar 

  190. A. Jaszkiewicz. Multiple objective genetic local search algorithm. In M. Köksalan and S. Zionts, editors, Multiple Criteria Decision Making in the New Millennium, volume 507 of Lecture Notes in Economics and Mathematical Systems, pages 231–240, 2001.

    Google Scholar 

  191. A. Jaszkiewicz. Multiple objective metaheuristic algorithms for combinatorial optimization. Habilitation thesis, Poznan University of Technology, Poznan, Poland, 2001.

    Google Scholar 

  192. A. Jaszkiewicz. On the computational effectiveness of multiple objective metaheuristics. In T. Trzaskalik and E. Michnik, editors, Multiple Objective and Goal Programming — Recent Developments, pages 86–100. Physica-Verlag, Heidelberg, 2002.

    Google Scholar 

  193. A. Jaszkiewicz and A.B. Ferhat. Solving multiple criteria choice problems by interactive trichotomy segmentation. European Journal of Operational Research, 113(2):271–280, 1999.

    Google Scholar 

  194. D. Jones, S.K. Mirrazavi, and M. Tamiz. Multi-objective metaheuristics: An overview of the current state-of-the-art. European Journal of Operational Research, 137(1):1–9, 2002.

    Article  Google Scholar 

  195. T.C.U. Kalu. Capital budgeting under uncertainty: An extended goal programming approach. International Journal of Production Research, 58(3):235–251, 1999.

    Google Scholar 

  196. C.P. Keller. Algorithms to solve the orienteering problem. European Journal of Operational Research, 41:224–231, 1989.

    Article  MATH  Google Scholar 

  197. C.P. Keller and M.F. Goodchild. The multiobjective vending problem: A generalisation of the traveling salesman problem. Environ-mantal Planning B: Planning Design, 15:447–460, 1988.

    Google Scholar 

  198. B. Kim, E.S. Gel, W.M. Carlyle, and J.W. Fowler. A new technique to compare algorithms for bi-criteria combinatorial optimization problems. In M. Köksalan and S. Zionts, editors, Multiple Criteria Decision Making in the New Millenium, volume 507 of Lecture Notes in Economics and Mathematical Systems, pages 113–123. Springer Verlag, Berlin, 2001.

    Google Scholar 

  199. K. Klamroth and M. Wiecek. Dynamic programming approaches to the multiple criteria knapsack problem. Naval Research Logistics, 47(1):57–76, 2000.

    Article  MathSciNet  Google Scholar 

  200. K. Klamroth and M. Wiecek. Time-dependent capital budgeting with multiple criteria. In Y.Y. Haimes and R.E. Steuer, editors, Research and Practice in Multiple Criteria Decision Making, volume 487 of Lecture Notes in Economics and Mathematical Systems, pages 421–432. Springer Verlag, Berlin, 2000.

    Google Scholar 

  201. K. Klamroth and M. Wiecek. A time-dependent single-machine scheduling knapsack problem. European Journal of Operational Research, 135:17–26, 2001.

    Article  MathSciNet  Google Scholar 

  202. D. Klingman and J. Mote. Solution approaches for network flow problems with multiple criteria. Advances in Management Studies, 1(1):1–30, 1982.

    Google Scholar 

  203. D. Klingman and N.V. Philips. Topological and computational aspects of preemptive multicriteria military personnel assignment problems. Management Science, 30(11):1362–1375, 1984.

    Google Scholar 

  204. J.D. Knowles. Local-Search and Hybrid Evolutionary Algorithms for Pareto Optimization. PhD thesis, Department of Computer Science, University of Reading, UK, 2002.

    Google Scholar 

  205. J.D. Knowles and D.W. Corne. The Pareto archived evolution strategy: A new baseline algorithm for multiobjective optimisation. In Proceedings of the 1999 Congress on Evolutionary Computation. Washington, D.C., pages 98–105. IEEE Service Center, Piscataway, NJ, 1999.

    Google Scholar 

  206. D.L. Knutson, L.M. Marquis, D.N. Ricchiute, and G.J. Saunders. A goal programming model for achieving racial balance in public schools. Socio-Economic Planning Sciences, 14:109–116, 1980.

    Article  Google Scholar 

  207. M. Köksalan. A heuristic approach to bicriteria scheduling. Naval Research Logistics, 46(7):777–789, 1999.

    MathSciNet  MATH  Google Scholar 

  208. M. Köksalan, M. Azizoglu, and S.K. Kondakci. Minimizing flow-time and maximum earliness on a single machine. IIE Transactions, 30:192–200, 1998.

    Google Scholar 

  209. E. Koktener and M. Köksalan. A simulated annealing approach to bicriteria scheduling problems on a single machine. Journal of Heuristics, 6(3):311–327, 2000.

    Google Scholar 

  210. A.W.J. Kolen and F.C.R. Spieksma. Solving a bi-criterion cutting stock problem with open-ended demand. Journal of the Operational Research Society, 51(11): 121–132, 2000.

    Article  Google Scholar 

  211. S. Kolli and G.W. Evans. A multiple objective integer programming approach for planning franchise expansion. Computers and Industrial Engineering, 37:543–561, 1999.

    Article  Google Scholar 

  212. S.K. Kondakci, M. Azizoglu, and M. Köksalan. Scheduling with multiple criteria. In Proceedings of the 10th International Conference on Multiple Criteria Decision Making, Taipei, Taiwan, volume III, pages 19–27, 1992.

    Google Scholar 

  213. S.K. Kondakci, M. Azizoglu, and M. Köksalan. Bicriteria scheduling for minimizing flow time and maximum tardiness. Naval Research Logistics Quarterly, 43:929–936, 1996.

    Google Scholar 

  214. P. Korhonen, S. Salo, and R.E. Steuer. A heuristic for estimating Nadir criterion values in multiple objective linear programming. Operations Research, 45(5):751–757, 1997.

    Google Scholar 

  215. M.M. Kostreva and M.M. Wiecek. Time dependency in multiple objective dynamic programming. Journal of Mathematical Analysis and Applications, 173(1):289–307, 1993.

    Article  MathSciNet  Google Scholar 

  216. P. Kouvelis and R.C. Carlson. Total unimodularity applications in bi-objective discrete optimization. Operations Research Letters, 11:61–65, 1992.

    Article  MathSciNet  Google Scholar 

  217. M. Krause and V. Nissen. On using penalty functions and multicriteria optimisation techniques in facility layout. In J. Biethahn, editor, Evolutionary Algorithms in Management Applications, pages 153–166. Springer Verlag, Berlin, 1995.

    Google Scholar 

  218. H.T. Kung, F. Luccio, and F. P. Preparata. On finding the maxima of a set of vectors. Journal of the Association for Computing Machinery, 22(4):469–476, 1975.

    MathSciNet  Google Scholar 

  219. N.K. Kwak and M. J. Schniederjans. A goal programming model for improved transportation problem solutions. Omega: International Journal of Management Science, 7:376–370, 1979.

    Article  Google Scholar 

  220. N.K. Kwak and M.J. Schniederjans. Goal programming solutions to transportation problems with variable supply and demand requirements. Socio-Economic Planning Sciences, 19:95–100, 1985.

    Google Scholar 

  221. M. Labbé. Location problems. In M. Dell’Amico, F. Maffioli, and S. Martello, editors, Annotated Bibliographies in Combinatorial Optimization, pages 261–281. J. Wiley & Sons, Chichester, 1997.

    Google Scholar 

  222. M. Labbé, D. Peeters, and J.F. Thisse. Location on networks. In Network Routing, volume 8 of Handbooks in OR & MS, pages 551–624. Elsevier Science B.V., Amsterdam, 1995.

    Google Scholar 

  223. M. Laumanns, E. Zitzler, and L. Thiele. On the effect of archiving, elitism, and density based selection in evolutionary multi-objective optimization. In Evolutionary Multi-Criteria Optimization. First International Conference, EMO 2001. Zürich, Switzerland, March 7–9, 2001. Proceedinsg, volume 1993 of Lecture Notes in Computer Science, pages 181–196. Springer Verlag, Berlin, 2001.

    Google Scholar 

  224. K.D. Lawrence and J.J. Burbridge. A multiple goal linear programming model for coordinated production and logistics planning. International Journal of Production Research, 14:215–222, 1976.

    Google Scholar 

  225. K.D. Lawrence, G.R. Reeves, and S.M. Lawrence. A multiple objective shift allocation model. IIE Transactions, 16(4):323–328, 1984.

    Google Scholar 

  226. H. Lee. Integer solutions ofbicriteria network flow problems. PhD thesis, University of Oklahoma, Norman, OK, 1991.

    Google Scholar 

  227. H. Lee and P.S. Pulat. Bicriteria network flow problems: Continuous case. European Journal of Operational Research, 51:119–126, 1991.

    Article  Google Scholar 

  228. H. Lee and P.S. Pulat. Bicriteria network flow problems: Integer case. European Journal of Operational Research, 66:148–157, 1993.

    Article  Google Scholar 

  229. S.M. Lee. Goal Programming for Decision Analysis. Auerbach Publications, Philadelphia, PA, 1972.

    Google Scholar 

  230. S.M. Lee and E.R. Clayton. A goal programming model for academic resource allocation. Management Science, 18(8):395–408, 1972.

    Google Scholar 

  231. S.M. Lee, G.I. Green, and C.S. Kim. Multiple criteria model for the location-allocation problem. Computers and Operations Research, 8(1):1–8, 1981.

    Article  Google Scholar 

  232. S.M. Lee and R. Luebbe. The multicriteria warehouse location problem revisited. International Journal of Physical Distribution and Materials Management, 17(3):56–59, 1987.

    Google Scholar 

  233. S.M. Lee and L.J. Moore. Optimizing transportation problems with multiple objectives. AIIE Transactions, 5:333–338, 1973.

    Google Scholar 

  234. S.M. Lee and L.J. Moore. Multicriteria school busing models. Management Science, 23(7):703–715, 1977.

    Google Scholar 

  235. S.M. Lee and M. J. Schniederjans. A multicriteria assignment problem: A goal programming approach. Interfaces, 13(4):75–81, 1983.

    Google Scholar 

  236. L. Li and K.K. Lai. A fuzzy approach to the multiobjective transportation problem. Computers and Operations Research, 27:43–57, 2000.

    Article  MathSciNet  CAS  Google Scholar 

  237. G.E. Liepins, M.R. Hilliard, J. Richardson, and M. Palmer. Genetic algorithms application to set covering and travelling salesman problems. In D.E. Brown and C.C. White, editors, Operations Research and Artificial Intelligence: The Integration of Problem-solving Strategies, pages 29–57. Kluwer Academic Publishers, Norwell, MA, 1990.

    Google Scholar 

  238. M. Lind. Cooperative Game Theory and Multiple Criteria Decision Making. PhD thesis, Department of Operations Research, University of Aarhus, Denmark, 1996.

    Google Scholar 

  239. M. Los and C. Lardinois. Combinatorial programming, statistical optimization and the optimal transportation network problem. Transportation Research, 16B:89–124, 1982.

    MathSciNet  Google Scholar 

  240. T. Loukil Moalla, J. Teghem, and P. Fortemps. Solving multiobjective scheduling problems with tabu search. In Workshop on Production Planning and Control, 2–4 October 2000. Mons, Belgium, pages 18–26. Facultés Universitaires Catholiques de Mons, 2000.

    Google Scholar 

  241. T. Loukil Moalla, J. Teghem, and D. Tuyttens. Solving multiobjective scheduling problems with the MOSA method. In Workshop on Production Planning and Control, 2–4 October 2000. Mons, Belgium, pages 12–17. Facultés Universitaires Catholiques de Mons, 2000.

    Google Scholar 

  242. B. Malakooti. Multiple objective facility layout: A heuristic to generate efficient alternatives. International Journal of Production Research, 27:1225–1238, 1989.

    Google Scholar 

  243. B. Malakooti and G.I. D’Souza. Multiple objective programmig for the quadratic assignment problem. International Journal of Production Research, 25:285–300, 1987.

    Google Scholar 

  244. B. Malakooti, J. Wang, and E.C. Tandler. A sensor-based accelerated approach for multi-attribute machinability and tool life evaluation. International Journal of Production Research, 28:2373, 1990.

    Google Scholar 

  245. J. Malczewski and W. Ogryczak. The multiple criteria location problem: 1. A generalized network model and the set of efficient solutions. Environment and Planning A, 27:1931–1960, 1995.

    Google Scholar 

  246. J. Malczewski and W. Ogryczak. The multiple criteria location problem: 2. Preference-based techniques and interactive decision support. Environment and Planning A, 28:69–98, 1996.

    Google Scholar 

  247. R. Malhotra, H.L. Bhatia, and M.C. Puri. Bi-criteria assignment problem. Operations Research, 19(2):84–96, 1982.

    MathSciNet  Google Scholar 

  248. R. Malhotra and M.C. Puri. Bi-criteria network problem. Cahiers du Centre d’Etudes Recherche Operationelle, 26(1/2):95–102, 1984.

    MathSciNet  Google Scholar 

  249. R. Marett and M. Wright. A comparison of neighborhood search techniques for multi-objective combinatorial problems. Computers and Operations Research, 23(5):465–483, 1996.

    Article  Google Scholar 

  250. E.Q.V. Martins. An algorithm to determine a path with minimal cost/capacity ratio. Discrete Applied Mathematics, 8:189–194, 1984.

    Article  MathSciNet  MATH  Google Scholar 

  251. E.Q.V. Martins. On a multicriteria shortest path problem. European Journal of Operational Research, 16:236–245, 1984.

    Article  MathSciNet  MATH  Google Scholar 

  252. E.Q.V. Martins. On a special class of bicriterion path problems. European Journal of Operational Research, 17:85–94, 1984.

    Article  MathSciNet  MATH  Google Scholar 

  253. E.Q.V. Martins. On a particular quadratic network problem. European Journal of Operational Research, 29:317–327, 1987.

    MathSciNet  MATH  Google Scholar 

  254. E.Q.V. Martins. Bibliography of papers on multiobjective optimal path problems. www.mat.uc.pt/~eqvm/Bibliografias.html, 1996.

    Google Scholar 

  255. E.Q.V. Martins and J.C.N. Climaco. On the determination of the nondominated paths in a multiobjective network problem. Methods of Operations Research, 40:255–258, 1981.

    Google Scholar 

  256. E.Q.V. Martins and J.L.E. Santos. An algorithm for the quickest path problem. Operations Research Letters, 20(4):195–198, 1997.

    Article  MathSciNet  Google Scholar 

  257. A.J. Mehta and A.K. Rifai. Applications of linear programming vs. goal programming to assignment problems. Akron Business and Economic Review, 7:52–55, 1976.

    Google Scholar 

  258. A.J. Mehta and A.K. Rifai. Goal programming application to assignment problem in marketing. Journal of Marketing Science, 7:108–116, 1979.

    Google Scholar 

  259. I.I. Melamed and I.K. Sigal. An investigation of linear convolution of criteria in multicriteria discrete programming. Computational Mathematics and Mathematical Physics, 35(8):1009–1017, 1995.

    MathSciNet  Google Scholar 

  260. I.I. Melamed and I.K. Sigal. A computational investigation of linear parametrization of criteria in multicriteria discrete programming. Computational Mathematics and Mathematical Physics, 36(10):1341–1343, 1996.

    MathSciNet  Google Scholar 

  261. I.I. Melamed and I.K. Sigal. The linear convolution of criteria in the bicriteria traveling salesman problem. Computational Mathematics and Mathematical Physics, 37(8):902–905, 1997.

    MathSciNet  Google Scholar 

  262. I.I. Melamed and I.K. Sigal. Numerical analysis of tricriteria tree and assignment problems. Computational Mathematics and Mathematical Physics, 38(10):1707–1714, 1998.

    MathSciNet  Google Scholar 

  263. I.I. Melamed and I.K. Sigal. Combinatorial optimization problems with two and three criteria. Doklady Mathematics, 59(3):490–493, 1999.

    Google Scholar 

  264. I.I. Melamed, I.K. Sigal, and N.Y. Vladimirova. Study of the linear parametrization of criteria in the bicriteria knapsack problem. Computational Mathematics and Mathematical Physics, 39(5):721–726, 1999.

    MathSciNet  Google Scholar 

  265. G. Mensch. Zur Berücksichtigung mehrerer Zielfunktionen bei der optimalen Personalanweisung. Schmalenbach’s Zeitschrift für be-triebswirtschaftliche Forschung, 23:200–207, 1971.

    Google Scholar 

  266. M. Minoux. Solving combinatorial problems with combined min-max-min-sum objective and applications. Mathematical Programming, 45:361–372, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  267. Kostreva. M.M. and L. Lancaster. Multiple objective path optimization for time dependent objective functions. In T. Trzaskalik and E. Michnik, editors, Multiple Objective and Goal Programming — Recent Developments, pages 127–142. Physica-Verlag, Heidelberg, 2002.

    Google Scholar 

  268. P. Modesti and A. Sciomachen. A utility measure for finding mul-tiobjective shortest paths in urban multimodal transportation networks. European Journal of Operational Research, 111(3):495–508, 1998.

    Article  Google Scholar 

  269. S. Mohri, T. Masuda, and H. Ishii. Bi-criteria scheduling problem on three identical parallel machines. International Journal of Production Economics, 60–61:529–536, 1999.

    Google Scholar 

  270. L.J. Moore, B.W. Taylor, and S.M. Lee. Analysis of a transshipment problem with multiple conflicting objectives. Computers and Operations Research, 5:39–46, 1978.

    Article  Google Scholar 

  271. H. Morita, X. Gandibleux, and N. Katoh. Experimental feedback on biobjective permutation scheduling problems solved with a population heuristic. Foundations of Computing and Decision Sciences Journal, 26(1):23–50, 2001.

    Google Scholar 

  272. J. Mote, I. Murthy, and D.L. Olson. A parametric approach to solving bicriterion shortest path problems. European Journal of Operational Research, 53:81–92, 1991.

    Article  Google Scholar 

  273. W.E. Moudani, C.A.N. Cosenza, M. de Coligny, and F. Mora-Camino. A bi-criterion approach for the airlines crew rostering problem. In E. Zitzler, K. Deb, L. Thiele, C.A.C. Coello, and D. Corne, editors, Evolutionary Multi-Criteria Optimization. First International Conference, EMO 2001, Zurich, Switzerland, March 7–9, 2001 Proceedings, volume 1993 of Lecture Notes in Computer Science, pages 486–500. Springer Verlag, Berlin, 2001.

    Google Scholar 

  274. T. Murata. Genetic Algortithms for Multi-Objective Optimization. PhD thesis, Osaka Prefecture University, Japan, 1997.

    Google Scholar 

  275. T. Murata and H. Ishibuchi. MOGA: Multi-objective genetic algorithms. In Proceedings of the 2nd IEEE International Conference on Evolutionary Computing, Perth, Australia, pages 289–294. IEEE Service Center, Piscataway, NJ, 1995.

    Google Scholar 

  276. C. Murphy and J.P. Ignizio. A methodology for multicriteria network partitioning. Computers and Operations Research, 11(2):1–11, 1984.

    MathSciNet  Google Scholar 

  277. I. Murthy and S.S. Her. Solving min-max shortest-path problems on a network. Naval Research Logistics, 39:669–683, 1992.

    MathSciNet  Google Scholar 

  278. I. Murthy and D. Olson. An interactive procedure using domination cones for bicriterion shortest path problems. European Journal of Operational Research, 72(2):418–432, 1994.

    Article  Google Scholar 

  279. K.G. Murty. Network Programming. Prentice Hall, Englewood Cliffs, NJ, 1992.

    Google Scholar 

  280. A. Mustafa and M. Goh. Assigning faculty to courses: A multiple objective approach using DINAS. In H.G. Lee and K.Y. Tam, editors, Proceedings of the First Asia-Pacific Decision Sciences Institute Conference, pages 671–680, 1996.

    Google Scholar 

  281. A. Mustafa and M. Goh. Characteristics of the efficient solutions of bicriteria and tricriteria network flow problems. In R. Caballero, F. Ruiz, and R.E. Steuer, editors, Advances in Multiple Objective and Goal Programming, volume 455 of Lecture Notes in Economics and Mathematical Systems, pages 131–139. Springer Verlag, Berlin, 1997.

    Google Scholar 

  282. A. Mustafa and M. Goh. Finding integer efficient solutions for bicriteria and tricriteria network flow problems. Computers and Operations Research, 25(2): 139–157, 1998.

    Article  MathSciNet  Google Scholar 

  283. P. Neumayer. Complexity of optimization on vectorweighted graphs. In A. Bachem, U. Derigs, M. Jünger, and R. Schrader, editors, Operations Research 93, pages 359–361. Physica Verlag, Heidelberg, 1994.

    Google Scholar 

  284. N. Nihan and E. Morlock. A planning model for multiple-mode transportation system operation. Transportation Planning and Technology, 3:59–73, 1976.

    Google Scholar 

  285. W. Ogryczak. On the lexicographic minimax approach to location problems. European Journal of Operational Research, 100:566–585, 1997.

    Article  MATH  Google Scholar 

  286. W. Ogryczak. Location problems from the multiple criteria perspective: Efficient solutions. Archives of Control Science, 7(3–4), 1998.

    Google Scholar 

  287. W. Ogryczak, K. Studzinski, and K. Zorychta. A solver for the multi-objective transshipment problem with facility location. European Journal of Operational Research, 43:53–64, 1989.

    Article  Google Scholar 

  288. J.P. Osleeb and S. Ratick. A mixed integer and multiple objective programming model to analyze coal handling in New England. European Journal of Operational Research, 12:302–313, 1983.

    Article  Google Scholar 

  289. I. Osman and G. Laporte. Metaheuristics: A bibliography. Annals of Operations Research, 63:513–623, 1996.

    Article  MathSciNet  Google Scholar 

  290. A. Osyczka. The min-max approach to a multicriterion network optimization problem. In P. Dewilde, editor, International Sympoium on Mathematical Theory of Networks and Systems, pages 316–320. Western Periodicals Co., North Hollywood, CA, 1979.

    Google Scholar 

  291. S. Pamuk and M. Köksalan. An interactive genetic algorithm applied to the multiobjective knapsack problem. In Köksalan M. and Zionts S., editors, Multiple Criteria Decision Making in the New Millennium, volume 507 of Lecture Notes in Economics and Mathematical Systems, pages 265–272. Springer Verlag, Berlin, 2001.

    Google Scholar 

  292. Y.B. Park. A solution of the bicriteria vehicle scheduling problems with time and area-dependent travel speeds. Computers and Industrial Engineering, 38:173–178, 2000.

    Google Scholar 

  293. Y.B. Park and C.P. Koelling. A solution of vehicle routing problems in a multiple objective context. Engineering Costs and Production Economics, 10:121–132, 1986.

    Google Scholar 

  294. Y.B. Park and C.P. Koelling. An interactive computerized algorithm for multicriteria vehicle routing problems. Computers and Industrial Engineering, 16:477–490, 1989.

    Google Scholar 

  295. G. Parks and A. Suppapitnarm. Multiobjective optimization of PWR reload core designs using simulated annealing. In Proceedings of the International Conference on Mathematics and Computation, Reactor Physics and Environmental Analysis in Nuclear Applications. Madrid, Spain, September 1999, volume 2, pages 1435–1444, 1999.

    Google Scholar 

  296. B. Pelegrin and P. Fernandez. On the sum-max bicriterion path problem. Computers and Operations Research, 25(12): 1043–1054, 1998.

    Article  MathSciNet  Google Scholar 

  297. J. Perl. Goal-programming approach to multiobjective highway design model. Transportation Research Record, 751:41–51, 1980.

    Google Scholar 

  298. K. Philipp and R. Staudte. Das n-dimensionale Zuweisungsproblem bei mehrfacher Zielsetzung. Wissenschaftliche Zeitschrift der Technischen Hochschule Karl-Marx-Stadt, 24:255–258, 1982.

    Google Scholar 

  299. N.V. Phillips. A weighting function for pre-emptive multicriteria asignment problems. Journal of the Operational Research Society, 38(9):797–802, 1987.

    MATH  Google Scholar 

  300. M.A. Pollatschek. Personnel assignment by multiobjective programming. Zeitschrift für Operations Research, 20:161–170, 1976.

    MathSciNet  Google Scholar 

  301. S. Prakash. A transportation problem with objectives to minimize total cost and duration of transportation. Opsearch: Journal of the Operational Research Society of India, 18(4):235–238, 1981.

    MathSciNet  MATH  Google Scholar 

  302. S. Praksh. A machine-assignment problem with two objectives. Bulletin of the Technical University Istanbul, 35:235–253, 1982.

    Google Scholar 

  303. S.Y. Prasad. Approximation error analysis in bicriteria heuristics. Journal of Multi-Criteria Decision Analysis, 7(3): 155–159, 1998.

    Article  MATH  Google Scholar 

  304. J. Puerto and E. Fernandéz. The multiobjective solution of the uncapacitated plant location problem. Report DR 2000/15, Department d’EIO, Universitat Politécnica de Catalunya, 2000.

    Google Scholar 

  305. P.S. Pulat, F. Huarng, and H. Lee. Efficient solutions for the bicriteria network flow problem. Computers and Operations Research, 19(7):649–655, 1992.

    Article  Google Scholar 

  306. A.P. Punnen. On combined minmax-minsum optimization. Computers and Operations Research, 21(6):707–716, 1994.

    Article  MATH  Google Scholar 

  307. A.P. Punnen and Y.P. Aneja. Minmax combinatorial optimization. European Journal of Operational Research, 81:634–643, 1995.

    Article  Google Scholar 

  308. A.P. Punnen and K.P.K Nair. An O(m log n) algorithm for the max + sum spanning tree problem. European Journal of Operational Research, 89:423–426, 1996.

    Article  Google Scholar 

  309. V. Rajendra Prasad, N.P.K. Nair, and Y.P. Aneja. A generalized time-cost trade-off transportation problem. Journal of the Operational Research Society, 44:1243–1248, 1993.

    Google Scholar 

  310. R.M. Ramos, S. Alonso, J. Sicilia, and C. González. The problem of the optimal biobjective spanning tree. European Journal of Operational Research, 111:617–628, 1998.

    Article  Google Scholar 

  311. K. Rana and R.G. Vickson. A model and solution algorithm for optimal routing of a time-chartered containership. Transportation Science, 22:83–96, 1988.

    MathSciNet  Google Scholar 

  312. P. Randolph and R. Ringeisen. Shortest paths through multicriteria networks. Technical Report ERI-76073, Engineering Research Institute, Iowa State University, Ames, IA, 1975.

    Google Scholar 

  313. L.M. Rasmussen. Zero-one programming with multiple criteria. European Journal of Operational Research, 26:83–95, 1986.

    Article  MathSciNet  MATH  Google Scholar 

  314. S.J. Ratick. Multiobjective programming with related bargaining games: An application to utility coal conversions. Regional Science and Urban Economics, 13:55–76, 1983.

    Article  Google Scholar 

  315. L.P. Rees, E.R. Clayton, and B.W. Taylor. A linear goal programming model of a multi-period, multi-commodity, network flow problem. Journal of Business Logistics, 8:117–138, 1987.

    Google Scholar 

  316. C. Reeves. Modern Heuristic Techniques for Combinatorial Problems. McGrawHill, London, 1995.

    Google Scholar 

  317. C. ReVelle, J.L. Cohon, and D. Shobys. Multiple objectives in facility location: A review. In J.N. Morse, editor, Organizations: Multiple Agents with Multiple Criteria, volume 190 of Lecture Notes in Economics and Mathematical Systems, pages 321–327. Springer Verlag, Berlin, 1981.

    Google Scholar 

  318. C. ReVelle, D. Marks, and J.C. Liebman. An analysis of public and private sector location models. Management Science, 16:692–707, 1970.

    Google Scholar 

  319. J. Ringuest and D. Rinks. Interactive solutions for the linear multi-objective transportation problem. European Journal of Operational Research, 32(1):96–106, 1987.

    Article  MathSciNet  Google Scholar 

  320. M.J. Rosenblatt. The facilities layout problem: A multi-goal aproach. International Journal of Production Research, 17:323–332, 1979.

    Google Scholar 

  321. M.J. Rosenblatt and Z. Sinuany-Stern. Generating the discrete efficient frontier to the capital budgeting problem. Operations Research, 37(3):384–394,1989.

    Google Scholar 

  322. G.T. Ross and R.M. Soland. A multicriteria approach to the location of public facilities. European Journal of Operational Research, 4:307–321, 1980.

    MathSciNet  Google Scholar 

  323. T. Ross and R. Soland. A multicriteria approach to the location of public facilities. European Journal of Operational Research, pages 307–321, 1980.

    Google Scholar 

  324. G. Ruhe. Complexity results for multicriteria and parametric network flows using a pathological graph of Zadeh. Zeitschrift für Operations Research, 32:59–27, 1988.

    MathSciNet  Google Scholar 

  325. G. Ruhe and B. Fruhwirth. ε-optimality for bicriteria programs and its application to minimum cost flows. Computing, 44(1):21–34, 1990.

    Article  MathSciNet  Google Scholar 

  326. H.M. Safer. Fast Approximation Schemes for Multi-Criteria Combinatorial Optimization. PhD thesis, Sloan School of Management, MIT, Cambridge, MA, 1992.

    Google Scholar 

  327. H.M. Safer and J.B. Orlin. Fast approximation schemes for multi-criteria combinatorial optimization. Working paper 3756-95, Sloan School of Management, MIT, Cambridge, MA, 1995.

    Google Scholar 

  328. H.M. Safer and J.B. Orlin. Fast approximation schemes for multi-criteria flow, knapsack, and scheduling problems. Working paper 3757-95, Sloan School of Management, MIT, Cambridge, MA, 1995.

    Google Scholar 

  329. F.S. Salman, J. Kalagnanam, and S. Murthy. Cooperative strategies for solving the bicriteria sparse multiple knapsack problem. In 1999 Congress on Evolutionary Computation, pages 53–60. IEEE Service Center, Piscataway, NJ, 1999.

    Google Scholar 

  330. N.G.F. Sancho. Multi-objective routing problem. Engineering Optimization, 10:71–76, 1986.

    Google Scholar 

  331. N.G.F. Sancho. A new type of multiobjective routing problem. Engineering Optimization, 14:115–119, 1988.

    Google Scholar 

  332. Y. Sawaragi, H. Nakayama, and T. Tanino. Theory of Multiobjective Optimization. Academic Press, Orlando, FL, 1985.

    Google Scholar 

  333. R.R. Saxena and S.R. Arora. Enumeration technique for solving the multi-objective linear set covering problem. Asia-Pacific Journal of Operational Research, 12:87–97, 1995.

    MathSciNet  Google Scholar 

  334. R.R. Saxona and S.R. Arora. Linearization aproach to multi-objective quadratic set covering. Optimization, 43:145–156, 1998.

    MathSciNet  Google Scholar 

  335. S. Sayin. Measuring the quality of discrete representations of efficient sets in multiple objective mathematical programming. Mathematical Programming, 87(3):543–560, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  336. S. Sayin and S. Karabati. A bicriteria approach to the two-machine flow-shop scheduling problem. European Journal of Operational Research, 113(2):435–449, 1999.

    Article  MathSciNet  Google Scholar 

  337. J.D. Schaffer. Multiple Objective Optimization with Vector Evaluated Genetic Algorithms. PhD thesis, Vanderbilt University, Nashville, TN, 1984.

    Google Scholar 

  338. J.D. Schaffer. Multiple objective optimization with vector evaluated genetic algorithms. In J.J. Grefenstette, editor, Genetic Algorithms and their Applications: Proceedings of the First International Conference on Genetic Algorithms, pages 93–100. Lawrence Erlbaum, Pittsburgh, PA, 1985.

    Google Scholar 

  339. M.J. Schniederjans, N.K. Kwak, and M.C. Helmer. An application of goal programming to resolve a site location problem. Interfaces, 12:65–72, 1982.

    Google Scholar 

  340. P. Schoovaerts, L. Berghmans, and J. Teghem. Implementation of health facilities in a new city. Journal of the Operational Research Society, 35(12):1047–1054, 1984.

    PubMed  Google Scholar 

  341. D. Schweigert. Linear extensions and efficient trees. Preprint 172, University of Kaiserslautern, Department of Mathematics, 1990.

    Google Scholar 

  342. D. Schweigert. Linear extensions and vector-valued spanning trees. Methods of Operations Research, 60:219–222, 1990.

    MathSciNet  MATH  Google Scholar 

  343. D. Schweigert. Vector-weighted matchings. In C.J. Colbourn and E.S. Mahmoodian, editors, Combinatorics Advances, volume 329 of Mathematics and Its Applications, pages 267–276. Kluwer Academic Publishers, Dordrecht, 1995.

    Google Scholar 

  344. D. Schweigert. Ordered graphs and minimal spanning trees. Foundation of Computing and Decision Sciences, 24:219–229, 1999.

    MathSciNet  Google Scholar 

  345. A. Sedeño-Noda and C. González-Martín. The biobjective minimum cost flow problem. European Journal of Operational Research, 124:591–600, 2000.

    MathSciNet  Google Scholar 

  346. A. Sedeño-Noda and C. González-Martín. An algorithm for the biobjective integer minimum cost flow problem. Computers and Operations Research, 28(2): 139–156, 2001.

    MathSciNet  Google Scholar 

  347. P. Serafini. Some considerations about computational complexity for multi objective combinatorial problems. In J. Jahn and W. Krabs, editors, Recent advances and historical development of vector optimization, volume 294 of Lecture Notes in Economics and Mathematical Systems. Springer Verlag, Berlin, 1986.

    Google Scholar 

  348. P. Serafini. Simulated annealing for multiobjective optimization problems. In Proceedings of the 10th International Conference on Multiple Criteria Decision Making, Taipei-Taiwan, volume I, pages 87–96, 1992.

    Google Scholar 

  349. I.V. Sergienko and V.A. Perepelitsa. Finding the set of alternatives in discrete multicriterion problems. Cybernetics, 27(3):673–683, 1991.

    Google Scholar 

  350. J.S. Shang. Multicriteria facility layout problem: An integrated approach. European Journal of Operational Research, 66(3):291–304, 1993.

    Article  MATH  Google Scholar 

  351. P.S. Shelokar, S. Adhikari, R. Vakil, V.K. Jayaraman, and B.D. Kulkarni. Multiobjective ant algorithm for continuous function optimization: Combination of strength Pareto fitness assignment and thermo-dynamic clustering. Foundations of Computing and Decision Sciences Journal, 25(4):213–230, 2000.

    Google Scholar 

  352. Y. Shi. A transportation model with multiple criteria and multiple constraint levels. Mathematical Computer Modelling, 21(4):13–28, 1995.

    Article  MATH  Google Scholar 

  353. I.K. Sigal. Algorithms for solving the two-criterion large-scale travelling salesman problem. Computational Mathematics and Mathematical Physics, 34(1):33–43, 1994.

    MathSciNet  MATH  Google Scholar 

  354. Z. Sinuany-Stern and I. Weiner. The one dimensional cutting stock problem using two objectives. Journal of the Operational Research Society, 45(2):231–236, 1994.

    Google Scholar 

  355. A.J.V. Skriver. A classification of bicriteria shortest path (BSP) algorithms. Asia-Pacific Journal of Operational Research, 17(2): 199–212, 2000.

    MathSciNet  MATH  Google Scholar 

  356. A.J.V. Skriver and K.A. Andersen. A label correcting approach for solving bicriterion shortest path problems. Computers and Operations Research, 27(6):507–524, 2000.

    Article  MathSciNet  Google Scholar 

  357. A.J.V. Skriver, K.A. Andersen, and K. Holmberg. Bicriteria network location problems (BNLP) with criteria dependent lengths and minisum objectives. Working Paper 2001/4, Department of Operations Rsearch, University of Aarhus, Denmark, 2001.

    Google Scholar 

  358. M. Sniedovich. A multi-objective routing problem revisited. Engineering Optimization, 13:99–108, 1988.

    Google Scholar 

  359. R.M. Soland. The design of multiactivity multifacility systems. European Journal of Operational Research, 12:95–104, 1983.

    Article  MATH  Google Scholar 

  360. R.S. Solanki, P.A. Appino, and J.L. Cohon. Approximating the noninferior set in multiobjective linear programming problems. European Journal of Operational Research, 68:356–373, 1993.

    Article  Google Scholar 

  361. N. Srinivas and K. Deb. Multiobjective optimization using non-dominated sorting in genetic algorithms. Evolutionary Computation, 2(3):221–248, 1994.

    Google Scholar 

  362. V. Srinivasan and G.L. Thompson. Alternate formulations for static multiattribute assignment models. Management Science, 20:154–158, 1973.

    MathSciNet  Google Scholar 

  363. V. Srinivasan and G.L. Thompson. Algorithms for minimizing total cost, bottleneck time and bottleneck shipment in transportation problems. Naval Research Logistics Quarterly, 23:567–595, 1976.

    MathSciNet  Google Scholar 

  364. V. Srinivasan and G.L. Thompson. Determining cost vs. time Pareto-optimal frontiers in multi-modal transportation problems. Transporation Science, 11:1–19, 1977.

    Google Scholar 

  365. R. Steuer, J. Silverman, and A. Whisman. A combined Tcheby-cheff/aspiration criterion vector interactive multiobjective programming procedure. Management Science, 39(10):1255–1260, 1993.

    Google Scholar 

  366. R.E. Steuer, L.R. Gardiner, and J. Gray. A bibliographic survey of the activities and international nature of multiple criteria decision making. Journal of Multi-Criteria Decision Analysis, 5:195–217, 1996.

    Article  Google Scholar 

  367. B.S. Stewart and C.C. White. Multiobjective A*. Journal of the Association for Computing Machinery, 38(4):775–814, 1991.

    MathSciNet  Google Scholar 

  368. T.J. Stewart and H.W. Ittmann. Two-stage optimisation in transportation problem. Journal of the Operational Research Society, 30:897–904, 1979.

    Google Scholar 

  369. M. Sun. Applying tabu search to multiple objective combinatorial optimization problems. In Proceedings of the 1997 DSI Annual Meeting, San Diego, California, volume 2, pages 945–947. Decision Sciences Institute, Atlanta, GA, 1997.

    Google Scholar 

  370. M. Sun, A. Stam, and R. Steuer. Solving multiple objective programming problems using feed-forward artificial neural networks: The interactive FFANN procedure. Management Science, 42(6):835–849, 1996.

    Google Scholar 

  371. M. Sun, A. Stam, and R. Steuer. Interactive multiple objective programming using Tchebycheff programs and artificial neural networks. Computers and Operations Research, 27:601–620, 2000.

    Article  Google Scholar 

  372. M. Sun and R. Steuer. Quad-trees and linear lists for identifying nondominated criterion vectors. INFORMS Journal on Computing, 8(4):367–375, 1996.

    Google Scholar 

  373. A. Suppapitnarm and G. Parks. Simulated annealing: An alternative approach to true multiobjective optimization. In A.S. Wu, editor, Proceedings of the Genetic and Evolutionary Computation Conference (GECCO’99). Orlando, Florida, 1999.

    Google Scholar 

  374. A. Suppapitnarm, K. Seffen, G. Parks, and P. Clarkson. A simulated annealing algorithm for multiobjective optimization. Engineering Optimization, 33(1):59–85, 2000.

    Google Scholar 

  375. C. Sutcliffe and J. Board. Optimal solution of a vehicle routing problem: Transporting mentally handicapped adults to an adult training center. Journal of the Operational Research Society, 41:61–67, 1990.

    Google Scholar 

  376. C. Sutcliffe, J. Board, and P. Chesire. Goal programming and allocating children to secondary schools in Reading. Journal of the Operational Research Society, 35(8):719–730, 1984.

    Google Scholar 

  377. V. Sysoev and A. Dolgui. A Pareto optimization approach for manufacturing system design. In Proceedings of the International Conference on Industrial Engineering and Production Management (IEPM’99). July 1–15 1999, Glasgow, Scotland, volume 2, pages 116–125. Facultés Universitaires Catholiques deMons, 1999.

    Google Scholar 

  378. F. Szidarovsky, L. Duckstein, and I. Bogardi. Multiobjective management of mining under water hazard by game theory. European Journal of Operational Research, 15:251–258, 1984.

    Google Scholar 

  379. H. Tamaki, M. Mori, M. Araki, Y. Mishima, and H. Ogai. Multi-criteria optimization by genetic algorithms: A case of scheduling in hot rolling process. In Proceedings of the 3rd Conference of the Association of Asian-Pacific Operational Research Societies within IFORS (APORS94), pages 374–381. World Scientific, Singapore, 1994.

    Google Scholar 

  380. J. Teghem and P.L. Kunsch. Interactive methods for multi-objective integer linear programs. In G. Fandel, M. Grauer, A. Kurzhanski, and A.P. Wierzbicki, editors, Large-scale modelling and interactive decision analysis, volume 273 of Lecture Notes in Economics and Mathematical Systems, pages 75–87. Springer Verlag, Berlin, 1986.

    Google Scholar 

  381. J. Teghem and P.L. Kunsch. A survey of techniques for finding efficient solutions to multi-objective integer linear programming. Asia-Pacific Journal of Operational Research, 3:95–108, 1986.

    Google Scholar 

  382. J. Teghem, D. Tuyttens, and E. L. Ulungu. An interactive heuristic method for multi-objective combinatorial optimization. Computers and Operations Research, 27(7–8):621–634, 2000.

    Google Scholar 

  383. J.M. Thizy, S. Pissarides, S. Rawat, and D.E. Lane. Interactive multiple criteria optimization for capital budgeting in a Canadian telecommunications company. In M. Tamiz, editor, Multi-Objective Programming and Goal Programming — Theories and Applications, volume 432 of Lecture Notes in Economics and Mathematical Systems, pages 128–147. Springer Verlag, Berlin, 1996.

    Google Scholar 

  384. D. Thuente. Two algorithms for shortest paths through multiple criteria networks. In P.C.C. Wang, editor, Information Linkages between Applied Mathematics and Industry. Proceedings of the First Annual Workshop, Naval Postgraduate School, Monterey, CA, 1978, pages 567–573. Academic Press, London, 1979.

    Google Scholar 

  385. V. T’Kindt. Etude des problèmes d’ordonnancement multicritères. PhD thesis, E3I, Université Francois Rabelais, Tours, France, 1999.

    Google Scholar 

  386. V. T’Kindt, J.-C. Billaut, and H. Houngbossa. A multicriteria heuristic to solve a 2-stage hybrid flowshop scheduling problem. In Proceedings of the International Conference on Industrial Engineering and Production Mangement (IEPM’99). July 1–15 1999, Glasgow, Scotland, volume 2, pages 107–115. Facultés Universitaires Catholique de Mons, 1999.

    Google Scholar 

  387. V. T’Kindt and J.C. Billaut. Some guidelines to solve multicriteria scheduling problems. In 1999 IEEE International Conference on Systems, Man, and Cybernetics Proceedings. October 10–12 1999, Tokyo, Japan, volume 6, pages 463–468. IEEE Service Center, Piscataway, NJ, 1999.

    Google Scholar 

  388. V. T’Kindt and J.C. Billaut. Multicriteria scheduling problems: A survey. RAIRO Recherche Opérationnelle/Operations Research, 35:143–163, 2001.

    Google Scholar 

  389. V. T’Kindt, J.C. Billaut, and C. Proust. An interactive algorithm to solve a bicriteria scheduling problem on unrelated parallel machines. European Journal of Operational Research, 135(1):42–49, 2001.

    Google Scholar 

  390. D.S. Todd and P. Sen. A multiple criteria genetic algorithm for containership loading. In T. Bäck, editor, Proceedings of the Seventh International Conference on Genetic Algorithms (ICGA97). Morgan Kaufmann, San Francisco, CA, 1997.

    Google Scholar 

  391. C.T. Tung. A multicriteria Pareto-optimal algorithm for the traveling salesman problem. Asia-Pacific Journal of Operational Research, 11:103–115, 1994.

    MathSciNet  MATH  Google Scholar 

  392. C.T. Tung and K.L. Chew. A bicritrion Pareto-optimal path algorithm. Asia-Pacific Journal of Operational Research, 5:166–172, 1988.

    MathSciNet  Google Scholar 

  393. C.T. Tung and K.L. Chew. A multicriteria Pareto-optimal path algorithm. European Journal of Operational Research, 62:203–209, 1992.

    Google Scholar 

  394. D. Tuyttens, J. Teghem, P. Fortemps, and K. Van Nieuwenhuyse. Performance of the MOSA method for the bicriteria assignment problem. Journal of Heuristics, 6(3):295–310, 2000.

    Article  Google Scholar 

  395. G.H. Tzeng, D. Teodorovic, and M.J. Hwang. Fuzzy bicriteria multi-index transportation problems for coal allocation planning of Taipower. European Journal of Operational Research, 95(1):62–72, 1996.

    Article  Google Scholar 

  396. E.L. Ulungu. Optimisation combinatoire multicritère: Détermination de l’ensemble des solutions efficaces et méthodes interactives. PhD thesis, Faculté des Sciences, Université de Mons-Hainaut. Mons, Belgium, 1993.

    Google Scholar 

  397. E.L. Ulungu and J. Teghem. Multi-objective shortest path problem: A survey. In D. Glückaufova, D. Loula, and M. Cerný, editors, Proceedings of the International Workshop on Multicriteria Decision Making: Methods — Algorithms — Applications at Liblice, Czechoslovakia, pages 176–188. Institute of Economics, Czechoslovak Academy of Sciences, Prague, 1991.

    Google Scholar 

  398. E.L. Ulungu and J. Teghem. Multi-objective combinatorial optimization problems: A survey. Journal of Multi-Criteria Decision Analysis, 3:83–104, 1994.

    Google Scholar 

  399. E.L. Ulungu and J. Teghem. The two-phases method: An efficient procedure to solve bi-objective combinatorial optimization problems. Foundations of Computing and Decision Sciences, 20(2): 149–165, 1994.

    MathSciNet  Google Scholar 

  400. E.L. Ulungu and J. Teghem. Solving multi-objective knapsack problem by a branch-and-bound procedure. In J. Climaco, editor, Multicriteria Analysis, pages 269–278. Springer Verlag, Berlin, 1997.

    Google Scholar 

  401. E.L. Ulungu, J. Teghem, and P. Fortemps. Heuristics for multi-objective combinatorial optimisation problem by simulated annealing. In Q. Wei J. Gu, G. Chen and S. Wang, editors, MCDM: Theory and Applications, pages 228–238. SCI-TECH Information Services, Windsor, UK, 1995.

    Google Scholar 

  402. E.L. Ulungu, J. Teghem, P Fortemps, and D. Tuyttens. MOSA method: A tool for solving multi-objective combinatorial optimization problems. Journal of Multi-Criteria Decision Analysis, 8(4):221–236, 1999.

    Article  Google Scholar 

  403. E.L. Ulungu, J. Teghem, and C. Ost. Efficiency of interactive multi-objective simulated annealing through a case study. Journal of the Operational Research Society, 49:1044–1050, 1998.

    Article  Google Scholar 

  404. T.L. Urban. A multiple criteria model for the facilities layout problem. International Journal of Production Research, 25:1805–1812, 1987.

    Google Scholar 

  405. A. Vainshtein. Vector shortest path problem in l p norm. In Simulation and Optimization of Complex Structure Systems, pages 138–144. Omsk, 1987.

    Google Scholar 

  406. A. Vainshtein. Vector shortest path problem and other vector optimization problems on graphs. In Proceedings of the 17th Yugoslavian Symposium on Operations Research, Dubrovnik 1990. University of Belgrad, 1990.

    Google Scholar 

  407. L.G. Valiant. The complexity of computing the permanent. Theoretical Computer Science, 8:189–201, 1979.

    Article  MathSciNet  MATH  Google Scholar 

  408. L.G. Valiant. The complexity of enumeration and reliability problems. SIAM Journal on Computing, 8(3):410–421, 1979.

    Article  MathSciNet  MATH  Google Scholar 

  409. L.G. Valiant and V.V. Vazirani. NP is as easy as detecting unique solutions. Theoretical Computer Science, 47:85–93, 1986.

    Article  MathSciNet  Google Scholar 

  410. A. Viana and J. Pinho de Sousa. Using metaheuristics in multiobjective ressource constrained project scheduling. European Journal of Operational Research, 120(2):359–374, 2000.

    Article  MathSciNet  Google Scholar 

  411. P. Vincke. Problèmes multicritères. Cahiers du Centre d’Etudes de Recherche Operationelle, 16:425–439, 1974.

    MathSciNet  MATH  Google Scholar 

  412. P. Vincke. Problèmes de localisation multicritères. Cahiers du Centre d’Etudes de Recherche Operationelle, 25:333–338, 1983.

    MATH  Google Scholar 

  413. M. Visée, J. Teghem, M. Pirlot, and E.L. Ulungu. Two-phases method and branch and bound procedures to solve the bi-obective knapsack problem. Journal of Global Optimization, 12:139–155, 1998.

    Google Scholar 

  414. A. Warburton. Worst case analysis of greedy and related heuristics for some min-max combinatorial optimization problems. Mathematical Programming, 33:234–241, 1985.

    Article  MathSciNet  MATH  Google Scholar 

  415. A. Warburton. Aproximation of Pareto optima in multiple-objective shortest-path problems. Operations Research, 35(1):70–79, 1987.

    MathSciNet  MATH  Google Scholar 

  416. G. Wäscher. Innerbetriebliche Standortplanung. Schmalenbach’s Zeitschrift für betriebswirtscahftliche Forschung, 36:930–958, 1984.

    Google Scholar 

  417. L. Van Wassenhove and L. Gelders. Solving a bicriterion scheduling problem. European Journal of Operational Research, 4:42–48, 1980.

    MathSciNet  Google Scholar 

  418. C.C. White, B.S. Stewart, and R.L. Carraway. Multiobjective, preference-based search in acyclic OR-graphs. European Journal of Operational Research, 56:357–363, 1992.

    Article  Google Scholar 

  419. D. J. White. A special multi-objective assignment problem. Journal of the Operational Research Society, 35(8):759–767, 1984.

    Article  MATH  Google Scholar 

  420. D.J. White. The set of efficient solutions for multiple objective shortest path problems. Computers and Operations Research, 9(2):101–107, 1987.

    Google Scholar 

  421. D.J. White. A bibliography on the application of mathematical programming multiple-objective methods. Journal of the Operational Research Society, 41(8):669–691, 1990.

    MATH  Google Scholar 

  422. A.B. Wijeratne, M.A. Turnquist, and P.B. Mirchandani. Multi-objective routing of hazardous materials in stochastic networks. European Journal of Operational Research, 65:33–43, 1993.

    Article  Google Scholar 

  423. X.Q. Yang and C.J. Goh. A method for convex curve approximation. European Journal of Operational Research, 97:205–212, 1997.

    Article  Google Scholar 

  424. P.L. Yu. Multiple Criteria Decision Making: Concepts, Techniques and Extensions, Plenum Press, New York, NY, 1985.

    Google Scholar 

  425. S. Zanakis. A staff to job assignment (partitioning) problem with multiple objectives. Computers and Operations Research, 10(4):357–363, 1983.

    Article  MathSciNet  Google Scholar 

  426. G. Zhou and M. Gen. Genetic algorithm approach on multi-criteria minimum spanning tree problem. European Journal of Operational Research, 114:141–152, 1999.

    Article  Google Scholar 

  427. U. Zimmermann. Matroid intersection problems with generalized objectives. In A. Prékopa, editor, Survey of Mathematical Programming: Proceedings of the 9th International Mathematical Programming Symposium Budapest 1976, volume 2, pages 383–392. North-Holland, Amsterdam, 1980.

    Google Scholar 

  428. U. Zimmermann. Linear and Combinatorial Optimization in Ordered Algebraic Structures, volume 10 of Annals of Discrete Mathematics. North-Holland, Amsterdam, 1981.

    Google Scholar 

  429. S. Zionts. A survey of multiple criteria integer programming methods. Annals of Discrete Mathematics, 5:389–398, 1979.

    MathSciNet  MATH  Google Scholar 

  430. E. Zitzler. Evolutionary Algorithms for Multiobjective Optimization: Methods and Applications. PhD thesis, Swiss Federal Institute of Technology (ETH), Zürich, Switzerland, 1999.

    Google Scholar 

  431. E. Zitzler and L. Thiele. An evolutionary algorithm for multi-objective optimization: The strength Pareto approach. Technical Report 43, Computer Engineering and Communication Networks Lab (TIK), Swiss Federal Institute of Technology (ETH), Zürich, Switzerland, 1998.

    Google Scholar 

  432. E. Zitzler and L. Thiele. Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto approach. IEEE Transactions on Evolutionary Computation, 3(4):257–271, 1999.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Kluwer Academic Publishers

About this chapter

Cite this chapter

Ehrgott, M., Gandibleux, X. (2003). Multiobjective Combinatorial Optimization — Theory, Methodology, and Applications. In: Ehrgott, M., Gandibleux, X. (eds) Multiple Criteria Optimization: State of the Art Annotated Bibliographic Surveys. International Series in Operations Research & Management Science, vol 52. Springer, Boston, MA. https://doi.org/10.1007/0-306-48107-3_8

Download citation

  • DOI: https://doi.org/10.1007/0-306-48107-3_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4020-7128-7

  • Online ISBN: 978-0-306-48107-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics