Skip to main content

Traffic Flow and Capacity

  • Chapter
Handbook of Transportation Science

Part of the book series: International Series in Operations Research & Management Science ((ISOR,volume 56))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

6.5 References

  • Agyemang-Duah K. and Hall F.L. (1991) Some issues regarding the numerical value of capacity. Proc. Int. Symp. on Highway Capacity, pp. 1–15, A.A. Balkemam, Germany.

    Google Scholar 

  • Banks J.H. (1990) Flow processes at a freeway bottleneck. Transpn Res. Rec. 1287, 20–28.

    Google Scholar 

  • Banks J.H. (1991) Two-capacity phenomenon at freeway bottlenecks: a basis for ramp metering? Transpn Res. Rec. 1320, 83–90.

    Google Scholar 

  • del Castillo J.M., Pintado P. and Benitez F.G. (1993) A formulation for the reaction time of traffic flow models. Proc. Int. Symp. on Transportation and Traffic Theory, (C.F. Daganzo, ed.), pp. 387–405, Elsevier, New York.

    Google Scholar 

  • Cassidy M.J. (1998) Bivariate relations in nearly stationary highway traffic. Transpn Res. 32B, 49–59.

    Article  Google Scholar 

  • Cassidy M.J. and Bertini R.L. (1999) Some traffic features at freeway bottlenecks. Transpn Res. 33B, 25–42.

    Article  Google Scholar 

  • Cassidy M.J. and Coifman B. (1997) Relation among average speed, flow and density and the analogous relation between density and occupancy. Transpn Res. Rec. 1591, 1–6.

    Article  Google Scholar 

  • Cassidy M.J., Madanat S.M. and Wang M.H. (1995) Unsignalized intersection capacity and level of service: revisiting critical gap. Transpn Res. Rec. 1484, 16–23.

    Google Scholar 

  • Cassidy M.J. and Windover J.R. (1995) Methodology for assessing dynamics of freeway traffic flow. Transpn Res. Rec. 1484, 73–79.

    Google Scholar 

  • Cassidy M.J. and Windover J.R. (1998) Driver memory: motorist selection and retention of individualized headways in highway traffic. Transpn Res. 32A, 129–137.

    Google Scholar 

  • Chandler R.E., Herman R. and Montroll E.W. (1958) Traffic dynamics: studies in carfollowing. Opns. Res. 6, 165–184.

    Article  MathSciNet  Google Scholar 

  • Cohen, E., Dearnaley J. and Hansel C. (1955) The risk taken in crossing a road. Opns. Res. Qrtly, 6, 120–128.

    Google Scholar 

  • Daganzo C.F. (1981) Estimation of gap acceptance parameters within and across the population from direct roadside observation. Transpn Res. 15B, 1–15.

    Article  MathSciNet  Google Scholar 

  • Daganzo C.F. (1995) The cell transmission model. II: Network traffic. Transpn Res. 29B, 79–93.

    Article  Google Scholar 

  • Daganzo C.F. (1995a) Requiem for second-order fluid approximations of traffic flow. Transpn Res. 29B, 277–286.

    Article  Google Scholar 

  • Daganzo C.F. (1997) Fundamentals of transportation and traffic operations. Elsevier, New York.

    Google Scholar 

  • Daganzo C.F. (1997a) The nature of freeway gridlock and how to prevent it. Proc. Int. Symp. on Transportation and Traffic Theory, (J.B. Lesort, ed.), pp. 629–646, Pergamon, Tarrytown.

    Google Scholar 

  • Daganzo C.F., Cassidy M.J. and Bertini R.L. (1999) Possible explanations of phase transitions in highway traffic. Transpn Res. 33A, 365–379.

    Google Scholar 

  • Edie L.C. (1965) Discussion of traffic stream measurements and definitions. Proc. Int. Symp. on the Theory of Traffic Flow, (J. Almond, ed.), pp. 139–154, OECD, Paris.

    Google Scholar 

  • Edie L.C. (1974) Traffic Science (D.C. Gazis, ed.), pp. 8–20, Wiley, New York.

    Google Scholar 

  • Edie L.C. and Foote R.S. (1960) Effect of shock waves on tunnel traffic flow. Proc. Highway Res. Board 39, 492–505.

    Google Scholar 

  • Edie L.C. and Foote R.S. (1961) Experiments on single-lane flow in tunnels. Proc. Int. Symp. on the Theory of Traffic Flow (R. Herman, ed.), pp. 175–192, Elsevier, New York.

    Google Scholar 

  • Gazis D.C., Herman R. and Potts R.B. (1959) Car-following theory of steady state flow. Opns. Res. 7, 499–505.

    Article  MathSciNet  Google Scholar 

  • Hall F.L., Hurdle, V.F. and Banks, J.H. (1992) A synthesis of recent work on the nature of speed-flow and flow-occupancy (or density) relationships on freeways. Transpn Res. Rec. 1365 12–18.

    Google Scholar 

  • Herman R., Montroll E.W., Potts R.B. and Rothery R. (1959) Traffic dynamics: analysis of stability in car-following. Opns. Res. 7, 86–106.

    Article  MathSciNet  Google Scholar 

  • Herman R. and Potts R.B. (1961) Single-lane traffic theory and experiment. Proc. Int. Symp on the Theory ofTraffic Flow (R. Herman, ed.), pp 120–146, Elsevier, New York.

    Google Scholar 

  • Kerner B.S., Konhauser P. and Schilke M. (1995) Deterministic spontaneous appearance of traffic jams in slightly inhomogeneous traffic flow. Phys. Rev. E 51, 6243–6246.

    Article  CAS  ADS  Google Scholar 

  • Kerner B.S. and Rehborn H. (1996) Experimental properties of complexity in traffic flow. Phys. Rev. E 53, R4275–R4278.

    Article  CAS  ADS  Google Scholar 

  • Kerner B.S. and Rehborn H. (1996a) Experimental features and characteristics of traffic jams. Phys. Rev. E 53, R1297–R1300.

    Article  CAS  ADS  Google Scholar 

  • Kerner B.S. and Rehborn H. (1997) Experimental properties of phase transitions in traffic flow. Phys. Rev. Let. 79, 4030–4033.

    Article  CAS  ADS  Google Scholar 

  • Kühne R.D. and Beckschulte R. (1993) Non-linearity stochastics in unstable traffic flow. Proc. Int. Symp. on Transportation and Traffic Theory (C.F. Daganzo, ed.), pp. 367–386, Elsevier, New York.

    Google Scholar 

  • Lighthill M.J. and Whitham G.B. (1955) On kinematic waves. I: Flood movement in long rivers. II: A theory of traffic flow on long crowded roads. Proc. Royal Soc. A. 229, 281–345.

    Article  ADS  MathSciNet  Google Scholar 

  • Lin W.F. and Daganzo C.F. (1997) A simple detection scheme for delay-inducing freeway incidents. Transpn Res. 31A, 141–155.

    Google Scholar 

  • Madanat S.M. Cassidy, M.J. and Wang M.H. (1994) A probabilistic model of queueing delay at stop-controlled intersection approaches. J. Transpn Eng. 120, 21–36.

    Article  Google Scholar 

  • Mahmassani H. and Sheffi Y. (1981) Using gap sequences to estimate gap acceptance functions. Transpn Res. 15B, 243–248.

    Google Scholar 

  • Makagami Y., Newell G.F. and Rothery R. (1971) Three-dimensional representation of traffic flow. Transpn Sci. 5, 302–313.

    Article  Google Scholar 

  • May A.D. (1990) Traffic flow fundamentals. Prentice Hall, New Jersey.

    Google Scholar 

  • Miller A. (1972) Nine estimators of gap acceptance parameters. Proc. Int. Symp. on the Theory ofTraffic Flow and Transportation, (G.F. Newell, ed.), pp. 215–235, Elsevier, New York.

    Google Scholar 

  • Moskowitz K. (1954) Waiting for a gap in a traffic stream. Proc. Highway Res. Board 33, 385–395.

    Google Scholar 

  • MUTCD (1988) Manual on Uniform Traffic Control Devices. U.S. DOT, Government Printing Office, Washington, D.C.

    Google Scholar 

  • Newell G.F. (unpublished) Notes on transportation operations. Univ. of California, Berkeley,U.S.A.

    Google Scholar 

  • Newell G.F. (1962) Theories of instability in dense highway traffic. J. Opn. Res. Soc. Japan 5, 9–54.

    MathSciNet  Google Scholar 

  • Newell G.F. (1971) Applications of Queueing Theory. Chapman Hall, London.

    Google Scholar 

  • Newell G.F. (1979) Airport capacity and delays. Transpn Sci. 13, 201–241.

    Article  Google Scholar 

  • Newell G.F. (1989) Theory of highway traffic signals. Institute of Transportation Studies UCB-ITS-CN-89-1, Univ. of California, Berkeley, U.S.A.

    Google Scholar 

  • Newell G.F. (1993) A simplified theory of kinematic waves in highway traffic I: General theory. II: Queueing at freeway bottlenecks. III: Multi-destination flows. Transpn Res. 27B, 281–313.

    Article  Google Scholar 

  • Newell G.F. (1995) Theory of highway traffic flow 1945 to 1965. Institute of Transportation Studies, Special Report, Univ. of California, Berkeley, U.S.A.

    Google Scholar 

  • Newman L. (1986) Freeway Operations Analysis Course Notes. Institute of Transportation Studies, University Extension, Univ. of California, Berkeley, U.S.A.

    Google Scholar 

  • Payne H.J. (1971) Models of freeway traffic control. Proc. Math. Models Publ. Sys. Simul. Council 28, 51–61.

    Google Scholar 

  • Phillips W.F. (1977) Kinetic theory for traffic flow. Research Report for U.S. DOT. Logan, UT: Dept. of Mech. Eng., Utah State Univ., U.S.A.

    Google Scholar 

  • Pitstick M. (1990) Measuring delay and simulating performance at isolated signalized intersections using cumulative curves. Transpn Res. Rec. 1287, 34–91.

    Google Scholar 

  • Prigogine I (1961) A Boltzman-like approach to the statistical theory oftraffic flow. Proc. Int. Symp. on the Theory of Traffic Flow (R. Herman, ed.), pp. 158–164, Elsevier, New York.

    Google Scholar 

  • Prigogine I. and Herman R. (1971) Kinetic theory of vehicular traffic. Elsevier, New York.

    Google Scholar 

  • Richards P.I. (1956) Shock waves on the highway. Opns. Res., 4, 42–51.

    Article  MathSciNet  Google Scholar 

  • Smilowitz K.R., Daganzo C.F., Cassidy M.J. and Bertini R.L. (1998) Some observations of traffic in long queues. Institute of Transportation Studies UCB-ITS-RR-98-6, Univ. of California, Berkeley, U.S.A. to be published in Transpn Res. Rec.

    Google Scholar 

  • Solberg P. and Oppenlander J. (1966) Lag and gap acceptance at stop-controlled intersections. Highway Res. Rec. 118, 48–67.

    Google Scholar 

  • TRB (1994) Special Report 209, Highway Capacity Manual. Transportation Research Board, Washington, D.C.

    Google Scholar 

  • Vaughn R. and Hurdle, V.F. (1992) A theory of traffic flow for congested conditions on urban arterial streets. I: Theoretical development. Transpn Res. 26B, 381–396.

    Article  Google Scholar 

  • Vaughn R., Hurdle, V.F. and Hauer E. (1984) A traffic flow model with time-dependent o-d patterns. Proc. Symp. on Transportation and Traffic Theory, (J. Volmuller and R. Hamerslag, eds.), pp. 155–178, VNU Science Press, Utrecht, The Netherlands.

    Google Scholar 

  • Webster F.V. (1958) Traffic signal settings. Road Research Technical Paper, No. 39, Road Research Laboratory, Ministry of Transport, HMSO, London.

    Google Scholar 

  • Windover J.R. (1998) Empirical studies of the dynamic features of freeway traffic. PhD thesis. Univ. of California, Berkeley, U.S.A.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Kluwer Academic Publishers

About this chapter

Cite this chapter

Cassidy, M.J. (2003). Traffic Flow and Capacity. In: Hall, R.W. (eds) Handbook of Transportation Science. International Series in Operations Research & Management Science, vol 56. Springer, Boston, MA. https://doi.org/10.1007/0-306-48058-1_6

Download citation

  • DOI: https://doi.org/10.1007/0-306-48058-1_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4020-7246-8

  • Online ISBN: 978-0-306-48058-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics