Skip to main content

Discrete Choice Models with Applications to Departure Time and Route Choice

  • Chapter
Handbook of Transportation Science

Part of the book series: International Series in Operations Research & Management Science ((ISOR,volume 56))

2.5 Conclusion

Discrete choice methods are constantly evolving to accommodate the requirements of specific applications. This is an exciting field of research, where a deep understanding of the underlying theoretical assumptions is necessary both to apply the models and develop new ones. In this Chapter, we have summarized the fundamental aspects of discrete choice theory, and we have introduced recent model developments, illustrating their richness. A discussion on route choice and departure time choice applications have shown how specific aspects of real applications must be addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Antoniou, C., Ben-Akiva, M., Bierlaire, M. and Mishalani, R. (1997). Demand simulation for dynamic traffic assignment, Proceedings of the 8th IFAC Symposium on Transportation Systems, Chania, Greece.

    Google Scholar 

  • Azevedo J.A., Santos Costa M.E.O., Silvestre Madeira J.J.E.R. and Vieira Martins, E.Q. (1993) “An algorithm for the ranking of shotest paths”. European Journal of Operational Research 69 97–106.

    Article  Google Scholar 

  • Ben-Akiva, M. and Bierlaire, M. (1999). Discrete choice methods and their applications to short-term travel decisions, in R. Hall (ed.), Handbook of Transportation Science, Kluwer, pp. 5–34.

    Google Scholar 

  • Ben-Akiva, M. and Bolduc, D. (1996). Multinomial probit with a logit kernel and a general parametric specification of the covariance structure. Paper presented at the 3rd Invitational Choice Symposium, Columbia University.

    Google Scholar 

  • Ben-Akiva, M., Bolduc, D. and Walker, J. (2001). Specification, Identification, & Estimation of the Logit Kernel (or Continuous Mixed Logit) Model, Working paper, Department of Civil Engineering, MIT, Camridge, MA.

    Google Scholar 

  • Ben-Akiva, M. E. (1973). Structure of passenger travel demand models, PhD thesis, Department of Civil Engineering, MIT, Cambridge, Ma.

    Google Scholar 

  • Ben-Akiva, M. E. (1974). Structure of passenger travel demand models, Transportation Research Record 526.

    Google Scholar 

  • Ben-Akiva, M.E. and Boccara, B. (1995) Discrete Choice Models with Latent Choice sets, International Journal of Research in Marketing 12, pp. 9–24.

    Article  Google Scholar 

  • Ben-Akiva, M. E., Bergman, M. J., Daly, A. J. and Ramaswamy, R. (1984). Modeling interurban route choice behaviour, in J. Volmuller and R. Hamerslag (eds), Proceedings from the ninth international symposium on transportation and traffic theory, VNU Science Press, Utrecht, Netherlands, pp. 299–330.

    Google Scholar 

  • Ben-Akiva, M. E. and Lerman, S. R. (1985). Discrete Choice Analysis: Theory and Application to Travel Demand, MIT Press, Cambridge, Ma.

    Google Scholar 

  • Ben-Akiva, M. and Francois, B. (1983). μ homogeneous generalized extreme value model, Working paper, Department of Civil Engineering, MIT, Cambridge, Ma.

    Google Scholar 

  • Ben-Akiva, M., McFadden, D., Train, K., Walker, J., Bhat, C., Bierlaire, M., Bolduc, D., Boersch-Supan, A., Brownstone, D., Bunch, D., Daly, A., de Palma, A., Gopinath, D., Karlstrom, A. and Munizaga, M. A. (2002). Hybrid choice models: Progress and challenges. Accepted for publication in Marketing Letters.

    Google Scholar 

  • Bertsekas, D. P. (1995). Nonlinear Programming, Athena Scientific, Belmont.

    Google Scholar 

  • Bhat, C. (2001). Quasi-random maximum simulated likelihood estimation of the mixed multinomial logit model, TRB 35(7): 677–693.

    Google Scholar 

  • Bierlaire, M. (1995). A robust algorithm for the simultaneous estimation of hierarchical logit models, GRT Report 95/3, Department of Mathematics, FUNDP.

    Google Scholar 

  • Bierlaire, M. (1998). Discrete choice models, in M. Labbé, G. Laporte, K. Tanczos and P. Toint (eds), Operations Research and Decision Aid Methodologies in Traffic and Transportation Management, Vol. 166 of NATO ASI Series, Series F: Computer and Systems Sciences, Springer Verlag, pp. 203–227.

    Google Scholar 

  • Bierlaire, M. (2001a). A general formulation of the cross-nested logit model, Proceedings of the 1st Swiss Transportation Research Conference, Ascona, Switzerland, http://www.strc.ch

  • Bierlaire, M. (2001b). An introductory tutorial to BIOGEME. URL: http://rosowww.epfl.ch/mbi/biogeme

  • Bierlaire, M. (2002). The network GEV model, Proceedings of the 2nd Swiss Transportation Research Conference, Ascona, Switzerland. http://www.strc.ch

  • Bierlaire, M., Lotan, T. and Toint, P. L. (1997). On the overspecification of multinomial and nested logit models due to alternative specific constants, Transportation Science 31(4): 363–371.

    Google Scholar 

  • Bierlaire, M. and Vandevyvere, Y. (1995). HieLoW: the interactive user’s guide, Transportation Research Group-FUNDP, Namur.

    Google Scholar 

  • Bolduc, D. (1992). Generalized Autoregressive Errors in the Multinomial Probit Model, Transportation Research B 26(2), 155–170

    Article  Google Scholar 

  • Bolduc, D. (1999). A practical technique to estimate multinomial probit models in transportation, Transportation Research B 33(1): 63–79.

    Article  Google Scholar 

  • Bolduc, D. and Ben-Akiva, M. (1991) A Multinomial Probit Formulation for Large Choice Sets. Proceedings of the 6th International Conference on Travel Behaviour 2, 243–258.

    Google Scholar 

  • Bradley, M. A. and Daly, A. (1991). Estimation of logit choice models using mixed stated preferences and revealed preferences information, Methods for understanding travel behaviour in the 1990’s, International Association for Travel Behaviour, Qu’ebec, pp. 116–133. 6th international conference on travel behaviour.

    Google Scholar 

  • Bunch, D.A. (1991) Estimability in the Multinomial Probit Model. Transportation Research B 25 1–12.

    Article  MathSciNet  Google Scholar 

  • Burrell, J. E. (1968). Multipath route assignment and its application to capacity restraint, Proceedings of the 4th International Symposium on the Theory of Road Traffic Flow (Karlsruhe).

    Google Scholar 

  • Cardell and Dunbar (1980). Measuring the societal impacts of automobile downsizing, Transportation Research A 14(5–6): 423–434.

    Google Scholar 

  • Cascetta, E., Nuzzolo, A. and Biggiero, L. (1992). Analysis and modeling of commuters’ departure time and route choice in urban networks, Proceedings of the second international Capri seminar on urban traffic networks.

    Google Scholar 

  • Cascetta, E., Nuzzolo, A., Russo, F. and Vitetta, A. (1996). A modified logit route choice model overcoming path overlapping problems. Specification and some calibration results for interurban networks, Proceedings of the 13th International Symposium on the Theory of Road Traffic Flow (Lyon, France).

    Google Scholar 

  • Cascetta, E. and Papola, A. (1998). Random utility models with implicit availability/perception of choice alternatives for the simulation of travel demand, Technical report, Universita degli Studi di Napoli Federico II.

    Google Scholar 

  • Conn, A., Gould, N. and Toint, P. (2000). Trust region methods, MPS-SIAM Series on Optimization, SIAM.

    Google Scholar 

  • Daganzo, C. F. and Sheffi, Y. (1977). On stochastic models of traffic assignment, Transportation Science 11(3): 253–274.

    Google Scholar 

  • Daly, A. (1987). Estimating “tree” logit models, Transportation Research B 21(4): 251–268.

    Article  MathSciNet  Google Scholar 

  • Daly, A. (2001). Recursive nested EV model. Paper presented at the Invitational Choice Symposium, Asilomar, Ca.

    Google Scholar 

  • de Palma, A. and Fontan, C. (2001). Departure time choice and heterogeneity of commuters, Proceedings of the 9th WCTR. Paper 4149.

    Google Scholar 

  • de Palma, A., Fontan, C. and Mekkaoui, O. (2000). Trip timing for public transportation: an empirical application, Technical Report 2000-19, Université de Cergy-Pontoise-Université de Paris X Nanterre, Théorie Economique, Modélisation et Application. UMR 7536 CNRS.

    Google Scholar 

  • Dennis, J. E. and Schnabel, R. B. (1983). Numerical methods for unconstrained optimization and nonlinear equations, Prentice-Hall, Englewood Cliffs, USA.

    Google Scholar 

  • Dial, R. B. (1969). Algorithm 360: shortest path forest with topological ordering., Communications of ACM 12: 632–633.

    Article  Google Scholar 

  • Dial, R. B. (1971). A probabilistic multipath traffic assignment algorithm which obviates path enumeration, Transportation Research 5(2): 83–111.

    Article  Google Scholar 

  • Dijkstra, E. W. (1959). A note on two problems in connexion with graphs, Numerische Mathematik 1: 269–271.

    Article  MATH  MathSciNet  Google Scholar 

  • Everitt,B.S. (1984). An Introduction to Latent Variable Models, Monographs on Statistical and Applied Probability, Chapman and Hall.

    Google Scholar 

  • Gopinath, D.A. (1995) Modeling Heterogeneity in Discrete Choice Processes: Application to Travel Demand, Ph.D. Dissertation, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology.

    Google Scholar 

  • Gumbel, E. J. (1958). Statistics of Extremes, Columbia University Press, New York.

    Google Scholar 

  • Hendrickson, C. and Plank, E. (1984). The flexibility of departure times for work trips, Transportation Research A 18: 25–36.

    Article  Google Scholar 

  • Hensher D.A. and Greene W.H. (2002). Specification and estimation of the nested logit model: alternative normalizations, Transportation Research B 36(1): 1–18.

    Article  Google Scholar 

  • Kamakura, W.A. and G.J. Russell (1989). A Probabilistic Choice Model for Market Segmentation and Elasticity Structure, Journal of Marketing Research 25, 379–390.

    Google Scholar 

  • Koppelman, F. S. and Wen, C.-H. (1998). Alternative nested logit models: Structure, properties and estimation, Transportation Research B 32(5): 289–298.

    Article  Google Scholar 

  • Liu, Y.-H. and Mahmassani, H. (1998). Dynamic aspects of departure time and route decision behavior under ATIS: modeling framework and experimental results, presented at the 77th annual meeting of the Transportation Research Board, Washington DC.

    Google Scholar 

  • Luce, R. (1959). Individual choice behavior: a theoretical analysis, J. Wiley and Sons, New York.

    Google Scholar 

  • Manski, C. (1977). The structure of random utility models, Theory and Decision 8: 229–254.

    Article  MATH  MathSciNet  Google Scholar 

  • McFadden, D. (1978). Modelling the choice of residential location, in A. Karlquist et al. (ed.), Spatial interaction theory and residential location, North-Holland, Amsterdam, pp. 75–96.

    Google Scholar 

  • McFadden, D. (1989). A method of simulated moments for estimation of discrete response models without numerical integration, Econometrica 57(5): 995–1026.

    MATH  MathSciNet  Google Scholar 

  • McFadden, D. and Train, K. (2000). Mixed multinomial logit models for discrete response, Journal of Applied Econometrics, Vol. 15,No. 5, pp. 447–470.

    Article  Google Scholar 

  • Morokoff, W.J. and Caflish R.E. (1995) Quasi-Monte Carlo integration. Journal of Computational Physics 122.

    Google Scholar 

  • Nguyen, S. and Pallottino, S. (1987). Traffic assignment for large scale transit networks, in A. Odoni (ed.), Flow control of congested networks, Springer Verlag.

    Google Scholar 

  • Nguyen, S., Pallottino, S. and Gendreau, M. (1998). Implicit enumeration of hyperpaths in a logit model for transit networks, Transportation Science 32(1).

    Google Scholar 

  • Panier, E. and Tits, A. L. (1993). On combining feasibility, descent and superlinear convergence in inequality constrained optimization, MP 59: 261–276.

    MathSciNet  Google Scholar 

  • Papola, A. (2000). Some development of the cross-nested logit model, Proceedings of the 9th IATBR Conference.

    Google Scholar 

  • Ramming, M. S. (2001). Network Knowledge and Route Choice, PhD thesis, Massachusetts Institute of Technology.

    Google Scholar 

  • Severini, T.A. (2000) Likelihood methods in statistics, Oxford statistical science series, Oxford University Press.

    Google Scholar 

  • Small, K. (1982). The scheduling of consumer activities: work trips, The American Economic Review pp. 467–479.

    Google Scholar 

  • Small, K. (1987). A discrete choice model for ordered alternatives, Econometrica 55(2): 409–424.

    MATH  MathSciNet  Google Scholar 

  • Spanier, J. and Maize, H. (1994). Quasi-random methods for estimating integrals using relatively small samples, SIREV 36(1): 18–44.

    MathSciNet  Google Scholar 

  • Sprott D. A. (2000) Statistical inference in science, Springer series in statistics, Springer, New York.

    Google Scholar 

  • Swait, J. (2001). Choice set generation within the generalized extreme value family of discrete choice models, TRB 35(7): 643–666.

    Google Scholar 

  • Swait, J. and Ben-Akiva, M. (1987). Incorporating random constraints in discrete models of choice set generation, TRB 21(2).

    Google Scholar 

  • Tversky, A. (1972). Elimination by aspects: a theory of choice, Psychological Review 79: 281–299.

    Google Scholar 

  • Vovsha, P. (1997). Cross-nested logit model: an application to mode choice in the Tel-Aviv metropolitan area, Transportation Research Board, 76th Annual Meeting, Washington DC. Paper #970387.

    Google Scholar 

  • Vovsha, P. and Bekhor, S. (1998). The link-nested logit model of route choice: overcoming the route overlapping problem, Transportation Research Record 1645: 133–142.

    Google Scholar 

  • Walker, J. L. (2001). Extended discrete choice models: integrated framework, flexible error structures, and latent variables, PhD thesis, Massachusetts Institute of Technology.

    Google Scholar 

  • Wen, C.-H. and Koppelman, F. S. (2001). The generalized nested logit model, Transportation Research B 35(7): 627–641.

    Article  Google Scholar 

  • Yai T., Iwakura, S. and Morichi S. (1997). Multinomial Probit with Structured Covariance for Route Choice Behavior. Transportation Research B. 31(3) 195–207.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Kluwer Academic Publishers

About this chapter

Cite this chapter

Ben-Akiva, M., Bierlaire, M. (2003). Discrete Choice Models with Applications to Departure Time and Route Choice. In: Hall, R.W. (eds) Handbook of Transportation Science. International Series in Operations Research & Management Science, vol 56. Springer, Boston, MA. https://doi.org/10.1007/0-306-48058-1_2

Download citation

  • DOI: https://doi.org/10.1007/0-306-48058-1_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4020-7246-8

  • Online ISBN: 978-0-306-48058-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics