Skip to main content

Recent Advances in Randomized Quasi-Monte Carlo Methods

  • Chapter

Part of the book series: International Series in Operations Research & Management Science ((ISOR,volume 46))

Abstract

We survey some of the recent developments on quasi-Monte Carlo (QMC) methods, which, in their basic form, are a deterministic counterpart to the Monte Carlo (MC) method. Our main focus is the applicability of these methods to practical problems that involve the estimation of a high-dimensional integral. We review several QMC constructions and different randomizations that have been proposed to provide unbiased estimators and for error estimation. Randomizing QMC methods allows us to view them as variance reduction techniques. New and old results on this topic are used to explain how these methods can improve over the MC method in practice. We also discuss how this methodology can be coupled with clever transformations of the integrand in order to reduce the variance further. Additional topics included in this survey are the description of figures of merit used to measure the quality of the constructions underlying these methods, and other related techniques for multidimensional integration.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Acworth, P., M. Broadie, and P. Glasserman. (1997). A comparison of some Monte Carlo and quasi-Monte Carlo techniques for option pricing. In Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing, ed. P. Hellekalek and H. Niederreiter, Number 127 in Lecture Notes in Statistics, 1–18. Springer-Verlag.

    Google Scholar 

  • Åkesson, F., and J. P. Lehoczy. (2000). Path generation for quasi-Monte Carlo simulation of mortgage-backed securities. Management Science 46:1171–1187.

    Article  MATH  Google Scholar 

  • Antonov, I. A., and V. M. Saleev. (1979). An economic method of computing LPT-sequences. Zh. Vychisl. Mat. Mat. Fiz. 19:243–245. In Russian.

    MathSciNet  MATH  Google Scholar 

  • Avramidis, A. N., and J. R. Wilson. (1996). Integrated variance reduction strategies for simulation. Operations Research 44:327–346.

    Article  MATH  Google Scholar 

  • Bakhvalov, N. S. (1959). On approximate calculation of multiple integrals. Vestnik Moskovskogo Universiteta, Seriya Matematiki, Mehaniki, Astronomi, Fiziki, Himii 4:3–18. In Russian.

    Google Scholar 

  • Boyle, P., M. Broadie, and P. Glasserman. (1997). Monte Carlo methods for security pricing. Journal of Economic Dynamics & Control 21(8–9):1267–1321. Computational financial modelling.

    Article  MathSciNet  MATH  Google Scholar 

  • Braaten, E., and G. Weller. (1979). An improved low-discrepancy sequence for multidimensional quasi-Monte Carlo integration. Journal of Computational Physics 33:249–258.

    Article  MATH  Google Scholar 

  • Bratley, P., and B. L. Fox. (1988). Algorithm 659: Implementing Sobol’s quasirandom sequence generator. ACM Transactions on Mathematical Software 14(1): 88–100.

    Article  MathSciNet  MATH  Google Scholar 

  • Bratley, P., B. L. Fox, and H. Niederreiter. (1992). Implementation and tests of low-discrepancy sequences. ACM Transactions on Modeling and Computer Simulation 2:195–213.

    Article  MATH  Google Scholar 

  • Bratley, P., B. L. Fox, and H. Niederreiter. (1994). Algorithm 738: Programs to generate Niederreiter’s low-discrepancy sequences. ACM Transactions on Mathematical Software 20:494–495.

    Article  MATH  Google Scholar 

  • Caflisch, R. E.,W. Morokoff, and A. Owen. (1997). Valuation of mortgage-backed securities using Brownian bridges to reduce effective dimension. The Journal of Computational Finance 1(1): 27–46.

    Article  Google Scholar 

  • Caflisch, R. E., and B. Moskowitz. (1995). Modified Monte Carlo methods using quasi-random sequences. In Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing, ed. H. Niederreiter and P. J.-S. Shiue, Number 106 in Lecture Notes in Statistics, 1–16. New York: Springer-Verlag.

    Chapter  MATH  Google Scholar 

  • Cheng, J., and M. J. Druzdzel. (2000). Computational investigation of low-discrepancy sequences in simulation algorithms for bayesian networks. In Uncertainty in Artificial Intelligence Proceedings 2000, 72–81.

    Google Scholar 

  • Cochran, W. G. (1977). Sampling techniques. Second ed. New York: John Wiley and Sons.

    MATH  Google Scholar 

  • Conway, J. H., and N. J. A. Sloane. (1999). Sphere packings, lattices and groups. 3rd ed. Grundlehren der Mathematischen Wissenschaften 290. New York: Springer-Verlag.

    Book  MATH  Google Scholar 

  • Couture, R., and P. L’Ecuyer. (2000). Lattice computations for random numbers. Mathematics of Computation 69(230): 757–765.

    Article  MathSciNet  MATH  Google Scholar 

  • Couture, R., P. L’Ecuyer,and S. Tezuka. (1993). On the distribution of κ-dimensional vectors for simple and combined Tausworthe sequences. Mathematics of Computation 60(202): 749–761, S11–S16.

    MathSciNet  MATH  Google Scholar 

  • Coveyou, R. R., and R. D. MacPherson. (1967). Fourier analysis of uniform random number generators. Journal of the ACM 14:100–119.

    Article  MathSciNet  MATH  Google Scholar 

  • Cranley, R., and T. N. L. Patterson. (1976). Randomization of number theoretic methods for multiple integration. SIAM Journal on Numerical Analysis 13(6): 904–914.

    Article  MathSciNet  MATH  Google Scholar 

  • Davis, P., and P. Rabinowitz. (1984). Methods of numerical integration. second ed. New York: Academic Press.

    MATH  Google Scholar 

  • Dieter, U. (1975). How to calculate shortest vectors in a lattice. Mathematics of Computation 29(131): 827–833.

    Article  MathSciNet  MATH  Google Scholar 

  • Duffie, D. (1996). Dynamic asset pricing theory. second ed. Princeton University Press.

    Google Scholar 

  • Efron, B., and C. Stein. (1981). The jackknife estimator of variance. Annals of Statistics 9:586–596.

    Article  MathSciNet  MATH  Google Scholar 

  • Entacher, K. (1997). Quasi-Monte Carlo methods for numerical integration of multivariate Haar series. BIT 37:846–861.

    Article  MathSciNet  MATH  Google Scholar 

  • Entacher, K., P. Hellekalek, and P. L’Ecuyer. (2000). Quasi-Monte Carlo node sets from linear congruential generators. In Monte Carlo and Quasi-Monte Carlo Methods 1998, ed. H. Niederreiter and J. Spanier, 188–198. Berlin: Springer.

    Chapter  MATH  Google Scholar 

  • Faure, H. (1982). Discrépance des suites associées à un système de numération. Acta Arithmetica 61:337–351.

    Article  MATH  Google Scholar 

  • Faure, H. (2001). Variations on (0, s)-sequences. Journal of Complexity. To appear.

    Google Scholar 

  • Faure, H., and S. Tezuka. (2001). A new generation of (0, s)-sequences. To appear.

    Google Scholar 

  • Fincke, U., and M. Pohst. (1985). Improved methods for calculating vectors of short length in a lattice, including a complexity analysis. Mathematics of Computation 44:463–471.

    Article  MathSciNet  MATH  Google Scholar 

  • Fishman, G. S. (1990), Jan. Multiplicative congruential random number generators with modulus 2β: An exhaustive analysis for β=32 and a partial analysis for β=48. Mathematics of Computation 54(189): 331–344.

    MathSciNet  MATH  Google Scholar 

  • Fishman, G. S., and L. S. Moore III. (1986). An exhaustive analysis of multiplicative congruential random number generators with modulus 231−1. SIAM Journal on Scientific and Statistical Computing 7(1): 24–45.

    Article  MathSciNet  MATH  Google Scholar 

  • Fox, B. L. (1986). Implementation and relative efficiency of quasirandom sequence generators. ACM Transactions on Mathematical Software 12:362–376.

    Article  MATH  Google Scholar 

  • Fox, B. L. (1999). Strategies for quasi-Monte Carlo. Boston, MA: Kluwer Academic.

    Book  Google Scholar 

  • Friedel, I., and A. Keller. (2001). Fast generation of randomized low-discrepancy point sets. In Monte Carlo and Quasi-Monte Carlo Methods 2000, ed. K.-T. Fang, F. J. Hickernell, and H. Niederreiter: Springer. To appear.

    Google Scholar 

  • Golubov, B., A. Efimov, and V. Skvortsov. (1991). Walsh series and transforms: Theory and applications, Volume 64 of Mathematics and Applications: Soviet Series. Boston: Kluwer Academic Publishers.

    Book  MATH  Google Scholar 

  • Haber, S. (1983). Parameters for integrating periodic functions of several variables. Mathematics of Computation 41:115–129.

    Article  MathSciNet  MATH  Google Scholar 

  • Halton, J. H. (1960). On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals. Numerische Mathematik 2:84–90.

    Article  MathSciNet  MATH  Google Scholar 

  • Heinrich, S., F. J. Hickernell, and R.-X. Yue. (2001a). Integration of multivariate Haar wavelet series. Submitted.

    Google Scholar 

  • Heinrich, S., F. J. Hickernell, and R. X. Yue. (2001b). Optimal quadrature for Haar wavelet spaces. submitted.

    Google Scholar 

  • Hellekalek, P. (1998). On the assessment of random and quasirandom point sets. In Random and Quasi-Random Point Sets, ed. P. Hellekalek and G. Larcher, Volume 138 of Lecture Notes in Statistics, 49–108. New York: Springer.

    Chapter  MATH  Google Scholar 

  • Hellekalek, P., and G. Larcher. (Eds.) (1998). Random and quasi-random point sets, Volume 138 of Lecture Notes in Statistics. New York: Springer.

    MATH  Google Scholar 

  • Hellekalek, P., and H. Leeb. (1997). Dyadic diaphony. Acta Arithmetica 80:187–196.

    Article  MathSciNet  MATH  Google Scholar 

  • Hickernell, F. J. (1998a). A generalized discrepancy and quadrature error bound. Mathematics of Computation 67:299–322.

    Article  MathSciNet  MATH  Google Scholar 

  • Hickernell, F. J. (1998b). Lattice rules: How well do they measure up? In Random and Quasi-Random Point Sets, ed. P. Hellekalek and G. Larcher, Volume 138 of Lecture Notes in Statistics, 109–166. New York: Springer.

    Chapter  Google Scholar 

  • Hickernell, F. J. (1999). Goodness-of-fit statistics, discrepancies and robust designs. Statistical and Probability Letters 44:73–78.

    Article  MathSciNet  MATH  Google Scholar 

  • Hickernell, F. J. (2000). What affects accuracy of quasi-Monte Carlo quadrature? In Monte Carlo and Quasi-Monte Carlo Methods 1998, ed. H. Niederreiter and J. Spanier, 16–55. Berlin: Springer.

    Chapter  MATH  Google Scholar 

  • Hickernell, F. J., and H. S. Hong. (1997). Computing multivariate normal probabilities using rank-1 lattice sequences. In Proceedings of the Workshop on Scientific Computing (Hong Kong), ed. G. H. Golub, S. H. Lui, F. T. Luk, and R. J. Plemmons, 209–215. Singapore: Springer-Verlag.

    Google Scholar 

  • Hickernell, F. J., H. S. Hong, P. L’Ecuyer, and C. Lemieux. (2001). Extensible lattice sequences for quasi-Monte Carlo quadrature. SIAM Journal on Scientific Computing 22(3): 1117–1138.

    Article  MathSciNet  MATH  Google Scholar 

  • Hickernell, F. J., and H. Wozniakowski. (2001). The price of pessimism for multidimensional quadrature. Journal of Complexity 17. To appear.

    Google Scholar 

  • Hlawka, E. (1961). Funktionen von beschränkter variation in der theorie der gleichverteilung. Ann. Mat. Pura. Appl. 54:325–333.

    Article  MathSciNet  MATH  Google Scholar 

  • Hlawka, E. (1962). Zur angenäherten berechnung mehrfacher integrale. Monatshefte für Mathematik 66:140–151.

    Article  MathSciNet  MATH  Google Scholar 

  • Hoeffding, W. (1948). A class of statistics with asymptotically normal distributions. Annals of Mathematical Statistics 19:293–325.

    Article  MathSciNet  MATH  Google Scholar 

  • Hong, H. S., and F. H. Hickernell. (2001). Implementing scrambled digital sequences. Submitted for publication.

    Google Scholar 

  • Knuth, D. E. (1998). The art of computer programming, volume 2: Seminumerical algorithms. Third ed. Reading, Mass.: Addison-Wesley.

    MATH  Google Scholar 

  • Korobov, N. M. (1959). The approximate computation of multiple integrals. Dokl. Akad. Nauk SSSR 124:1207–1210. in Russian.

    MathSciNet  MATH  Google Scholar 

  • Korobov, N. M. (1960). Properties and calculation of optimal coefficients. Dokl. Akad. Nauk SSSR 132:1009–1012. in Russian.

    MathSciNet  Google Scholar 

  • Larcher, G. (1998). Digital point sets: Analysis and applications. In Random and Quasi-Random Point Sets, ed. P. Hellekalek and G. Larcher, Volume 138 of Lecture Notes in Statistics, 167–222. New York: Springer.

    Chapter  MATH  Google Scholar 

  • Larcher, G., A. Lauss, H. Niederreiter, and W. C. Schmid. (1996). Optimal polynomials for (t, m, s)-nets and numerical integration of multivariate Walsh series. SIAM Journal on Numerical Analysis 33(6):2239–2253.

    Article  MathSciNet  MATH  Google Scholar 

  • Larcher, G., H. Niederreiter, and W. C. Schmid. (1996). Digital nets and sequences constructed over finite rings and their application to quasi-Monte Carlo integration. Monatshefte für Mathematik 121(3):231–253.

    Article  MathSciNet  MATH  Google Scholar 

  • Larcher, G., and G. Pirsic. (1999). Base change problems for generalized Walsh series and multivariate numerical integration. Pacific Journal of Mathematics 189:75–105.

    Article  MathSciNet  MATH  Google Scholar 

  • L’Ecuyer, P. (1994). Uniform random number generation. Annals of Operations Research 53:77–120.

    Article  MathSciNet  MATH  Google Scholar 

  • L’Ecuyer, P. (1996). Maximally equidistributed combined Tausworthe generators. Mathematics of Computation 65(213): 203–213.

    Article  MathSciNet  MATH  Google Scholar 

  • L’Ecuyer, P. (1999). Tables of linear congruential generators of different sizes and good lattice structure. Mathematics of Computation 68(225): 249–260.

    Article  MathSciNet  MATH  Google Scholar 

  • L’Ecuyer, P., and R. Couture. (1997). An implementation of the lattice and spectral tests for multiple recursive linear random number generators. INFORMS Journal on Computing 9(2): 206–217.

    Article  MathSciNet  MATH  Google Scholar 

  • L’Ecuyer, P., and C. Lemieux. (2000). Variance reduction via lattice rules. Management Science 46(9): 1214–1235.

    Article  MATH  Google Scholar 

  • L’Ecuyer, P., and F. Panneton. (2000). A new class of linear feedback shift register generators. In Proceedings of the 2000 Winter Simulation Conference, ed. J. A. Joines, R. R. Barton, K. Kang, and P. A. Fishwick, 690–696. Pistacaway, NJ: IEEE Press.

    Chapter  Google Scholar 

  • Lemieux, C.(2000), May. L’utilisation de règles de réseau en simulation comme technique de réduction de la variance. Ph. D. thesis, Université de Montréal.

    Google Scholar 

  • Lemieux, C., M. Cieslak, and K. Luttmer. (2001). RandQMC user’s guide. In preparation.

    Google Scholar 

  • Lemieux, C., and P. L’Ecuyer. (2001). Selection criteria for lattice rules and other low-discrepancy point sets. Mathematics and Computers in Simulation 55(1–3): 139–148.

    Article  MathSciNet  MATH  Google Scholar 

  • Lemieux, C., and A. B. Owen. (2001). Quasi-regression and the relative importance of the ANOVA components of a function. In Monte Carlo and Quasi-Monte Carlo Methods 2000, ed. K.-T. Fang, F. J. Hickernell, and H. Niederreiter: Springer. To appear.

    Google Scholar 

  • Lidl, R., and H. Niederreiter. (1994). Introduction to finite fields and their applications. Revised ed. Cambridge: Cambridge University Press.

    Book  MATH  Google Scholar 

  • Loh, W.-L. (1996a). A combinatorial central limit theorem for randomized orthogonal array sampling designs. Annals of Statistics 24:1209–1224.

    Article  MathSciNet  MATH  Google Scholar 

  • Loh, W.-L. (1996b). On Latin hypercube sampling. The Annals of Statistics 24:2058–2080.

    Article  MathSciNet  MATH  Google Scholar 

  • Maisonneuve, D. (1972). Recherche et utilisation des “bons treillis”, programmation et résultats numériques. In Applications of Number Theory to Numerical Analysis, ed. S. K. Zaremba, 121–201. New York: Academic Press.

    Chapter  Google Scholar 

  • Maize, E. (1981). Contributions to the theory of error reduction in quasi-Monte Carlo methods. Ph. D. thesis, Claremont Graduate School, Claremont, CA.

    Google Scholar 

  • Matousěk, J. (1998). On the L2-discrepancy for anchored boxes. Journal of Complexity 14:527–556.

    Article  MathSciNet  MATH  Google Scholar 

  • Matsumoto, M., and Y. Kurita. (1994). Twisted GFSR generators II. ACM Transactions on Modeling and Computer Simulation 4(3): 254–266.

    Article  MATH  Google Scholar 

  • Matsumoto, M., and T. Nishimura. (1998). Mersenne twister: A 623-dimensionally equidistributed uniform pseudo-random number generator. ACM Transactions on Modeling and Computer Simulation 8(1): 3–30.

    Article  MATH  Google Scholar 

  • Mckay, M. D., R. J. Beckman, and W. J. Conover. (1979). A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 21:239–245.

    MathSciNet  MATH  Google Scholar 

  • Morohosi, H., and M. Fushimi. (2000). A practical approach to the error estimation of quasi-Monte Carlo integration. In Monte Carlo and Quasi-Monte Carlo Methods 1998, ed. H. Niederreiter and J. Spanier, 377–390. Berlin: Springer.

    Chapter  MATH  Google Scholar 

  • Morokoff, W. J., and R. E. Caflisch. (1994). Quasi-random sequences and their discrepancies. SIAM Journal on Scientific Computing 15:1251–1279.

    Article  MathSciNet  MATH  Google Scholar 

  • Niederreiter, H. (1986). Multidimensional numerical integration using pseudorandom numbers. Mathematical Programming Study 27:17–38.

    Article  MathSciNet  MATH  Google Scholar 

  • Niederreiter, H. (1987). Point sets and sequences with small discrepancy. Monatshefte für Mathematik 104:273–337.

    Article  MathSciNet  MATH  Google Scholar 

  • Niederreiter, H. (1988). Low-discrepancy and low-dispersion sequences. Journal of Number Theory 30:51–70.

    Article  MathSciNet  MATH  Google Scholar 

  • Niederreiter, H. (1992a). Low-discrepancy point sets obtained by digital constructions over finite fields. Czechoslovak Math. Journal 42:143–166.

    MathSciNet  MATH  Google Scholar 

  • Niederreiter, H. (1992b). Random number generation and quasi-Monte Carlo methods, Volume 63 of SIAM CBMS-NSF Regional Conference Series in Applied Mathematics. Philadelphia: SIAM.

    Book  MATH  Google Scholar 

  • Niederreiter, H., and G. Pirsic. (2001). Duality for digital nets and its applications. Acta Arithmetica 97:173–182.

    Article  MathSciNet  MATH  Google Scholar 

  • Niederreiter, H., and C. Xing. (1997). The algebraic-geometry approach to low-discrepancy sequences. In Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing, ed. P. Hellekalek, G. Larcher, H. Niederreiter, and P. Zinterhof, Volume 127 of Lecture Notes in Statistics, 139–160. New York: Springer-Verlag.

    Google Scholar 

  • Niederreiter, H., and C. Xing. (1998). Nets, (t, s)-sequences, and algebraic geometry. In Random and Quasi-Random Point Sets, ed. P. Hellekalek and G. Larcher, Volume 138 of Lecture Notes in Statistics, 267–302. New York: Springer.

    Chapter  MATH  Google Scholar 

  • Ökten, G. (1996). A probabilistic result on the discrepancy of a hybrid-Monte Carlo sequence and applications. Monte Carlo methods and Applications 2:255–270.

    Article  MathSciNet  MATH  Google Scholar 

  • Owen, A. B. (1992a). A central limit theorem for Latin hypercube sampling. Journal of the Royal Statistical Society B 54(2): 541–551.

    MathSciNet  MATH  Google Scholar 

  • Owen, A. B. (1992b). Orthogonal arrays for computer experiments, integration and visualization. Statistica Sinica 2:439–452.

    MathSciNet  MATH  Google Scholar 

  • Owen, A. B. (1994). Lattice sampling revisited: Monte Carlo variance of means over randomized orthogonal arrays. Annals of Statistics 22:930–945.

    Article  MathSciNet  MATH  Google Scholar 

  • Owen, A. B. (1995). Randomly permuted (t, m, s)-nets and (t, s)-sequences. In Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing, ed. H. Niederreiter and P. J.-S. Shiue, Number 106 in Lecture Notes in Statistics, 299–317. Springer-Verlag.

    Google Scholar 

  • Owen, A. B. (1997). Monte Carlo variance of scrambled equidistribution quadrature. SIAM Journal on Numerical Analysis 34(5): 1884–1910.

    Article  MathSciNet  MATH  Google Scholar 

  • Owen, A. B. (1998a). Latin supercube sampling for very high-dimensional simulations. ACM Transactions of Modeling and Computer Simulation 8(1): 71–102.

    Article  MATH  Google Scholar 

  • Owen, A. B. (1998b). Scrambling Sobol and Niederreiter-Xing points. Journal of Complexity 14:466–489.

    Article  MathSciNet  MATH  Google Scholar 

  • Pagès, G. (1997). A space quantization method for numerical integration. Journal of Computational and Applied Mathematics 89:1–38.

    Article  MathSciNet  MATH  Google Scholar 

  • Paskov, S., and J. Traub. (1995). Faster valuation of financial derivatives. Journal of Portfolio Management 22:113–120.

    Article  Google Scholar 

  • Pirsic, G. (2001). A software implementation of Niederreiter-Xing sequences. In Monte Carlo and Quasi-Monte Carlo Methods 2000, ed. K.-T. Fang, F. J. Hickernell, and H. Niederreiter: Springer. To appear.

    Google Scholar 

  • Pirsic, G., and W. C. Schmid. (2001). Calculation of the quality parameter of digital nets and application to their construction. Journal of Complexity. To appear.

    Google Scholar 

  • Sloan, I. H., and S. Joe. (1994). Lattice methods for multiple integration. Oxford: Clarendon Press.

    MATH  Google Scholar 

  • Sloan, I. H., and L. Walsh. (1990). A computer search of rank-2 lattice rules for multidimensional quadrature. Mathematics of Computation 54:281–302.

    MathSciNet  MATH  Google Scholar 

  • Sobol’, I. M. (1967). The distribution of points in a cube and the approximate evaluation of integrals. U.S.S.R. Comput. Math. and Math. Phys. 7:86–112.

    Article  MathSciNet  MATH  Google Scholar 

  • Sobol’, I. M. (1969). Multidimensional quadrature formulas and Haar functions. Moskow: Nauka. In Russian.

    MATH  Google Scholar 

  • Sobol’, I. M.(1976). Uniformly distributed sequences with an additional uniform property. USSR Comput. Math. Math. Phys. Academy of Sciences 16:236–242.

    Article  MATH  Google Scholar 

  • Sobol’, I. M., and Y. L. Levitan. (1976). The production of points uniformly distributed in a multidimensional. Technical Report Preprint 40, Institute of Applied Mathematics, USSR Academy of Sciences. In Russian.

    Google Scholar 

  • Spanier, J. (1995). Quasi-Monte Carlo methods for particle transport problems. In Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing, ed. H. Niederreiter and P. J.-S. Shiue, Volume 106 of Lecture Notes in Statistics, 121–148. New York: Springer-Verlag.

    Chapter  MATH  Google Scholar 

  • Spanier, J., and E. H. Maize. (1994). Quasi-random methods for estimating integrals using relatively small samples. SIAM Review 36:18–44.

    Article  MathSciNet  MATH  Google Scholar 

  • Tan, K. S., and P. P. Boyle. (2000). Applications of randomized low discrepancy sequences to the valuation of complex securities. Journal of Economic Dynamics and Control 24:1747–1782.

    Article  MathSciNet  MATH  Google Scholar 

  • Tausworthe, R. C. (1965). Random numbers generated by linear recurrence modulo two. Mathematics of Computation 19:201–209.

    Article  MathSciNet  MATH  Google Scholar 

  • Tezuka, S. (1987). Walsh-spectral test for GFSR pseudorandom numbers. Communications of the ACM 30(8): 731–735.

    Article  MathSciNet  MATH  Google Scholar 

  • Tezuka, S. (1995). Uniform random numbers: Theory and practice. Norwell, Mass.: Kluwer Academic Publishers.

    Book  MATH  Google Scholar 

  • Tezuka, S., and P. L’Ecuyer. (1991). Efficient and portable combined Tausworthe random number generators. ACM Transactions on Modeling and Computer Simulation 1(2): 99–112.

    Article  MATH  Google Scholar 

  • Tezuka, S., and T. Tokuyama. (1994). A note on polynomial arithmetic analogue of Halton sequences. ACM Transactions on Modeling and Computer Simulation 4:279–284.

    Article  MATH  Google Scholar 

  • Tootill, J. P. R., W. D. Robinson, and D. J. Eagle. (1973). An asymptotically random Tausworthe sequence. Journal of the ACM 20:469–481.

    Article  MATH  Google Scholar 

  • Tuffin, B. (1996). On the use of low-discrepancy sequences in Monte Carlo methods. Technical Report No. 1060, I.R.I.S.A., Rennes, France.

    MATH  Google Scholar 

  • Tuffin, B. (1998). Variance reduction order using good lattice points in Monte Carlo methods. Computing 61:371–378.

    Article  MathSciNet  MATH  Google Scholar 

  • Wang, D., and A. Compagner. (1993). On the use of reducible polynomials as random number generators. Mathematics of Computation 60:363–374.

    Article  MathSciNet  MATH  Google Scholar 

  • Wang, X., and F. J. Hickernell. (2000). Randomized Halton sequences. Math. Comput. Modelling 32:887–899.

    Article  MathSciNet  MATH  Google Scholar 

  • Yakowitz, S., J. E. Krimmel, and F. Szidarovszky. (1978). Weighted Monte Carlo integration. SIAM Journal on Numerical Analysis 15:1289–1300.

    Article  MathSciNet  MATH  Google Scholar 

  • Yakowitz, S., P. L’Ecuyer, and F. Vázquez-Abad. (2000). Global stochastic optimization with low-discrepancy point sets. Operations Research 48(6): 939–950.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science + Business Media, Inc.

About this chapter

Cite this chapter

L’Ecuyer, P., Lemieux, C. (2002). Recent Advances in Randomized Quasi-Monte Carlo Methods. In: Dror, M., L’Ecuyer, P., Szidarovszky, F. (eds) Modeling Uncertainty. International Series in Operations Research & Management Science, vol 46. Springer, New York, NY. https://doi.org/10.1007/0-306-48102-2_20

Download citation

Publish with us

Policies and ethics