Skip to main content

Abstract

We introduce several solution concepts for multicriteria optimization problems, give a characterization of approximately efficient elements and discuss a general scalarization procedure. Furthermore, we derive necessary and sufficient optimality conditions, a minimal point theorem, a vector-valued variational principle of Ekeland’s type, Lagrangean multiplier rules and duality statements. An overview on vector variational inequalities and vector equilibria is given. Moreover, we discuss the results for special classes of vector optimization problems (vector-valued location and approximation problems, multicriteria fractional programming and optimal control problems).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aly, A. and Rahali, B. (1990). Analysis of a bicriteria location model. Naval Research Logistics, 37:937–944.

    MathSciNet  Google Scholar 

  2. Amahroq, T. and Taa, A. (1997). On Lagrange-Kuhn-Tucker multipliers for multiobjective optimization problems. Optimization, 41(2):159–172.

    MathSciNet  Google Scholar 

  3. Ansari, Q.H. (1995). On generalized vector variational-like inequalities. Annales des Sciences Mathématiques du Québec, 19:131–137.

    MathSciNet  MATH  Google Scholar 

  4. Ansari, Q.H. (1997). Extended generalized vector variational-like inequalities for nonmonotone multivalued maps. Annales des Sciences Mathématiques du Québec, 21:1–11.

    MathSciNet  MATH  Google Scholar 

  5. Ansari, Q.H. (1997). A note on generalized vector variational-like inequalities. Optimization, 41:197–205.

    MathSciNet  MATH  Google Scholar 

  6. Ansari, Q.H. (2000). Vector equilibrium problems and vector variational inequalities. In: Giannessi, F. (ed.) Vector Variational Inequalities and Vector Equilibria, 1–15. Nonconvex Optimization and its Applications 38. Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  7. Ansari, Q.H. and Siddiqi, A.H. (1998). A generalized vector variational-like inequality and optimization over an efficient set. In: Brokate, M. and Siddiqi, A.H. (eds.) Functional Analysis with Current Applications in Science, Technology and Industry, 177–191. Pitman Research Notes in Mathematics Series 377. Longman, Harlow.

    Google Scholar 

  8. Ansari, Q.H., Siddiqi A.H., and Yao, J.C. (2000). Generalized Vector Variational Like Inequalities and their Scalarization. In: Giannessi, F. (ed.) Vector Variational Inequalities and Vector Equilibria, 18–37. Nonconvex Optimization and its Applications 38. Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  9. Attouch, H. and Riahi, H. (1993). Stability results for Ekeland ε — variational principle and cone extremal solutions. Mathematics of Operations Research, 18:173–201.

    MathSciNet  Google Scholar 

  10. Aubin, J.P. and Ekeland, I. (1984). Applied Nonlinear Analysis. John Wiley, New York.

    Google Scholar 

  11. Ballestero, E. and Romero, C. (1998). Multiple Criteria Decision Making and its Applications to Economic Problems. Kluwer Academic Publishers, Boston.

    Google Scholar 

  12. Bector, C.R. and Chandra, S. (1987). Multiobjective fractional programming duality: A parametric approach. Research Report, Faculty of Management, University of Manitoba.

    Google Scholar 

  13. Bednarczuk, E. (1992), Some stability results for vector optimization problems in partially topological vector spaces. In: Lakshmikantham, V. (ed.) Proceedings of the First World Congress of Nonlinear Analysts (Tampa, FL, 1992), 2371–2382. De Gruyter, Berlin, 1996.

    Google Scholar 

  14. Bednarczuk, E. (1994). An approach to well-posedness in vector optimization: consequences to stability Control and Cybernetics, 23:107–121.

    MathSciNet  MATH  Google Scholar 

  15. Bednarczuk, E. (1995). Berge-type theorems for vector optimization problems. Optimization, 32:373–384.

    MathSciNet  MATH  Google Scholar 

  16. Benker, H., Hamel, A., and Tammer, C. (1997). An algorithm for vectorial control approximation problems. In: Fandel, G.; Gal, T. (eds.) Multiple Criteria Decision Making, 3–12. Lecture Notes in Economics and Mathematical Systems 477. Springer-Verlag, Heidelberg.

    Google Scholar 

  17. Benker, H. and Kossert, S. (1982). Remarks on quadratic optimal control problems in Hilbert spaces. Zeitschrift für Analysis und ihre Anwendungen, 1(3): 13–21.

    MathSciNet  Google Scholar 

  18. C. Berge (1963). Topological Spaces. Mcmillan Co., New York.

    Google Scholar 

  19. Bianchi, M., Hadjisavvas, N., and Schaible, S. (1997). Vector equilibrium problems with generalized monotone bifunctions. Journal of Optimization Theory and Applications, 92:527–542.

    Article  MathSciNet  Google Scholar 

  20. Bigi, G. and Pappalardo, M. (1999). Regularity conditions in vector optimization. Journal of Optimization Theory and Applications, 102:83–96.

    Article  MathSciNet  Google Scholar 

  21. Bishop, E. and Phelps, R.R. (1962). The support functionals of a convex set. Proceedings of Symposia in Pure Mathematics, 7:27–35. American Mathematical Society.

    Google Scholar 

  22. Bitran, G.R. (1981). Duality for nonlinear multiple-criteria optimization problems. Journal of Optimization Theory and Applications, 35:367–401.

    Article  MathSciNet  MATH  Google Scholar 

  23. Bitran, G.R. and Magnanti, T.L. (1979). The structure of admissible points with respect to cone dominance. Journal of Optimization Theory and Applications, 29:573–614.

    Article  MathSciNet  Google Scholar 

  24. Blum, E. and Oettli, W. (1975). Mathematische Optimierung. Springer-Verlag, Berlin.

    Google Scholar 

  25. Blum, E. and Oettli, W. (1994). From optimization and variational inequalities to equilibrium problems. The Mathematics Student, 63:123–145.

    MathSciNet  Google Scholar 

  26. Blum, E. and Oettli, W. (1993). Variational principles for equilibrium problems. In: Guddat, J., Jongen, H.T., Kummer. B., and Nožička, F. (eds.) Parametric Optimization and Related Topics III, 79–88. Peter Lang, Frankfurt am Main.

    Google Scholar 

  27. Borwein, J. (1977). Proper efficient points for maximizations with respect to cones. SIAM Journal on Control and Optimization, 15:57–63.

    Article  MathSciNet  MATH  Google Scholar 

  28. Borwein, J.M. (1981). A Lagrange multiplier theorem and a sandwich theorem for convex relations. Mathematica Scandinavica, 48:198–204.

    Google Scholar 

  29. Borwein, J.M. (1981) Convex relations in analysis and optimization. In:Schaible, S. and Ziemba, W. (eds.) Generalized Concavity in Optimization and Economics, 335–377. Academic Press, New York.

    Google Scholar 

  30. Borwein, J.M. (1982). Continuity and differentiability properties of convex operators. Proceedings of the London Mathematical Society, 44:420–444.

    MathSciNet  MATH  ADS  Google Scholar 

  31. Borwein, J.M. (1983). On the Existence of Pareto Efficient Points. Mathematics of Operations Research, 9:64–73.

    Google Scholar 

  32. Borwein, J.M. (1987). Convex Cones, Minimality Notions and Consequences. In: Jahn, J. and Krabs, W. (eds.) Recent Advances and Hystorical Development of Vector Optimization, 64–73. Lecture Notes in Economics and Mathematical Systems 294. Springer-Verlag, Heidelberg.

    Google Scholar 

  33. Borwein, J. M. and Preiss, D. (1987). A smooth variational principle with applications to subdifferentiability and to differentiability of convex functions. Transactions of the American Mathematical Society, 303:517–527.

    MathSciNet  Google Scholar 

  34. Breckner, W.W. (1972). Dualität bei Optimierungsaufgaben in halbgeordneten topologischen Vektorräumen (I). Revue d’Analyse Numérique et de la Théorie de l’Approximation, 1:5–35.

    MathSciNet  MATH  Google Scholar 

  35. Breckner, W.W. (1973). Dualität bei Optimierungsaufgaben in halbgeordneten topologischen Vektorräumen (II). Revue d’Analyse Numérique et de la Théorie de l’ Approximation, 2:27–35.

    MathSciNet  MATH  Google Scholar 

  36. Breckner, W. W. (1997). Derived sets for weak multiobjective optimization problems with state and control variables. Journal of Optimization Theory and Applications, 93:73–102.

    Article  MathSciNet  MATH  Google Scholar 

  37. Brezis, H. and Browder, F.E. (1976). A general principle on ordered sets in nonlinear functional analysis. Advances in Mathematics, 21:355–364.

    Article  MathSciNet  Google Scholar 

  38. Brondsted, A. (1974). On a lemma of Bishop and Phelps. Pacific Journal of Mathematics, 55:335–341.

    MathSciNet  Google Scholar 

  39. Brosowski, B. and Conci, A. (1983). On Vector Optimization and Parametric Programming. Segundas Jornados Latino Americans de Matematica Aplicada, 2:483–495.

    Google Scholar 

  40. Brumelle, S. (1981). Duality for Multiple Objective Convex Programs. Mathematics of Operations Research, 6(2): 159–172.

    MathSciNet  MATH  Google Scholar 

  41. Caballero, R., Cerda Tena, E., Munoz, M., and Rey, L. (2000). Relations among Several Efficiency Concepts in Stochastic Multiple Objective Programming. In: Haimes, Y.Y. and Steuer, R.E. (eds.) Research and Practice in Multiple Criteria Decision Making, 57–69. Lecture Notes in Economics and Mathematical Systems 487. Springer-Verlag, Berlin, Heidelberg.

    Google Scholar 

  42. Castellani, M., Mastroeni, G., and Pappalardo, M. (1996). On Regularity for Generalized Systems and Applications. In: Di Pillo, G. and Giannessi, F. (eds.) Nonlinear Optimization and Applications, 13–26. Plenum Press, New York.

    Google Scholar 

  43. Carrizosa, E. (1992). Problems de localization multiobjetivo (Multiobjective location problems (in Spanish). Ph.D. Thesis, Faculdad de Matematicas, Universidad de Sevilla.

    Google Scholar 

  44. Carrizosa, E., Conde, E., Fernandez, R., and Puerto, J. (1993). Efficiency in Euclidean constrained location problems Operations Research Letters, 14:291–295.

    Article  MathSciNet  Google Scholar 

  45. Carrizosa, E. and Fernandez, R. (1990). El conjunto eficiente en problemas de localization con normas mixtas(lp) (The efficient set in location problems with mixed norms) (in Spanish). Trabajos de Investigacion Operativa, 6:61–69.

    Google Scholar 

  46. Carrizosa, E. and Fernandez, R. (1993). A polygonal upper bound for the efficient set for single-location problems with mixed norms. Top (Spanish Journal of Operations Research and Statistics), 1:107–116.

    Google Scholar 

  47. Carrizosa, E., Fernandez, R., and Puerto, J. (1990). Determination of a pseudoefficient set for single-location problems with mixed polyhedral norms. In: Orban-Ferange, F. and Rasson, J.P. (eds.) Proceedings of Meeting V of the EURO Working Group on Locational Analysis, 27–39. Facultés Universitaires Notre-Dame de la Paix, Namur.

    Google Scholar 

  48. Carrizosa, E., Fernandez, R., and Puerto, J. (1990). An axiomatic approach to location criteria. In: Orban-Ferange, F. and Rasson, J.P. (eds.) Proceedings of Meeting V of the EURO Working Group on Locational Analysis, 40–53. Facultés Universitaires Notre-Dame de la Paix, Namur.

    Google Scholar 

  49. Carrizosa, E. and Plastria, F. (1993). A characterization of efficient points in constrained location problems with regional demand. Operations Research Letters, 19(3):129–131.

    MathSciNet  Google Scholar 

  50. Carrizosa, E. and Plastria, F. (1996). Geometrical characterization of weakly efficient points. Journal of Optimization Theory and Applications, 90(1):217–223.

    MathSciNet  Google Scholar 

  51. O. CârjĂ (1998). Elemente de AnalizĂ FuncţionalĂ NeliniarĂ. Editura UniversitĂţii “Al.I.Cuza” Iaşi, Iaşi, Romania.

    Google Scholar 

  52. Cesari, L. and Suryanarayana, M.B. (1978). Existence theorems for Pareto optimization; multivalued and Banach space valued functionals. Transactions of the American Mathematical Society, 244:37–65.

    MathSciNet  Google Scholar 

  53. Chalmet, L.G., Francis, R.L., and Kolen, A. (1981). Finding efficient solutions for rectilinear distance location problem efficiently. European Journal of Operational Research, 6:117–124.

    Article  MathSciNet  Google Scholar 

  54. Chang, S.S., Thompson H.B., and Yuan, G.X.Z. (2000). Existence of solutions for generalized vector variational-like inequalities. In: Giannessi, F. (ed.) Vector Variational Inequalities and Vector Equilibria, 39–53. Nonconvex Optimization and its Applications 38. Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  55. Chen, G.Y. (1992). Existence of solutions for a vector variational inequality: An extension of Hartmann-Stampacchia theorem. Journal of Optimization Theory and Applications, 74:445–456.

    MathSciNet  MATH  Google Scholar 

  56. Chen, G.Y. and Chen, G.M. (1987). Vector variational inequality and vector optimization. In: Sawaragi, Y., Inoue, K. and Nakayama, H. (eds.) Toward Interactive and Intelligent Decision Support Systems, vol. 1, 408–416. Lecture Notes in Economics and Mathematical Systems 285. Springer-Verlag, Berlin.

    Google Scholar 

  57. Chen, G.Y. and Craven, B.D. (1989). Approximate dual and approximate vector variational inequality for multiobjective optimization. Journal of the Australian Mathematical Society, Series A, 47:418–423.

    MathSciNet  Google Scholar 

  58. Chen, G.Y. and Craven, B. (1990). A vector variational inequality and optimization over an efficient set. Zeitschrift für Operations Research, 3:1–12.

    MathSciNet  CAS  Google Scholar 

  59. Chen, G.Y., Goh, C.J., and Yang, X.Q. (2000) On gap functions for vector variational inequalities. In: Giannessi, F. (ed.) Vector Variational Inequalities and Vector Equilibria, 55–72. Nonconvex Optimization and its Applications 38. Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  60. Chen, G.Y. and Hou, S.H. (2000). Existence of solutions for vector variational inequalities. In: Giannessi, F. (ed.) Vector Variational Inequalities and Vector Equilibria, 73-86. Nonconvex Optimization and its Applications 38. Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  61. Chen, G.Y. and Huang, X.X. (1998). A unified approach to the existing three types of variational principles for vector valued functions. Mathematical Methods of Operations Research, 48:349–357.

    MathSciNet  Google Scholar 

  62. Chen, G.Y. and Huang, X.X. (1998). Ekeland’s ε-variational principle for set-valued mappings. Mathematical Methods of Operations Research, 48:181–186.

    MathSciNet  Google Scholar 

  63. Chen, G.Y., Huang, X.X., and Lee, G.M. (1999). Equivalents of an approximate variational principle for vector-valued functions and applications. Mathematical Methods of Operations Research, 49:125–136.

    MathSciNet  Google Scholar 

  64. Chen, G.Y. and Yang, X.Q. (1990). The vector complementarity problem and its equivalences with the weak minimal element in ordered spaces. Journal of Mathematical Analysis and Applications, 153:136–158

    Article  MathSciNet  Google Scholar 

  65. Chen, G.Y. and Yang, X.Q. (2000). On the existence of solutions to vector complementarity problems. In: Giannessi, F. (ed.) Vector Variational Inequalities and Vector Equilibria., 87–95 Nonconvex Optimization and its Applications 38. Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  66. Chew, K.L. (1984) Maximal points with respect to cone dominance in Banach spaces and their existence. Journal of Optimization Theory and Applications, 44:1–53.

    Article  MathSciNet  MATH  Google Scholar 

  67. Chowdhury, M.S.R. and Tan, K.K. (1997). Generalized variational inequalities for quasi-monotone operators and applications. Bulletin of the Polish Academy of Sciences. Mathematics, 45:25–54.

    MathSciNet  Google Scholar 

  68. Clarke, F.H. (1983). Optimization and Nonsmooth Analysis. John Wiley and Sons, New York.

    Google Scholar 

  69. Conway, J.B. (1990). A Course in Functional Analysis. Springer-Verlag, New York.

    Google Scholar 

  70. Corley, H.W. (1980). An existence result for maximizations with respect to cones. Journal of Optimization Theory and Applications, 31:277–281.

    Article  MathSciNet  MATH  Google Scholar 

  71. Corley, H.W. (1981). Duality for maximization with respect to cones. Journal of Mathematical Analysis and Applications, 84:560–568.

    Article  MathSciNet  MATH  Google Scholar 

  72. Corley, H.W. (1987). Existence and Lagrangian duality for maximization of set-valued maps. Journal of Optimization Theory and Applications, 54:489–501.

    Article  MathSciNet  MATH  Google Scholar 

  73. Craven, B.D. (1989). Nonsmooth multiobjective programming. Numerical Functional Analysis and Optimization, 10:49–64.

    MathSciNet  MATH  Google Scholar 

  74. Daneš, J. (1972). A geometric theorem useful in nonlinear functional analysis. Bolletino Unione Matematica Italiana, 6:369–375.

    Google Scholar 

  75. Daniele, P. and Maugeri, A. (2000). Vector variational inequalities and modelling of a continuum traffic equilibrium problem. In: Giannessi, F. (ed.) Vector Variational Inequalities and Vector Equilibria, 97–111. Nonconvex Optimization and its Applications 38. Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  76. Danilidis, A. and Hadjisavvas, H. (1996). Existence theorems for vector variational inequalities. Bulletin of the Australian Mathematical Society, 54:473–481.

    MathSciNet  Google Scholar 

  77. Dedieu, J.P. (1978) Critères de fermeture pour l’image d’un fermé non convexe par une multiapplication. Comptes Rendus des Séances de l’Académie des Sciences, Serie I, 287:941–943.

    MathSciNet  MATH  Google Scholar 

  78. De Figueiredo, D.G. (1989). Lectures on theEkeland’s variational principle with applications and detours. Springer-Verlag, Berlin.

    Google Scholar 

  79. Dentscheva, D. and Helbig, S. (1994). On several concepts for ε-efficiency. Operations Research Spektrum, 16:179–186.

    Google Scholar 

  80. Dentcheva, D. and Helbig, S. (1996). On variational principles, level sets, well-posedness, and ε-solutions in vector optimization. Journal of Optimization Theory and Applications, 89:325–349.

    Article  MathSciNet  Google Scholar 

  81. Ding, X.P. and Tarafdar, E. (2000). Gereralized vector variational-like inequalities. In: Giannessi, F. (ed.) Vector Variational Inequalities and Vector Equilibria, 113–124. Nonconvex Optimization and its Applications 38. Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  82. Ding, X.P. and Tarafdar, E. (2000). Generalized vector variational-like inequalities with Cx-η-pseudomonotone set-valued mappings. In: Giannessi, F. (ed.) Vector Variational Inequalities and Vector Equilibria, 125–140. Nonconvex Optimization and its Applications 38. Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  83. Dinkelbach, W. (1967). On nonlinear fractional programming. Management Science, 13(7):492–498.

    MathSciNet  MATH  Google Scholar 

  84. Dolecki, S. and Malivert, C. (1987). Polarities and stability in vector optimization. In: Jahn, J. and Krabs, W. (eds.) Recent Advances and Historical Development in Vector Optimization, 96–113 Lecture Notes in Economics and Mathematical Systems 294. Springer-Verlag, Berlin.

    Google Scholar 

  85. Durier, R. (1984). On efficient points and Fermat-Weber problem. Working Paper, Université de Bourgogne, Dijon.

    Google Scholar 

  86. Durier, R. (1990). On Pareto optima, the Fermat-Weber problem and polyhedral gauges. Mathematical Programming, 47:65–79.

    Article  MathSciNet  MATH  Google Scholar 

  87. Durier, R. and Michelot, C. (1986). Sets of efficient points in a normed space. Jounal of Mathematical Analysis and Applications, 117:506–528.

    MathSciNet  Google Scholar 

  88. Durier, R. and Michelot, C. (1985). Geometrical properties of the Fermat-Weber problem. European Journal of Operational Research,20:332–343.

    Article  MathSciNet  Google Scholar 

  89. Ekeland, I. (1974). On the variational principle. Journal of Mathematical Analysis and Applications 47:324–353.

    Article  MathSciNet  MATH  Google Scholar 

  90. Ekeland, I. (1979). Nonconvex minimization problems. Bulletin of the American Mathematical Society, 1(3):443–474

    Article  MathSciNet  MATH  Google Scholar 

  91. El Abdouni, B. and Thibault, L. (1992). Lagrange multipliers for Pareto nonsmooth programming problems in Banach spaces. Optimization, 26(3–4):277–285.

    MathSciNet  Google Scholar 

  92. Elster, K.H. and Elster, R. (1993). Vector approximation problems in geometric vector optimization. Optimization, 27:321–342.

    MathSciNet  Google Scholar 

  93. Ester, J. (1987). Systemanalyse und mehrkriterielle Entscheidung. Verlag Technik, Berlin.

    Google Scholar 

  94. Fan, K. (1961). A generalization of Tychonoff’s fixed point theorem. Mathematische Annalen, 142:305–310.

    Article  MathSciNet  MATH  Google Scholar 

  95. Ferro, F. (1996) An optimization result for set-valued mappings and a stability property in vector problems with constraints. Journal of Optimization Theory and Applications, 90:63–77.

    Article  MathSciNet  MATH  Google Scholar 

  96. Ferro, F. (1997) Optimization and stability results through cone lower semicontinuity. Set-Valued Analysis, 5:365–375.

    Article  MathSciNet  MATH  Google Scholar 

  97. Ferro, F. (1999) A new ABB theorem in Banach spaces. Optimization, 46(4):353–362.

    MathSciNet  MATH  Google Scholar 

  98. Friedrichs, K.O. (1929). Ein Verfahren der Variationsrechnung, das Minimum eines Integrals als das Maximum eines anderen Ausdruckes darzustellen. Nachrichten der Gesellschaft der Wissenschaften zu Göttingen, 13–20.

    Google Scholar 

  99. Fu, J. (1997). Simultaneous vector variational inequalities and vector implicit complementarity problem. Journal of Optimization Theory and Applications, 93:141–151.

    Article  MathSciNet  MATH  Google Scholar 

  100. Fu, J. (2000). A vector variational-like inequalitiy for compact acyclic multifunctions and its applications. In: Giannessi, F. (ed.) Vector Variational Inequalities and Vector Equilibria, 141–151. Nonconvex Optimization and its Applications 38. Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  101. Gajek, L. and Zagrodny, D. (1992). Countably orderable sets and their applications in optimization. Optimization, 26:287–301.

    MathSciNet  Google Scholar 

  102. Gajek, L. and Zagrodny, D, (1995). Geometric variational principle. Dissertationes Mathematicae, 340:55–71.

    MathSciNet  Google Scholar 

  103. Geoffrion, A.M. (1968). Proper efficiency and the theory of vector maximization. Journal of Mathematical Analysis and Applications, 22:618–630.

    Article  MathSciNet  MATH  Google Scholar 

  104. Georgiev, P.G. (1988). The strong Ekeland variational principle, the strong drop theorem and applications. Journal of Mathematical Analysis and Applications, 131:1–21.

    Article  MathSciNet  MATH  Google Scholar 

  105. Gerstewitz (Tammer), C. (1983). Nichtkonvexe Dualität in der Vektoroptimierung. Wissenschaftliche Zeitschrift der TH Leuna-Merseburg, 25:357–364.

    Google Scholar 

  106. Gerstewitz, C. and Iwanow, E. (1985). Dualität für nichtkonvexe Vektoroptimierungsprobleme. Wissenschaftliche Zeitschrift der TH Ilmenau, 2:61–81.

    MathSciNet  Google Scholar 

  107. Gerstewitz (Tammer), C. and Göpfert, A. (1981). Zur Dualität in der Vektoroptimierung. Seminarberichte der Sektion Mathematik derHumboldt-Universität zu Berlin, 39:67–84.

    Google Scholar 

  108. Gerth (Tammer), C. (1987). Näherungslösungen in der Vektoroptimierung. Seminarberichte der Sektion Mathematik der Humboldt-Universität zu Berlin 90:67–76.

    MathSciNet  Google Scholar 

  109. Gerth (Tammer), C. and Pöhler, K. (1988). Dualität und algo-rithmische Anwendung beim vektoriellen Standortproblem. Optimization, 19:491–512.

    MathSciNet  Google Scholar 

  110. Gerth (Tammer), C. and Weidner, P. (1990). Nonconvex separation theorems and some applications in vector optimization. Journal of Optimization Theory and Applications, 67(2):297–320.

    MathSciNet  Google Scholar 

  111. Giannessi, F. (1980). Theorems of alternative, quadratic programs and complementarity problems. In: Cottle, R.W., Giannessi, F., and Lions, J.-L. (eds.) Variational Inequalities and Complementarity Problems, 151–186. J. Wiley and Sons, Chichester.

    Google Scholar 

  112. Giannessi, F., Mastroeni, G., and Pelligrini, L. (2000). On the theory of vector optimization and variational inequalities. Image space analysis and separation. In: Giannessi, F. (ed.) Vector Variational Inequalities and Vector Equilibria., 153–215. Nonconvex Optimization and its Applications 38. Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  113. Glover, B.M., Jeyakumar, V., and Rubinov, A.M. (1999). Dual conditions characterizing optimality for convex multi-objective programs. Mathematical Programming, 84:201–217.

    MathSciNet  Google Scholar 

  114. Goh, C.J. and Yang, X.Q. (2000). Scalarization methods for vector variational inequality. In: Giannessi, F. (ed.) Vector Variational Inequalities and Vector Equilibria, 217–232. Nonconvex Optimization and its Applications 38. Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  115. Gong, X.H., Fu, W.T., and Liu, W. (2000). Super efficiency for a vector equilibrium in locally convex topological vector spaces. In: Giannessi, F. (ed.) Vector Variational Inequalities and Vector Equilibria, 233–252. Nonconvex Optimization and its Applications 38. Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  116. Göpfert, A. and Gerth (Tammer), C. (1986). Über die Skalarisierung und Dualisierung von Vektoroptimierungsproblemen. Zeitschrift für Analysis und ihre Anwendungen, 5(4):377–384.

    Google Scholar 

  117. Göpfert, A. and Nehse, R. (1990). Vektoroptimierung. Theorie, Verfahren und Anwendungen. BSB B.G. Teubner Verlags-gesellschaft, Leipzig.

    Google Scholar 

  118. Göpfert, A. and Tammer, C. (1995). ε-approximate solutions and conical support points. A new maximal point theorem. Zeitschrift für angewandte Mathematik und Mechanik, 75:595–596.

    Google Scholar 

  119. Göpfert, A. and Tammer, C. (1995). A new maximal point theorem. Zeitschrift für Analysis und ihre Anwendungen, 14(2):379–390.

    Google Scholar 

  120. Göpfert, A. and Tammer. C. (2000). Maximal point theorems in product spaces and applications for multicriteria approximation problems. In: Haimes, Y.Y. and Steuer, R.E. (eds.) Research and Practice in Multiple Criteria Decision Making, 93–104. Lecture Notes in Economics and Mathematical Systems 487. Springer-Verlag, Berlin, Heidelberg.

    Google Scholar 

  121. Göpfert, A., Tammer, C., and Zalinescu, C. (2000). On the vectorial Ekeland’s variational principle and minimal points in product spaces. Nonlinear Analysis, 39:909–922.

    MathSciNet  Google Scholar 

  122. Göpfert, A., Tammer, C., and Zalinescu, C. (1999). A new minimal point theorem in product spaces. Zeitschrift für Analysis und ihre Anwendungen, 18(3):767–770.

    Google Scholar 

  123. Gorochowik, B. B. (1972). About multiobjective optimization problems (in Russian). Doklady Akademii Nauk SSSR, 6.

    Google Scholar 

  124. Gorochowik, B.B. and Kirillowa, F. M. (1975). About scalarization of vector optimization problems (in Russian). Doklady Akademii Nauk SSSR, 19(7):588–591.

    Google Scholar 

  125. Gorochowik, B. B. (1976). Conditions for weakly efficient elements in multiobjective optimization (in Russian). Minsk, IN-T Matem. AN Soviet Union, Preprint.

    Google Scholar 

  126. Guddat, J., Guerra Vasquez, F., Tammer, K., and Wendler, K. (1985). Multiobjective and Stochastic Optimization Based on Parametric Optimization. Akademie-Verlag, Berlin.

    Google Scholar 

  127. Ha, T.X.D. (1994). A note on a class of cones ensuring the existence of efficient points in bounded complete sets. Optimization, 31:141–152.

    MathSciNet  Google Scholar 

  128. Ha, T.X.D. (1994). On the existence of efficient points in locally convex spaces. Journal of Global Optimization, 4:265–278.

    MATH  Google Scholar 

  129. Hadjisavvas, N. and Schaible, S. (1998). From scalar to vector equilibrium problems in the quasimonotone case. Journal of Optimization Theory and Applications, 96(2):297–309.

    Article  MathSciNet  Google Scholar 

  130. Hartley, R. (1978) On cone-efficiency, cone-convexity and cone-compactness. SIAM Journal on Applied Mathematics, 34:211–222.

    Article  MathSciNet  MATH  Google Scholar 

  131. Hazen, G.B. and Morin, T.L. (1983) Optimality conditions in non-conical multiple-objective programming. Journal of Optimization Theory and Applications, 40:25–60.

    Article  MathSciNet  Google Scholar 

  132. Henig, M.I. (1982) Existence and characterization of efficient decisions with respect to cones. Mathematical Programming, 23:111–116.

    Article  MathSciNet  MATH  Google Scholar 

  133. Henig, M.I. (1982) Proper efficiency with respect to cones. Journal of Optimization Theory and Applications, 36:387–407.

    MathSciNet  MATH  Google Scholar 

  134. Henkel, E.C. and Tammer, C. (1996). ε-variational inequalities in partially ordered spaces. Optimization, 36:105–118.

    MathSciNet  Google Scholar 

  135. Huang, X.X. (2000). Equivalents of a general approximate variational principle for set-valued maps and application to efficiency. Mathematical Methods of Operations Research 51:433–442.

    MathSciNet  MATH  Google Scholar 

  136. Isac, G. (1983). Sur l’existence de l’optimum de Pareto. Rivista di Matematica della Universita di Parma, 9:303–325.

    MathSciNet  Google Scholar 

  137. Isac, G. (1987). Supernormal cones and fixed point theory. The Rocky Mountain Journal of Mathematics, 17:219–226.

    MathSciNet  MATH  Google Scholar 

  138. Isac, G. (1994). Pareto optimization in infinite dimensional spaces: The importance of nuclear cones. Journal of Mathematical Analysis and Applications, 182:393–404.

    Article  MathSciNet  MATH  Google Scholar 

  139. Isac, G. (1996). The Ekeland’s principle and the Pareto ε-efficiency. In: Tamiz, M. (ed.) Multi-Objective Programming and Goal Programming: Theories and Applications, 148–163. Lecture Notes in Economics and Mathematical Systems 432. Springer-Verlag, Berlin.

    Google Scholar 

  140. Isac, G. and Yuan, G.X.Z. (2000). The existence of essentially connected components of solutions for variational inequalities. In: Giannessi, F. (ed.) Vector Variational Inequalities and Vector Equilibria, 253–265. Nonconvex Optimization and its Applications 38. Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  141. Iwanow, E. and Nehse, R. (1985). Some results on dual vector optimization problems. Mathematische Operationsforschung und Statistik. Series Optimization, 16(4):505–517.

    MathSciNet  Google Scholar 

  142. Jagannathan, R. (1966). On some properties of programming problems in parametric form pertaining to fractional programming. Management Sciences, 12:609–615.

    Article  MathSciNet  MATH  Google Scholar 

  143. Jahn, J. (1983). Duality in vector optimization. Mathematical Programming, 25:343–353.

    MathSciNet  MATH  Google Scholar 

  144. Jahn, J. (1984). Scalarization in vector optimization. Mathematical Programming, 29:203–218.

    MathSciNet  MATH  Google Scholar 

  145. Jahn, J. (1985). A Characterization of properly minimal elements of a set. SIAM Journal on Control and Optimization, 23(5):649–656.

    Article  MathSciNet  MATH  Google Scholar 

  146. Jahn, J. (1986). Mathematical Vector Optimization in Partially Ordered Spaces. Peter Lang Verlag, Frankfurt am Main, Bern, New York.

    Google Scholar 

  147. Jahn, J. (1986). Existence theorems in vector optimization. Journal of Optimization Theory and Applications, 50:397–406.

    Article  MathSciNet  MATH  Google Scholar 

  148. Jahn, J. (1987). Duality in partially ordered sets. In: Jahn, J. and Krabs. W. (eds.) Recent advances and Historical Development of Vector Optimization, 160–172. Lecture Notes in Economics and Mathematical Systems 294. Springer-Verlag, Berlin.

    Google Scholar 

  149. Jahn, J. (1987). Parametric approximation problems arising in vector optimization. Journal of Optimization Theory and Applications, 54:503–516.

    Article  MathSciNet  MATH  Google Scholar 

  150. Jahn, J. (1988). A generalization of a theorem of Arrow, Barankin and Blackwell. SIAM Journal on Control and Optimization, 26(5):999–1005.

    MathSciNet  MATH  Google Scholar 

  151. Jahn, J. and Krabs, W. (1988). Applications of multicriteria optimization in approximation theory. In: Stadler, W. (ed.) Multicriteria Optimization in Engineering and the Sciences, 49–75. Plenum Press, New York.

    Google Scholar 

  152. Jongen, H.T., Möbert, T. and Tammer, K. (1986). On iterated minimization in nonconvex optimization. Mathematics of Operations Research 11:679–691.

    MathSciNet  Google Scholar 

  153. Kaliszewski, I. (1987). A modified weighted Tchebycheff metric for multiple objective programming. Computers and Operations Research, 14:315–323.

    Article  MathSciNet  MATH  Google Scholar 

  154. Kantorowitsch, L.W. and Akilow, G.P. (1978). Funktionalanalysis in normierten Räumen. Akademie-Verlag, Berlin.

    Google Scholar 

  155. Kaul, R.N. and Lyall, V. (1989). A note on nonlinear fractional vector maximization. Operations Research, 26(2):108–121.

    MathSciNet  Google Scholar 

  156. Kawasaki, H. (1981). Conjugate relations and weak subdifferentials. Mathematics of Operations Research 6:593–607.

    MathSciNet  MATH  Google Scholar 

  157. Kawasaki, H. (1982). A duality theorem in multiobjective nonlinear programming. Mathematics of Operations Research, 7:95–110.

    MathSciNet  MATH  Google Scholar 

  158. Kazmi, K.R. (2000). Existence of solutions for vector saddle-point problems. In: Giannessi, F. (ed.) Vector Variational Inequalities and Vector Equilibria, 267–275. Nonconvex Optimization and its Applications 38. Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  159. Khanh, P.Q. (1989). On Caristi-Kirk’s theorem and Ekeland’s variational principle for Pareto extrema. Bulletin of the Polish Academy of Sciences, Mathematics, 37:33–39.

    MathSciNet  MATH  Google Scholar 

  160. Klose, J. (1992). Sensitivity analysis using the tangent derivative. Numerical Functional Analysis and Optimization, 13:143–153.

    MathSciNet  MATH  Google Scholar 

  161. Klötzler, R. (1978). Multiobjective dynamic programming. Mathematische Operationsforschung und Statistik. Series Optimization, 9(3):423–426.

    MathSciNet  MATH  Google Scholar 

  162. Klötzler, R. (1979). On a general conception of duality in optimal control. In: F’abera, J. (ed.) Equadiff IV, 183–196. Lecture Notes in Mathematics 703. Springer-Verlag, Berlin.

    Google Scholar 

  163. Konnov, I.V. and Yao, J.C. (1997). On the generalized vector variational inequality problem. Journal of Mathematical Analysis and Applications, 206:42–58.

    Article  MathSciNet  Google Scholar 

  164. Krasnosel’skij, M.A. (1962). Positive Solutions of Operator Equations (in Russian). Fizmatgiz, Moskow.

    Google Scholar 

  165. Kuhpfahl, I., Patz, R., and Tammer, C. (1996). Location problems in town planning. In: D. Schweigert (ed.) Methods of Multicriteria Decision Theory, 101–112. University of Kaiserslautern, Kaiserslautern.

    Google Scholar 

  166. Kuk, H., Tanino, T., and Tanaka, M. (1996). Sensitivity analysis in vector optimization. Journal of Optimization Theory and Applications, 89:713–730.

    Article  MathSciNet  Google Scholar 

  167. Kuk, H., Tanino, T., and Tanaka, M. (1996). Sensitivity analysis in parametrized convex vector optimization. Journal of Mathematical Analysis and Applications, 202:511–522.

    Article  MathSciNet  Google Scholar 

  168. Kummer, B. (1992). Newton’s method based on generalized derivatives for nonsmooth functions: Convergence analysis. In: Oettli, W. and Pallaschke, D. (eds.) Advances in Optimization, Proceedings Lambrecht 1991, 171–194. Springer-Verlag, Berlin.

    Google Scholar 

  169. Kuratowski, K. (1966). Topology. Academic Press, New York and Polish Scientific Publishers, Warsaw.

    Google Scholar 

  170. Lai, T.C. and Yao, J.C. (1996). Existence results for VVIP. Applied Mathematical Letters, 9:17–19.

    MathSciNet  Google Scholar 

  171. Lampe, U. (1981). Dualität und eigentliche Effizienz in der Vek-toroptimierung. Seminarberichte der Sektion Mathematik der Humboldt-Universität zu Berlin, 37:45–54.

    MATH  Google Scholar 

  172. Lee, G.M., Kim, D.S., and Lee, B.S. (1996). On noncooperative vector equilibrium. Indian Journal of Pure and Applied Mathematics, 27(8):735–739.

    MathSciNet  Google Scholar 

  173. Lee, G.M., Kim, D.S., and Lee, B.S. (1996). Generalized vector variational inequality. Applied Mathematical Letters, 9:39–42.

    Google Scholar 

  174. Lee, G.M., Kim, D.S., Lee, B.S., and Cho, S.J. (1993). Generalized vector variational inequality and fuzzy extension. Applied Mathematical Letters, 6:47–51.

    MathSciNet  Google Scholar 

  175. Lee, G.M., Kim, D.S., Lee, B.S., and Yen, N.D. (1998). Vector variational inequality as a tool for studying vector optimization problems. Nonlinear Analysis, 34:745–765.

    Article  MathSciNet  Google Scholar 

  176. Lee, G.M., Kim, D.S., Lee, B.S., and Yen, N.D. (2000). Vector variational inequality as a tool for studying vector optimization problems. In: Giannessi, F. (ed.) Vector Variational Inequalities and Vector Equilibria, 277–305. Nonconvex Optimization and its Applications 38. Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  177. Lee, G.M. and Kum, S. (2000). Vector variational inequalities in a Hausdorff topological vector space. In: Giannessi, F. (ed.) Vector Variational Inequalities and Vector Equilibria, 307–320 Nonconvex Optimization and its Applications 38. Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  178. Lee, G.M. and Kum, S. (2000). On implicit vector variational inequalities. Journal of Optimization Theory and Applications, 104(2), 409–425.

    Article  MathSciNet  Google Scholar 

  179. Lee, B.S., Lee, G.M., and Kim, D.S. (1996). Generalized vector-valued variational inequalities and fuzzy extension. Journal of the Korean Mathematical Society, 33:609–624.

    MathSciNet  Google Scholar 

  180. Lee, B.S., Lee, G.M., and Kim, D.S. (1997). Generalized vector variational-like inequalities in locally convex Hausdorff topological vector spaces. Indian Journal of Pure and Applied Mathematics, 28:33–41.

    MathSciNet  Google Scholar 

  181. Li, Z.F. and Wang, S.Y. (1994). Lagrange multipliers and saddle points in multiobjective programming. Journal of Optimization Theory and Applications, 83(1):63–81.

    Article  MathSciNet  Google Scholar 

  182. Li, S.J., Yang, S.Q., and Chen, G.Y. (2000). Vector Ekeland variational principle. In: Giannessi, F. (ed.) Vector Variational Inequalities and Vector Equilibria, 321–333. Nonconvex Optimization and its Applications 38. Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  183. Lin, L.J. (1996). Pre-vector variation inequalities. Bulletin of the Australian Mathematical Society, 53:63–70.

    MathSciNet  MATH  Google Scholar 

  184. Lin, K.L., Yang, D.P., and Yao, J.C. (1997). Generalized vector variational inequalities. Journal of Optimization Theory and Applications, 92:117–125.

    Article  MathSciNet  Google Scholar 

  185. Loridan, P. (1984). ε-solutions in vector minimization problems. Journal of Optimization Theory and Applications, 43(2):265–276.

    Article  MathSciNet  MATH  Google Scholar 

  186. Loridan, P. (1984). A dual approach to the generalized Weber problem under locational uncertainty. Cahiers du Centre dÉtudes de Recherche Opérationnelle, 20(3–4):241–253.

    MathSciNet  Google Scholar 

  187. Loridan, P. and Morgan, J. (2000). Convergence of approximate solutions and values in parametric vector optimization. In: Giannessi, F. (ed.) Vector Variational Inequalities and Vector Equilibria, 335–350. Nonconvex Optimization and its Applications 38. Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  188. Loridan, P., Morgan, J., and Raucci, R. (1999). Convergence of minimal and approximate minimal elements of sets in partially ordered vector spaces. Journal of Mathematical Analysis and Applications, 239(2):427–439.

    Article  MathSciNet  Google Scholar 

  189. Luc, D.T. (1989). An existence theorem in vector optimization. Mathematics of Operations Research, 14:693–699.

    Article  MathSciNet  MATH  Google Scholar 

  190. Luc, D.T. (1989). Theory of Vector Optimization. Lecture Notes in Economics and Mathematical Systems 319. Springer Verlag Berlin Heidelberg.

    Google Scholar 

  191. Luc, D.T., Lucchetti, R., and Malivert, C. (1994). Convergence of efficient sets. Set-Valued Analysis, 2:207–218.

    Article  MathSciNet  Google Scholar 

  192. Malivert, C. (1992). Fenchel duality in vector optimization. In: Oettli, W. and Pallaschke, D. (eds.) Advances in Optimization, 420–438. Lecture Notes in Economics and Mathematical Systems 382. Springer-Verlag, Berlin.

    Google Scholar 

  193. Mastroeni, G. (2000). On Minty vector variational inequality. In: Giannessi, F. (ed.) Vector Variational Inequalities and Vector Equilibria, 351–361. Nonconvex Optimization and its Applications. Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  194. Michelot, C. and Lefebvre, O. (1987). A primal-dual algorithm for the Fermat-Weber problem involving mixed gauges. Mathematical Programming, 39:319–335.

    MathSciNet  Google Scholar 

  195. Miettinen, K. (1999). Nonlinear Multiobjective Optimization. Kluwer Academic Publishers, Boston.

    Google Scholar 

  196. Miettinen, K. and Mäkelä, M.M. (2000). Tangent and normal cones in nonconvex multiobjective optimization. In: Haimes, Y.Y. and Steuer, R. E. (eds.) Research and Practice in Multiple Criteria Decision Making, 114–124. Lecture Notes in Economics and Mathematical Systems 487. Springer-Verlag, Berlin, Heidelberg.

    Google Scholar 

  197. Minami, M. (1983). Weak Pareto-optimal necessary conditions in a nondifferentiable multiobjective program on a Banach space. Journal of Optimization Theory and Applications 41(3):451–461.

    Article  MathSciNet  MATH  Google Scholar 

  198. Nakayama, H. (1984). Geometric consideration of duality in vector optimization. Journal of Optimization Theory and Applications, 44:625–655.

    Article  MathSciNet  MATH  Google Scholar 

  199. Nakayama, H. (1985). Duality theory in vector optimization: An overview. In: Haimes, Y.Y. and Chankong, V. (eds.) Decision making with multiple objectives, 109–125. Lecture Notes in Economics and Mathematical Systems 242. Springer-Verlag, Berlin.

    Google Scholar 

  200. Nehse, R. (1981). Duale Vektoroptimierungsprobleme vom Wolfe-Typ. Seminarberichte der Sektion Mathematik der Humboldt-Universität zu Berlin, 37:55–60.

    MATH  Google Scholar 

  201. Nemeth, A.B. (1981). The nonconvex minimization principle in ordered regular Banach spaces. Revue d’Analyse Numérique et de la Théorie de l’Approximation, 23(46):43–48.

    MathSciNet  MATH  Google Scholar 

  202. Nemeth, A.B. (1986). A nonconvex vector minimization problem. Nonlinear Analysis, 10(7):669–678.

    MathSciNet  MATH  Google Scholar 

  203. Nemeth, A.B. (1989). Between Pareto efficiency and Pareto ε-efficiency. Optimization, 20(5):615–637.

    MathSciNet  MATH  Google Scholar 

  204. Nieuwenhuis, J.W. (1980). Supremal points and generalized duality. Mathematische Operationsforschung und Statistik, Series Optimization, 11:41–59.

    MathSciNet  MATH  Google Scholar 

  205. Nikodem, K. (1986). Continuity of K-convex set-valued functions. Bulletin of the Polish Academy of Sciences. Mathematics, 34:393–400.

    MathSciNet  MATH  Google Scholar 

  206. Nikodem, K. (1987). On midpoint convex set-valued functions. Aequationes Mathematicae, 33:46–56.

    Article  MathSciNet  MATH  Google Scholar 

  207. Noor, M.A. (1982). Strongly nonlinear variational inequalities. Comptes Rendus Mathématiques. Reports of the Academy of Sciences of Canada, 4:213–218.

    MathSciNet  MATH  Google Scholar 

  208. Oettli, W. (1977). Approximate solutions of variational inequalities. In: Albach, H., Helmstädter, E., and Henn, R. (eds.) Quantitative Wirtschaftsforschung, 535–538. Verlag J.C.B. Mohr, Tübingen.

    Google Scholar 

  209. Oettli, W. (1997). A remark on vector-valued equilibria and generalized monotonicity. Acta Mathematica Vietnamica, 22:213–221.

    MathSciNet  MATH  Google Scholar 

  210. Parida, J. and Sen, A. (1987). A variational-like inequality for multifunctions with applications. Journal of Mathematical Analysis and Applications, 124:73–81.

    Article  MathSciNet  Google Scholar 

  211. Pascoletti, A. and Serafini, P. (1984). Scalarizing vector optimization problems. Journal of Optimization Theory and Applications, 42:499–524.

    Article  MathSciNet  Google Scholar 

  212. Pelegrin, B. and Fernández, F. R. (1988). Determination of efficient points in multiple objective location problems. Naval Research Logistics, 35:697–705.

    MathSciNet  Google Scholar 

  213. Penot, J.P. (1984). Differentiability of relations and differential stability of perturbed optimization problems. SIAM Journal on Control and Optimization, 22:528–551.

    Article  MathSciNet  Google Scholar 

  214. Penot, J.P. (1978). L’optimisation à la Pareto: Deux ou trois choses que je sais d’Elle. In: Proceedings of “Structures Economiques et Econométric”, 4.14–4.33.Lyon.

    Google Scholar 

  215. Penot, J.P. (1986). The drop theorem, the petal theorem and Ekeland’s variational principle. Nonlinear Analysis, 10(9):813–822.

    Article  MathSciNet  MATH  Google Scholar 

  216. Penot, J.P. and Sterna-Karwat, A. (1986). Parametrized multi-criteria optimization: Continuity and closedness of optimal multifunctions. Journal of Mathematical Analysis and Applications, 120:150–168.

    Article  MathSciNet  Google Scholar 

  217. Penot, J.P. and Sterna-Karwat, A. (1989). Parametrized multi-criteria optimization: Order continuity of the marginal multifunctions. Journal of Mathematical Analysis and Applications, 144:1–15.

    Article  MathSciNet  Google Scholar 

  218. Penot, J.P. and Théra, M. (1982). Semi-continuous mappings in general topology. Archiv der Mathematik, 32:158–166.

    Google Scholar 

  219. Peressini, A.L. (1967). Ordered Topological Vector Spaces. Harper and Row Publishers, New York.

    Google Scholar 

  220. Phelps, R.R. (1989). Convex Functions, Monotone Operators and Differentiability. Lecture Notes in Mathematics 1364. Springer-Verlag, Berlin.

    Google Scholar 

  221. Phelps, R.R. (1993). Convex Functions, Monotone Operators and Differentiability (2nd edition). Lecture Notes in Mathematics 1364. Springer-Verlag, Berlin.

    Google Scholar 

  222. Podhinovski, V.V. and Nogin, V.D. (1982). Pareto Optimal Solutions of Multicriteria Problems (in Russian). Nauka, Moscow.

    Google Scholar 

  223. PostolicĂ, V. (1989). Existence conditions of efficient points for multifunctions with values in locally convex spaces ordered by supernormal cones. Studi şi CercetĂri Matematice, 41:325–339.

    Google Scholar 

  224. PostolicĂ, V. (1993). New existence results for efficient points in locally convex spaces. Journal of Global Optimization, 3:233–242.

    Google Scholar 

  225. Puerto, F.P. and Fernandez, F.R. (1994). Multicriteria decisions in location. Studies in Locational Analysis, 7:185–199.

    Google Scholar 

  226. Qun, L. (2000). Generalized vector variational-like inequalities. In: Giannessi, F. (ed.) Vector Variational Inequalities and Vector Equilibria, 363–369. Nonconvex Optimization and its Applications 38. Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  227. Ralph, D. and Scholtes, S. (1997), Sensitivity analysis and Newton’s method for composite piecewise smooth equations. Mathematical Programming, 76:593–612.

    Article  MathSciNet  Google Scholar 

  228. Rapcsák, T. (2000). On vector complementarity systems and vector variational inequalities. In: Giannessi, F. (ed.) Vector Variational Inequalities and Vector Equilibria, 371–380. Nonconvex Optimization and its Applications 38. Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  229. Rockafellar, R.T. (1979). Directionally Lipschitzian functions and subdifferential calculus. Proceedings of the London Mathematical Society, 39:331–355.

    MathSciNet  MATH  Google Scholar 

  230. Rolewicz, S. (1987). On drop property. Studia Mathematica, 85:27–35.

    MathSciNet  Google Scholar 

  231. Rosinger, E.E. (1978). Multiobjective duality without convexity. Journal of Mathematical Analysis and Applications, 66:442–450.

    Article  MathSciNet  MATH  Google Scholar 

  232. Salukvadze, M.E. (1979). Vector-valued Optimization Problems in Control Theory. Academic Press, New York.

    Google Scholar 

  233. Sawaragi, Y., Nakayama, H., and Tanino, T. (1985). Theory of Multiobjective Optimization. Academic Press, Orlando FL.

    Google Scholar 

  234. Schaible, S. and Ibaraki, T. (1983). Fractional programming. European Journal of Operations Research, 12:325–338.

    Article  MathSciNet  Google Scholar 

  235. Schandl, B., Klamroth, K., and Wiecek, M.M. (2000). Using block norms in bicriteria optimization. In: Haimes, Y.Y. and Steuer, R.E. (eds.) Research and Practice in Multiple Criteria Decision Making, 149–160. Lecture Notes in Economics and Mathematical Systems 487. Springer-Verlag, Berlin, Heidelberg.

    Google Scholar 

  236. Scholtes, S. (1994). Introduction to piecewise differentiable equations. Preprint No. 53/1994, Universität Karlsruhe, Institut für Statistik und Mathematische Wirtschaftstheorie.

    Google Scholar 

  237. Schönfeld, P. (1970). Some duality theorems for the nonlinear vector maximum problem. Unternehmensforschung 14:51–63.

    MathSciNet  MATH  Google Scholar 

  238. Shi, D.S. (1991). Contingent derivatives of the perturbation in multiobjective optimization. Journal of Optimization Theory and Applications, 70:351–362.

    Article  Google Scholar 

  239. Shi, D.S. (1993). Sensitivity analysis in convex vector optimization. Journal of Optimization Theory and Applications, 77:145–159.

    Article  MathSciNet  MATH  Google Scholar 

  240. Siddiqi, A.H., Ansari, Q.H., and Ahmad, R. (1997). On vector variational-like inequalities. Indian Journal of Pure and Applied Mathematics, 28:1009–1016.

    MathSciNet  Google Scholar 

  241. Siddiqi, A.H., Ansari, Q.H., and Khan, M.F. (1999). Variational-like inequalities for multivalued maps. Indian Journal of Pure and Applied Mathematics, 3(2):161–166.

    MathSciNet  Google Scholar 

  242. Sinh, C. (1987). Optimality conditions in multiobjective differentiable programming. Journal of Optimization Theory and Applications, 53:115–123.

    MathSciNet  Google Scholar 

  243. Smithson, R.E. (1975). Subcontinuity for multifunctions. Pacific Journal of Mathematics, 61:283–288.

    MathSciNet  MATH  Google Scholar 

  244. Song, W. (2000). Generalized vector variational inequalities. In: Giannessi, F. (ed.) Vector Variational Inequalities and Vector Equilibria, 381–401. Nonconvex Optimization and its Applications 38. Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  245. Song, W. (2000). Vector equilibrium problems with set-valued mappings. In: Giannessi, F. (ed.): Vector Variational Inequalities and Vector Equilibria, 402–422. Nonconvex Optimization and its Applications 38. Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  246. Sonntag, Y. and ZĂlinescu, C. C. (2000). A comparison of existence results for efficient points. Journal of Optimization Theory and Applications, 105:161–188.

    Article  MathSciNet  Google Scholar 

  247. Staib, T. (1988). On generalizations of Pareto minimality. Journal of Optimization Theory and Applications, 59:289–306.

    MathSciNet  MATH  Google Scholar 

  248. Sterna-Karwat, A. (1989). Convexity of the optimal multifunctions and its consequences to vector optimization. Optimization, 20:799–808.

    MathSciNet  MATH  Google Scholar 

  249. Sterna-Karwat, A. (1987). Continuous dependence of solutions on a parameter in a scalarization method. Journal of Optimization Theory and Applications, 55:417–434.

    Article  MathSciNet  MATH  Google Scholar 

  250. Sterna-Karwat, A. (1986). On existence of cone maximal points in real topological linear spaces. Israel Journal of Mathematics, 54:33–41.

    MathSciNet  MATH  Google Scholar 

  251. Sterna-Karwat, A. (1988). Remarks on convex cones. Journal of Optimization Theory and Applications, 59:335–340.

    MathSciNet  MATH  Google Scholar 

  252. Takahashi, W. (1991). Existence theorems generalizing fixed point theorems for multivalued mappings. In: Baillon, J.B. and Thera, M. (eds.) Fixed point theory and applications, 397–406. Pitman Research Notes in Mathematics 252. Longman, Harlow.

    Google Scholar 

  253. Tammer, C. (1992). A generalization of Ekeland’s variational principle. Optimization, 25:129–141.

    MathSciNet  MATH  Google Scholar 

  254. Tammer, C. (1993). Existence results and necessary conditions for ε-efficient elements. In: Brosowski, B., Ester, J., Helbig, S. and Nehse, R. (eds.) Multicriteria Decision — Proceedings of the 14th Meeting of the German Working Group “Mehrkriterielle Entscheidung”, 97–110. Peter Lang Verlag, Frankfurt am Main, Bern.

    Google Scholar 

  255. Tammer, C. (1993). Erweiterungen und Anwendungen des Variationsprinzips von Ekeland. Zeitschrift für Angewandte Mathematik undMechanik, 73:832–826.

    MathSciNet  Google Scholar 

  256. Tammer, C. (1994). A variational principle and a fixed point theorem. In: Henry, J. and Yvon, J.P. (eds.) System Modelling and Optimization, 248–257. Lecture Notes in Control and Information Sciences 197. Springer, London.

    Google Scholar 

  257. Tammer, C. (1994). A variational principle and applications for vectorial control approximation problems. Mathematical Journal of the University of Bacau (Romania), 4:85–98.

    MATH  ADS  Google Scholar 

  258. Tammer, C. (1994). Stability results for approximately efficient solutions. Operations Research Spektrum, 16:47–52.

    MathSciNet  MATH  Google Scholar 

  259. Tammer, C. (1996). Approximate solutions of vector-valued control-approximation problems. Studies in Locational Analysis, 10:151–162.

    MathSciNet  MATH  Google Scholar 

  260. Tammer, C. (1998). Multiobjective optimal control problems. In: Schmidt, W.H. (ed.) Variational Calculus, Optimal Control and Applications, 97–106. International Series of Numerical Mathematics 124. Birkhäuser Verlag, Basel.

    Google Scholar 

  261. Tammer, C. and Tammer, K. (1991). Generalization and sharpening of some duality relations for a class of vector optimization problems. Zeitschrift für Operations Research, 35:249–265.

    MathSciNet  Google Scholar 

  262. Tammer, K., Tammer, C., and Ohlendorf, E. (1996). Multicriterial fractional optimization. In: Guddat, J., Jongen, H.T., Nozicka, F., Still, G. and Twilt, F. (eds.) Parametric Optimization and Related Topics IV, 359–370. Verlag Peter Lang, Frankfurt am Main.

    Google Scholar 

  263. Tammer, K. (1995). Two-level optimization with approximate solutions in the lower level. Zeitschrift für Operations Research, 41:231–249.

    MathSciNet  MATH  Google Scholar 

  264. Tanaka, T. (1988). Some minimax problems of vector valued functions. Journal of Optimization Theory and Applications, 59:505–524.

    MathSciNet  MATH  Google Scholar 

  265. Tanaka, T. (1989). Existence Theorems for Cone Saddle Points of Vector-Valued Functions in Infinite-Dimensional Spaces. Journal of Optimization Theory and Applications, 62:127–138.

    Article  MathSciNet  MATH  Google Scholar 

  266. Tanaka, T. (1991). Two Types of Minimax Theorems for Vector-Valued Functions. Journal of Optimization Theory and Applications, 68:321–334.

    Article  MathSciNet  MATH  Google Scholar 

  267. Tanaka, T. (1994). Generalized Quasiconvexities, Cone Saddle Points, and Minimax Theorem for Vector-Valued Functions. Journal of Optimization Theory and Applications, 81:355–377.

    Article  MathSciNet  MATH  Google Scholar 

  268. Tanino, T. (1988). Sensitivity analysis in multiobjective optimization. Journal of Optimization Theory and Applications, 56:479–499.

    Article  MathSciNet  MATH  Google Scholar 

  269. Tanino, T. and Sawaragi, Y. (1979). Duality theory in multiobjective programming. Journal of Optimization Theory and Applications, 30:229–253.

    MathSciNet  Google Scholar 

  270. Tanino, T. and Sawaragi, Y. (980). Stability of nondominated solutions in multicriteria decision-making. Journal of Optimization Theory and Applications, 30:229–253.

    MathSciNet  Google Scholar 

  271. Thibault, L. (1997). Sequential convex subdifferential calculus and sequential Lagrange multipliers. SIAM Journal on Control and Optimization, 35(4): 1434–1444.

    Article  MathSciNet  MATH  Google Scholar 

  272. Turinici, M. (1991). Cone maximal points in topological linear spaces. Analele Stiinţificeale UniversitĂţii Al.I.Cuza din Iaşi, (Serie NouĂ.) Secţiunea la matematicĂ., 37:371–390.

    MathSciNet  MATH  Google Scholar 

  273. Valyi, I. (1985). On duality theory related to approximate solutions of vector-valued optimization problems. In: Demyanov, V.F. and Pallaschke, D. (eds.) Nondifferentiable Optimization: Motivations and Applications, 150–162. Lecture Notes in Economics and Mathematical Systems 255. Springer-Verlag, Berlin.

    Google Scholar 

  274. Valyi, I. (1987). Approximate saddle-point theorems in vector optimization. Journal of Optimization Theory and Applications, 55(3):435–448.

    MathSciNet  MATH  Google Scholar 

  275. Wang, S. (1984). Lagrange conditions in nonsmooth and multiobjective mathematical programming. Mathematics in Economics, 1:183–193.

    Google Scholar 

  276. Wanka, G. (1991). Duality in vectorial control approximation problems with inequality restrictions. Optimization, 22:755–764.

    MathSciNet  MATH  Google Scholar 

  277. Wanka, G. (1991). On duality in the vectorial control-approximation problem. Zeitschrift für Operations Research, 35:309–320.

    MathSciNet  MATH  ADS  Google Scholar 

  278. Wanka, G. (1996). Characterization of approximately efficient solutions to multiobjective location problems using Ekeland’s variational principle. Studies in Locational Analysis, 10:163–176.

    MathSciNet  MATH  ADS  Google Scholar 

  279. Weidner, P. (1985). Dominanzmengen und Optimalitätsbegriffe in der Vektoroptimierung. Wissenschaftliche Zeitschrift der TH Ilmenau, 31:133–146.

    MathSciNet  MATH  Google Scholar 

  280. Weidner, P. (1988). On the characterization of efficient points by means of monotone functionals. Optimization, 19:53–69.

    MathSciNet  MATH  Google Scholar 

  281. Weidner, P. (1991). Ein Trennungskonzept und seine Anwendungen auf Vektoroptimierungsverfahren. Dissertation B, Martin-Luther-Universität Halle-Wittenberg.

    Google Scholar 

  282. Weir, T. (1986). A duality theorem for a multiple objective fractional optimization problem. Bulletin of the Australian Mathematical Society, 34:415–425.

    Article  MathSciNet  MATH  Google Scholar 

  283. Wierzbicki, A.P. (1977). Basis properties of scalarizing functionals for multiobjective optimization. Mathematische Operations-forschung und Statistik. Series Optimization, 8:55–60.

    MathSciNet  Google Scholar 

  284. Yamada, S., Tanino, T., and Inuiguchi, M. (2000). An outer approximation method for optimization over the efficient set. In: Haimes, Y.Y. and Steuer, R.E. (eds.) Research and Practice in Multiple Criteria Decision Making, 196–207. Lecture Notes in Economics and Mathematical Systems 487. Springer-Verlag, Berlin, Heidelberg.

    Google Scholar 

  285. Yang, X.Q. (1993). Generalized convex functions and vector variational inequalities. Journal of Optimization Theory and Applications, 79:563–580.

    Article  MathSciNet  MATH  Google Scholar 

  286. Yang, X.Q. (1993). Vector complementarity and minimal element problems. Journal of Optimization Theory and Applications, 77:483–495.

    Article  MathSciNet  MATH  Google Scholar 

  287. Yang, X.Q. (1993). Vector variational inequalitiy and its duality. Nonlinear Analysis, 21:869–877.

    Article  MathSciNet  MATH  Google Scholar 

  288. Yang, X.Q. (1997). Vector variational inequalitiy and vector pseudolinear optimization. Journal of Optimization Theory and Applications, 95:729–734.

    MathSciNet  MATH  Google Scholar 

  289. Yang, X.Q. (2000). On some equilivalent conditions of vector variational inequalities. In: Giannessi, F. (ed.) Vector Variational Inequalities and Vector Equilibria, 423–432. Nonconvex Optimization and its Applications 38. Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  290. Yang, X.Q. and Chen, G.Y. (2000). On inverse vector variational inequalities. In: Giannessi, F. (ed.) Vector Variational Inequalities and Vector Equilibria, 433–446. Nonconvex Optimization and its Applications 38. Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  291. Yang, X.Q. and Goh, C.J. (1997). On vector variational inequalities: Application to vector equilibria. Journal of Optimization Theory and Applications, 95:431–443.

    MathSciNet  Google Scholar 

  292. Yang, X.Q. and Goh, C.J. (2000). Vector variational inequalities, vector equilibrium flow and vector optimization. In: Giannessi, F. (ed.) Vector Variational Inequalities and Vector Equilibria, 447–465. Nonconvex Optimization and its Applications 38. Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  293. Yao, J.C. (1991). A basic theorem of complementarity for the generalized variational-like inequality problem. Journal of Mathematical Analysis and Applications, 158:124–138.

    MathSciNet  MATH  Google Scholar 

  294. Yao, J.C. (1993). Abstract variational inequality problem and a basic theorem of complementarity. Computers and Mathematics with Applications, 25:73–79.

    Article  MATH  Google Scholar 

  295. Yen, N.D. and Lee, G.M. (2000). On monotone and strongly monotone vector variational inequalities. In: Giannessi, F. (ed.) Vector Variational Inequalities and Vector Equilibria, 467–478. Nonconvex Optimization and its Applications 38. Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  296. Yen, N.D. and Phuong, T.D. (2000). Connectedness and stability of the solution sets in linear fractional vector optimization problems. In: Giannessi, F. (ed.) Vector Variational Inequalities and Vector Equilibria, 479–489. Nonconvex Optimization and its Applications 38. Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  297. Yin, H. and Xu, C. (2000). Vector variational inequality and implicit vector complementarity problems. In: Giannessi, F. (ed.) Vector Variational Inequalities and Vector Equilibria, 491–505. Nonconvex Optimization and its Applications 38. Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  298. Yu, S.Y. and Yao, J.C. (1996). On vector variational inequalities. Journal of Optimization Theory and Applications, 89:749–769.

    Article  MathSciNet  Google Scholar 

  299. Yu, P.L. (1974). Cone convexity, cone extreme points and nondominated solutions in decision problems with multiobjectives. Journal of Optimization Theory and Applications, 14:319–377.

    MathSciNet  MATH  Google Scholar 

  300. ZĂlinescu, C. (1983). Duality for vectorial nonconvex optimization by convexification and applications. Analele Stiinţificeale UniversitĂţii Al.I.Cuza din Iaşi, (Serie NouĂ.) Secţiunea Ia matematicĂ., 29(3): 15–34.

    Google Scholar 

  301. ZĂlinescu, C. (1987). Solvability results for sublinear functions and operators. Zeitschrift für Operations Research, 31:79–101.

    Google Scholar 

  302. ZĂlinescu, C. (1987). On two notions of proper efficiency. In: Brosowski, B. and Martensen, E. (eds.) Optimization in Mathematical Physics. Methoden und Verfahren der mathematischen Physik, 34:77–86.

    Google Scholar 

  303. ZĂlinescu, C. (1989). Stability for a class of nonlinear optimization problems and applications. In: Clarke, F.H., Demyanov, V.F., and Giannessi, F. (eds.) Nonsmooth Optimization and Related Topics, 437–458. Plenum Press, New York.

    Google Scholar 

  304. ZĂlinescu, C. (1992). On a new stability condition in mathematical programming. In: Giannessi, F. (ed.) Nonsmooth Optimization. Methods and Applications, 429–438. Gordon and Breach Science Publishers, Philadelphia.

    Google Scholar 

  305. Zeidler, E. (1986). Nonlinear Functional Analysis and its Applications. Part III: Variational Methods and Optimization. Springer-Verlag, New York.

    Google Scholar 

  306. Zowe, J. (1974). Subdifferentiability of convex functions with values in a ordered vector space. Mathematica Scandinavica, 34:69–83.

    MathSciNet  MATH  Google Scholar 

  307. Zowe, J. (1975). A duality theorem for a convex programming problem in ordered complete vector lattices. Journal of Mathematical Analysis and Applications, 50:273–287.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Kluwer Academic Publishers

About this chapter

Cite this chapter

Tammer, C., Göpfert, A. (2003). Theory of Vector Optimization. In: Ehrgott, M., Gandibleux, X. (eds) Multiple Criteria Optimization: State of the Art Annotated Bibliographic Surveys. International Series in Operations Research & Management Science, vol 52. Springer, Boston, MA. https://doi.org/10.1007/0-306-48107-3_1

Download citation

  • DOI: https://doi.org/10.1007/0-306-48107-3_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4020-7128-7

  • Online ISBN: 978-0-306-48107-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics