Skip to main content

Long-Haul Freight Transportation

  • Chapter
Handbook of Transportation Science

Part of the book series: International Series in Operations Research & Management Science ((ISOR,volume 56))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abrache, J., Crainic, T.G., and Gendreau, M. (2001). Design Issues for Multi-object Combinatorial Auctions, In Proceedings of The Fourth International Conference on Electronic Commerce Research (ICECR-4), volume 2, pages 412–423. Cox School of Business, Southern Methodist University, Dallas TX.

    Google Scholar 

  • Ahuja, R.K. (1997). Flows and Paths. In Dell’Amico, M., Maffioli, F., and Martello, S., editors, Annotated Bibliographies in Combinatorial Optimization, pages 283–309. John Wiley & Sons, New York, NY.

    Google Scholar 

  • Ahuja, R.K., Magnanti, T.L., Orlin, J.B., and Reddy, M.R. (1995). Applications of Networks Optimization. In Ball, M., Magnanti, T.L., Monma, C.L., and Nemhauser, G.L., editors, Network Models, volume 7 of Handbooks in Operations Research and Management Science, pages 1–83. North-Holland, Amsterdam.

    Google Scholar 

  • Armacost, A.P., Barnhart, C., and Ware, K.A. (2002). Composite Variable Formulations for Express Shipment Service Network Design. Transportation Science, 36(1).

    Google Scholar 

  • Assad, A.A. (1980). Models for Rail Transportation. Transportation Research A: Policy and Practice, 14A:205–220.

    Google Scholar 

  • Baker, L. (1977). Overview of Computer Based Models Applicable to Freight Car Utilization. Report prepared for U.S. Department of Transportation, NTIS, Sprinfield VA, U.S.A.

    Google Scholar 

  • Balakrishnan, A., Magnanti, T.L., and Mirchandani, P. (1997). Network Design. In Dell’Amico, M., Maffioli, F., and Martello, S., editors, Annotated Bibliographies in Combinatorial Optimization, pages 311–334. John Wiley & Sons, New York, NY.

    Google Scholar 

  • Balakrishnan, A., Magnanti, T.L., and Wong, R.T. (1989). A Dual-Ascent Procedure for Large-Scale Uncapacitated Network Design. Operations Research, 37(5):716–740.

    MathSciNet  Google Scholar 

  • Ball, M., Magnanti, T.L., Monma, C.L., and Nemhauser, G.L., editors (1995). Network Routing, volume 8 of Handbooks in Operations Research and Management Science. North-Holland, Amsterdam.

    Google Scholar 

  • Barnhart, C., Hane, C.A., and Vance, P.H. (2000a). Using Branch-and-Price-and-Cut to Solve Origin-Destination Integer Multicommodity Flow Problems. Operations Research, 48(2):318–326.

    Article  Google Scholar 

  • Barnhart, C., Jin, H., and Vance, P.H. (2000b). Railroad Blocking: A Network Design Application. Operations Research, 48(4):603–614.

    Article  Google Scholar 

  • Barnhart, C., Johnson, E.L., Nemhauser, G.L., Savelsbergh, M.W.F., and Vance, P.H. (1998). Branch-and-Price: Column Generation for Solving Huge Integer Programs. Operations Research, 46(3):316–329.

    MathSciNet  Google Scholar 

  • Barnhart, C. and Schneur, R.R. (1996). Network Design for Express Freight Service. Operations Research, 44(6):852–863.

    Google Scholar 

  • Barnhart, C. and Talluri, K. (1997). Airlines Operations Research. In A.E. McGarity and C. ReVelle, editors, Civil and Environmental Engineering Systems: An Advanced Applications Text. John Wiley, New York.

    Google Scholar 

  • Beaujon, G.J. and Turnquist, M.A. (1991). A Model for Fleet Sizing and Vehicle Allocation. Transportation Science, 25(1):19–45.

    MathSciNet  Google Scholar 

  • Berger, D., Gendron, B., Potvin, J.-Y, Raghavan, S., and Soriano, P. (2000). Tabu Search for a Network Loading Problem with Multiple Facilities. Journal of Heuristics, 6(2):253–267.

    Article  Google Scholar 

  • Bostel, N. and Dejax, P. (1998). Models and Algorithms for Container Allocation Problems on Trains in a Rapid Transshipment Shunting Yard. Transportation Science, 32(4):370–379.

    Google Scholar 

  • Braklow, J.W., Graham, W.W., Hassler, S.M., Peck, K.E., and Powell, W.B. (1992). Interactive Optimization Improves Service and Performance for Yellow Freight System. Interfaces, 22(1):147–172.

    Google Scholar 

  • Buedenbender, K., Grünert, T., and Sebastian, H.-J. (2000). A Hybrid Tabu Search/Branch and Bound Algorithm for the Direct Flight Network Design Problem. Transportation Science, 34(4):364–380.

    Google Scholar 

  • Camerini, P.M., Fratta, L., and Maffioli, F. (1978). On Improving Relaxation Methods by Modified Gradient Techniques. Mathematical Programming Study, 3:26–34.

    MathSciNet  Google Scholar 

  • Carvalho, T.A. (1996). A New Approach to Solving Dynamic Resource Allocation Problems. PhD thesis, Department of Civil Engineering and Operations Research, Princeton University, Princeton, NJ, U.S.A.

    Google Scholar 

  • Carvalho, T.A. and Powell, W.B. (2000). A Multiplier Adjustment Method for Dynamic Resource Allocation Problems. Transportation Science, 34(2):150–164.

    Article  Google Scholar 

  • Cascetta, E. (2001). Transportation Systems Engineering: Theory and Methods. Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Google Scholar 

  • Chang, T.S., Crainic, T.G., and Gendreau, M. (2001). Designing Advisors for Fleet Management and E-Auctions. Technical report, Centre de recherche sur les transports, Université de Montréal, Canada.

    Google Scholar 

  • Chen, B. and Harker, P.T. (1990). Two Moments Estimation of the Delay on a Single-Track Rail Line withScheduledTraffic. Transportation Science, 24(4):261–275.

    MathSciNet  Google Scholar 

  • Chen, Z.-L. and Powell, W.B. (1999). A Convergent Cutting-planne and Partial-sampling Algorithm for Multistage Linear Programs with Recourse. Journal of Optimization Theory and Applications, 103(3):497–524.

    MathSciNet  Google Scholar 

  • Cheung, R.K. and Chen, C.-Y. (1998). A Two-Stage Stochastic Network Model and Solution Methods for the Dynamic Empty Container Allocation Problem. Transportation Science, 32(2): 142–162.

    Google Scholar 

  • Cheung, R.K.-M. and Powell, W.B. (1996a). An Algorithm for Multistage Dynamic Networks with Random Arc Capacities, with an Application to Dynamic Fleet Management. Operations Research, 44(6):951–963.

    MathSciNet  Google Scholar 

  • Cheung, R.K.-M. and Powell, W.B. (1996b). Models and Algorithms for Distribution Problems with Uncertain Demands. Transportation Science, 30(1):43–59.

    Google Scholar 

  • Chih, K. C.-K. (1986). A RealTime Dynamic Optimal Freight CarManagement Simulation Model of the Multiple Railroad, Multicommodity, Temporal Spatial Network Flow Problem. PhD thesis, Princeton University, Princeton, NJ, U.S.A.

    Google Scholar 

  • Chouman, M., Crainic, T.G., and Gendron, B. (2001). Revue des inégalités valides pertinentes aux problèmes de conception de réseaux. Publication CRT-2001-38, Centre de recherche sur les transports, Université de Montréal, Montréal, QC, Canada.

    Google Scholar 

  • Chouman, M., Crainic, T.G., and Gendron, B. (2002). Valid Inequalities for Multicommodity Caparitated Fixed Charge Network Design. Technical report, Centre de recherche sur les transports, Université de Montréal, Montréal, QC, Canada.

    Google Scholar 

  • Cordeau, J.-F, Toth, P., and Vigo, D. (1998). A Survey of Optimization Models for Train Routing and Scheduling. Transportation Science, 32(4):380–404.

    Google Scholar 

  • Crainic, T.G. (1982). Un modèle de plannification tactique pour le transport ferroviaire des marchandises, PhD thesis, Université de Montréal, Montréal, QC, Canada.

    Google Scholar 

  • Crainic, T.G. (1984). A Comparison of Two Methods for Tactical Planning in Rail Freight Transportation. In J.P. Brans, editor, Operational Research’ 84, pages 707–720. North-Holland, Amsterdam.

    Google Scholar 

  • Crainic, T.G. (1988). Rail Tactical Planning: Issues, Models and Tools. In Bianco, L. and Bella, A.L., editors, Freight Transport Planning and Logistics, pages 463–509. Springer-Verlag, Berlin.

    Google Scholar 

  • Crainic, T.G. (2002). Parallel Computation, Co-operation, Tabu Search. In Rego, C. and Alidaee, B., editors, Adaptive Memory and Evolution: Tabu Search and Scatter Search. Kluwer Academic Publishers, Norwell, MA.

    Google Scholar 

  • Crainic, T.G., Dufour, G., Florian, M., and Larin, D. (1999). Path Analysis in STAN. In C. Zopounidis and D. Despotis, editors, Proceedings 5th International Conference of the Decision Sciences Institute, pages 2060–2064. New Technologies Publications, Athens, Greece

    Google Scholar 

  • Crainic, T.G., Dufour, G., Florian, M., and Larin, D. (2002). Path Recovery/Reconstruction and Applications in Nonlinear Multimodal Multicommodity Networks. In Gendreau, M. and Marcotte, P., editors, Transportation and Network Analysis — Current Trends. Kluwer Academic Publishers, Norwell MA.

    Google Scholar 

  • Crainic, T.G., Ferland, J.-A., and Rousseau, J.-M. (1984). A Tactical Planning Model for Rail Freight Transportation. Transportation Science, 18(2): 165–184.

    Google Scholar 

  • Crainic, T.G., Florian, M., Guélat, J., and Spiess, H. (1990a). Strategic Planning of Freight Transportation: STAN, An Interactive-Graphic System. Transportation Research Record, 1283:97–124.

    Google Scholar 

  • Crainic, T.G., Florian, M., and Larin, D. (1994). STAN: New Developments. In A1 S. Khade and R. Brown, editors, Proceedings of the 23rd Annual Meeting of the Western Decision Sciences Institute, pages 493–498. School of Business Administration, California State University, Stanislaus CA.

    Google Scholar 

  • Crainic, T.G., Florian, M., and Léal, J.-E. (1990b). A Model for the Strategic Planning of National Freight Transportation by Rail. Transportation Science, 24(1): 1–24.

    Google Scholar 

  • Crainic, T.G., Frangioni, A., and Gendron, B. (2001). Bundle-Based Relaxation Methods for Multicommodity Capacitated Network Design. Discrete Applied Mathematics, 112:73–99.

    Article  MathSciNet  Google Scholar 

  • Crainic, T.G. and Gendreau, M. (1986). Approximate Formulas for the Computation of Connection Delays under Capacity Restrictions in Rail Freight Transportation, In Research for Tomorrow’s Transport Requirements, volume 2, pages 1142–1155. Fourth World Conference on Transport Research, Vancouver, Canada.

    Google Scholar 

  • Crainic, T.G. and Gendreau, M. (2002a). Cooperative Parallel Tabu Search for Capacitated Network Design. Journal of Heuristics.

    Google Scholar 

  • Crainic, T.G. and Gendreau, M. (2002b). Freight Exchanges and Carrier Operations: Issues, Models, and Tools. Technical report, Centre de recherche sur les transports, Université de Montréal, Montréal, QC, Canada

    Google Scholar 

  • Crainic, T.G., Gendreau, M., and Dejax, P.J. (1993). Dynamic Stochastic Models for the Allocation of Empty Containers. Operations Research, 43:102–302.

    Google Scholar 

  • Crainic, T.G., Gendreau, M., and Farvolden, J.M. (2000). A Simplex-Based Tabu Search Method for Capacitated Network Design. INFORMS Journal on Computing, 12(3):223–236.

    Article  MathSciNet  Google Scholar 

  • Crainic, T.G. and Laporte, G. (1997). Planning Models for Freight Transportation. European Journal of Operational Research, 97(3):409–438.

    Article  Google Scholar 

  • Crainic, T.G. and Nicolle, M.-C. (1986). Planification tactique du transport ferroviaire des marchandises: quelques aspects de modélisation. In Actes du Premier Congrès International en France de Génie Industriel, pages 161–174. CEFI-AFCET-GGI, Paris. Tome 1.

    Google Scholar 

  • Crainic, T.G. and Rousseau, J.-M. (1986). Multicommodity, Multimode Freight Transportation: A General Modeling and Algorithmic Framework for the Service Network Design Problem. Transportation Research B: Methodology, 208:225–242.

    Google Scholar 

  • Crainic, T.G. and Roy, J. (1988). O.R. Tools for Tactical Freight Transportation Planning. European Journal of Operational Research, 33(3):290–297.

    Article  Google Scholar 

  • Crainic, T.G. and Roy, J. (1990). Une approche de recouvrement d’ensembles pour l’établissement d’horaires des chauffeurs dans le transport routier de charges partielles. R.A.I.R.O. — Recherch opérationnelle, 24(2): 123–158.

    Google Scholar 

  • Crainic, T.G. and Roy, J. (1992). Design of Regular Intercity Driver Routes for the LTL Motor Carrier Industry. Transportation Science, 26(4):280–295.

    Google Scholar 

  • Crainic, T.G. and Toulouse, M. (2002). Parallel Strategies for Meta-heuristics. In F. Glover and G. Kochenberger, editors, State-of-the-Art Handbook in Metaheuristics. Kluwer Academic Publishers, Norwell, MA.

    Google Scholar 

  • Crowder, H. (1976). Computational Improvements for Subgradient Optimization. In Symposia Mathematica, volume XIX. Academic Press, London.

    Google Scholar 

  • Daganzo, C.F. (1987a). Dynamic Blocking for Railyards: Part I. Homogeneous Traffic. Transportation Research B: Methodological, 21B(1):1–27.

    Google Scholar 

  • Daganzo, C.F. (1987b). Dynamic Blocking for Railyards: Part II. Heterogeneous Traffic. Transportation Research B: Methodological, 21B(1):29–40.

    Google Scholar 

  • Daskin, M.S. (1995). Network and Discrete Location. Models, Algorithms, and Applications. John Wiley & Sons, New York, NY.

    Google Scholar 

  • Daskin, M.S. and Walton, C.M. (1983). An Approximate Analytic Model of Supertanker Lightering Operations. Transportation Research B: Methodological, 17B(3):201–219.

    Google Scholar 

  • Dejax, P.J. and Crainic, T.G. (1987). A Review of Empty Flows and Fleet Management Models in Freight Transportation. Transportation Science, 21(4):227–247.

    Google Scholar 

  • Delorme, L., Roy, J., and Rousseau, J.-M. (1988). Motor-Carrier Operation Planning Models: A State of the Art. In Bianco, L. and Bella, A.L,, editors, Freight Transport Planning andLogistics, pages 510–545. Springer-Verlag, Berlin.

    Google Scholar 

  • Desaulniers, G., Desrosiers, J., Gamache, M., and Soumis, F. (1998a). Crew Scheduling in Air Transportation. In T.G. Crainic and G. Laporte, editors, Fleet Management and Logistics, pages 169–185. Kluwer Academic Publishers, Norwell, MA.

    Google Scholar 

  • Desaulniers, G., Desrosiers, J., Ioachim, I., Solomon, M.M., Soumis, F., and Villeneuve, D. (1998b). A Unified Framework for Deterministic Time Constrained Vehicle Routing and Crew Scheduling Problems. In T.G. Crainic and G. Laporte, editors, Fleet Management and Logistics, pages 57–93. Kluwer Academic Publishers, Norwell, MA.

    Google Scholar 

  • Desrosiers, J., Dumas, Y., Solomon, M.M., and Soumis, F. (1995). Time Constrained Routing and Scheduling. In Ball, M., Magnanti, T.L., Monma, C.L., and Nemhauser, G.L., editors, Network Routing, volume 8 of Handbooks in Operations Research and Management Science, pages 35–139. North-Holland, Amsterdam.

    Google Scholar 

  • Drezner, Z., editor (1995). Facility Location. A Survey of Applications and Methods. Springer-Verlag, New York, NY.

    Google Scholar 

  • Dror, M., editor (2000). Arc Routing: Theory, Solutions and Applications. Kluwer Academic Publishers, Norwell, MA.

    Google Scholar 

  • Epstein, R. (1998). Linear Programming and Capacitated Network Loading. PhD thesis, Sloan School of Management, Massachusetts Institute of Technology.

    Google Scholar 

  • Equi, L., Gallo, G., Marziale, S., and Weintraub, A. (1997). A Combined Transportation and Scheduling Problem. European Journal of Operational Research, 97(1):94–104.

    Article  Google Scholar 

  • Farvolden, J.M. and Powell, W.B. (1991). A Dynamic Network Model forLess-Than-Truckload Motor Carrier Operations. Working Paper 90-05, Department of Industrial Engineering, University of Toronto, Toronto, ON, Canada.

    Google Scholar 

  • Farvolden, J.M. and Powell, W.B. (1994). Subgradient Methods for the Service Network Design Problem. Transportation Science, 28(3):256–272

    MathSciNet  Google Scholar 

  • Farvolden, J.M., Powell, W.B., and Lustig, I.J. (1992). A Primal Partitioning Solution for the Arc-Chain Formulation of a Multicommodity Network Flow Problem. Operations Research, 41(4):669–694.

    Google Scholar 

  • Florian, M. and Hearn, D. (1995). Networks Equilibrium Models and Algorithms. In Ball, M., Magnanti, T.L., Monma, C.L., and Nemhauser, G.L., editors, Network Routing, volume 8 of Handbooks in Operations Research and Management Science, pages 485–550. North-Holland, Amsterdam.

    Google Scholar 

  • Franck, M. and Wolfe, P. (1956). An Algorithm for Quadratic Programming. Naval Research Logistics Quaterly, 3:95–110.

    Google Scholar 

  • Frantzeskakis, L. (1990). Dynamic Networks with Random Arc Capacities, with Application to the Stochastic Dynamic Vehicle Allocation Problem. PhD thesis, Department of Civil Engineering and Operation Research, Princeton University, Princeton, NJ, U.S.A.

    Google Scholar 

  • Frantzeskakis, L. and Powell, W.B. (1990). A Successive Linear Approximation Procedure for Stochastic Dynamic Vehicle Allocation Problems. Transportation Science, 24(1):40–57.

    MathSciNet  Google Scholar 

  • Friesz, T.L., Gottfried, J.A., and Morlok, E.K. (1986). A Sequential Shipper-Carrier Network Model for Predicting Freight Flows. Transportation Science, 20:80–91.

    Google Scholar 

  • Friesz, T.L., Tobin, R.L., and Harker, P.T. (1983). Predictive Intercity Freight Network Models. Transportation Research A: Policy and Practice, 17A:409–417.

    Google Scholar 

  • Friesz, T.L. and Harker, P.T. (1985). Freight Network Equilibrium: A Review of the State of the Art. In A.F. Daughety, editor, Analytical Studies in Transport Economics, chapter 7. Cambridge University Press, Cambridge.

    Google Scholar 

  • Gendreau, M., Badeau, P., Guertin, F., Potvin, J.-Y, and Taillard, É.D. (1996). A Solution Procedure for Real-Time Routing and Dispatching of Commercial Vehicles. In Third Annual World Congress on Intelligent Transportation Systems. distributed on CD.

    Google Scholar 

  • Gendreau, M., Guertin, F., Potvin, J.-Y, and Séguin, R. (1998). Neighborhood Search Heuristics for a Dynamic Vehicle Dispatching Problem with Pick-Ups and Deliveries. Publication CRT-98-10, Centre de recherche sur les transports, Université de Montréal.

    Google Scholar 

  • Gendreau, M., Guertin, F., Potvin, J.-Y, and Taillard, É.D. (1999). Tabu Search for Real-Time Vehicle Routing and Dispatching. Transportation Science, 33(4):381–390.

    Google Scholar 

  • Gendreau, M. and Potvin, J.-Y. (1998). Dynamic Vehicle Routing and Dispatching. In T.G. Crainic and G. Laporte, editors, Fleet Management and Logistics, pages 115–126. Kluwer Academic Publishers, Norwell, MA.

    Google Scholar 

  • Gendron, B. and Crainic, T.G. (1994). Relaxations for Multicommodity Network Design Problems. Publication CRT-965, Centre de recherche sur les transports, Université de Montréal, Montréal, QC, Canada.

    Google Scholar 

  • Gendron, B. and Crainic, T.G. (1994a). Parallel Branch-and-Bound Algorithms: Survey and Synthesis. Operations Research, 42(6):1042–1066.

    MathSciNet  Google Scholar 

  • Gendron, B. and Crainic, T.G. (1994b). Parallel Implementations of Bounding Procedures for Multicommodity Capacitated Network Design Problems. Publication CRT-94-45, Centre de recherche sur les transports, Université de Montréal, Montréal, QC, Canada.

    Google Scholar 

  • Gendron, B. and Crainic, T.G. (1996). Bounding Procedures for Multicommodity Capacitated Network Design Problems. Publication CRT-96-06, Centre de recherche sur les transports, Université de Montréal, Montréal, QC, Canada.

    Google Scholar 

  • Gendron, B., Crainic, T.G., and Frangioni, A. (1998). Multicommodity Capacitated Network Design. In Sansó, B. and Soriano, P., editors, TelecommunicationsNetworkPlanning, pages 1–19. Kluwer Academic Publishers, Norwell, MA.

    Google Scholar 

  • Geoffrion, A.M. (1974). Lagrangean Relaxation for Integer Programming. MathematicalProgramming Study, 2:82–114.

    MATH  MathSciNet  Google Scholar 

  • Ghamlouche, I., Crainic, T.G., and Gendreau, M. (2002a). Cycle-based Neighbourhoods for Fixed-Charge Capacitated Multicommodity Network Design. Operations Research.

    Google Scholar 

  • Ghamlouche, I., Crainic, T.G., and Gendreau, M. (2002b). Path Relinking, Cycle-based Neighbourhoods and Capacitated Multicommodity Network Design. Annals of Operations Research.

    Google Scholar 

  • Glover, F. and Laguna, M. (1993). Tabu search. In Reeves, C., editor, Modern Heuristic Techniques for Combinatorial Problems, pages 70–150. Blackwell Scientific Publications, Oxford.

    Google Scholar 

  • Glover, F. and Laguna, M. (1997). Tabu Search. Kluwer Academic Publishers, Norwell, MA.

    Google Scholar 

  • Godfrey, G. A. and Powell, W.B. (2002a). An Adaptive Dynamic Programming Algorithm for Dynamic Fleet Management I: Single Period Travel Times. Transportation Science, 36(1).

    Google Scholar 

  • Godfrey, G. A. and Powell, W.B. (2002b). An Adaptive Dynamic Programming Algorithm for Dynamic Fleet Management II: Multiperiod Travel Times. Transportation Science, 36(1).

    Google Scholar 

  • Goldberg, D.E. (1989). Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley, Reading, MA.

    Google Scholar 

  • Golden, B.L. and Assad, A. A., editors (1988). Vehicle Routing: Methods and Studies. North-Holland, Amsterdam.

    Google Scholar 

  • Gorman, M.F. (1998a). An Application of Genetic and Tabu Searches to the Freight Railroad Operating Plan Problem. Annals of Operations Research, 78:51–69.

    MATH  Google Scholar 

  • Gorman, M.F. (1998b). Santa Fe Railway Uses an Operating-Plan Model to Improve Its Service Design. Interfaces, 28(4): 1–12.

    MathSciNet  Google Scholar 

  • Grötschel, M., Monma, C.L., and Stoer, M. (1995). Design of Survivable Networks. In Ball, M., Magnanti, T.L., Monma, C.L., and Nemhauser, G.L., editors, Network Models, volume 7 of Handbooks in Operations Research and Management Science, pages 617–672. North-Holland, Amsterdam.

    Google Scholar 

  • Grünert, T. and Sebastian, H.-J. (2000). Planning Models for Long-haul Operations of Postal and Express Shipment Companies. European Journal of Operational Research, 122:289–309.

    Article  Google Scholar 

  • Grünert, T., Sebastian, H.-J., and Thäerigen, M. (1999). The Design of a Letter-Mail Transportation Network by Intelligent Techniques. In Sprague, R., editor, Proceedings Hawaii International Conference on System Sciences 32.

    Google Scholar 

  • Guélat, J., Florian, M., and Crainic, T.G. (1990). A Multimode Multiproduct Network Assignment Model for Strategic Planning of Freight Flows. Transportation Science, 24(1):25–39.

    Google Scholar 

  • Haghani, A.E. (1989). Formulation and Solution of Combined Train Routing and Makeup, and Empty Car Distribution Model. Transportation Research B: Methodological, 23B(6):433–431.

    Google Scholar 

  • Hallowell, S.F. and Harker, P.T. (1996). Predicting On-Time Line-Haul performance in Scheduled Railroad Operations. Transportation Science, 30(4):364–378.

    Google Scholar 

  • Harker, P.T. (1987). Predicting Intercity Freight Flows. VNU Science Press, Utrech, The Netherlands.

    Google Scholar 

  • Harker, P.T. (1988). Issues and Models for Planning and Regulating Freight Transportation Systems. In Bianco, L. and Bella, A. L., editors, Freight Transport Planning and Logistics, pages 374–408. Springer-Verlag, Berlin.

    Google Scholar 

  • Harker, P.T. and Friesz, XL. (1986a). Prediction of Intercity Freight Flows I: Theory. Transportation Research B: Methodological, 20B(2): 139–153.

    MathSciNet  Google Scholar 

  • Harker, P.T. and Friesz, T.L. (1986b). Prediction of Intercity Freight Flows II: Mathematical Formulations. Transportation Research B: Methodological, 20B(2):155–174.

    MathSciNet  Google Scholar 

  • Harker, P.T. and Hong, S. (1990). Two Moments Estimation of the Delay on a Partially Double-Track Rail Line with Scheduled Traffic. Journal of the Transportation Research Forum, 31(1):38–49.

    Google Scholar 

  • Herren, H. (1973). The Distribution of Empty Wagons by Means of Computer. An Analytical Model for the Swiss Federal Railways (SSB). Rail International, 4(1): 1005–1010.

    Google Scholar 

  • Herren, H. (1977). Computer Controlled Empty Wagon Distribution on the SSB. Rail International, 8(1):25–32.

    Google Scholar 

  • Higgins, A., Ferreira, L., and Kozan, E. (1995). Modeling Single-Line Train Operations. Transportation Research Record, 1489:9–16.

    Google Scholar 

  • Higgins, A., Ferreira, L., and Kozan, E. (1997a). Heuristic Techniques for Single Line Train Scheduling. Journal of Heuristics, 3(1):43–63.

    Article  Google Scholar 

  • Higgins, A., Kozan, E., and Ferreira, L. (1996). Optimal Scheduling of Trains on a Single Line Track. Transportation ResearchB: Methodological, 30B: 147–161.

    Google Scholar 

  • Higgins, A., Kozan, E., and Ferreira, L. (1997b). Modelling the Number and Location of Sidings on a Single Line Track Railway. Computers & Operations Research, 3:209–220.

    Google Scholar 

  • Hiriart-Urruty, J.B. and Lemaréchal, C. (1993). Convex Analysis and Minimization Algorithms II. Springer-Verlag, Berlin.

    Google Scholar 

  • Hoffman, K.L. and Padberg, M. (1993). Solving Airline Crew-Scheduling Problems by Branch-and-Cut. Management Science, 39:657–682.

    Google Scholar 

  • Holmberg, K., Joborn, M., and Lundgren, J.T. (1998). Improved Empty Freight Car Distribution. Transportation Science, 32(2): 163–173.

    Google Scholar 

  • Holmberg, K. and Hellstrand, J. (1998). Solving the Uncapacitated Network Design Problem by a Lagrangian Heuristic and Branch-and-Bound. Operations Research, 46(2):247–259.

    MathSciNet  Google Scholar 

  • Holmberg, K. and Yuan, D. (1998). A Lagrangean Approach to Network Design Problems. Report LiTH-MAT-R-1998-01, Department of Mathematics, Linköping Institute of Technology.

    Google Scholar 

  • Holmberg, K. and Yuan, D. (2000). A Lagrangean Heuristic Based Branch-and-Bound Approach for the Capacitated Network Design Problem. Operations Research, 48(3):461–481.

    Article  MathSciNet  Google Scholar 

  • Hurley, W.J. and Petersen, E.R. (1994). Nonlinear Tariffs and Freight Network Equilibrium. Transportation Science, 28(3):236–245.

    Google Scholar 

  • Isard, W. (1951). Interregional and Regional Input-Output Analysis: A Model of a Space-Economy. The review of Economics and Statistics, 33:318–328.

    Google Scholar 

  • Joborn, M. (1995). Empty Freight Car Distribution at Swedish Railways — Analysis and Optimization Modeling. PhD thesis, Division of Optimization, Department of Mathematics, University of Linköping, Linköping, Sweden.

    Google Scholar 

  • Joborn, M., Crainic, T.G., Gendreau, M., Holmberg, K., and Lundgren, J.T. (2001). Economies of Scale in Empty Freight Car Distribution in Scheduled Railways. Publication CRT-2001-12, Centre de recherche sur les transports, Université de Montréal, Montréal, QC, Canada.

    Google Scholar 

  • Jordan, W.C. and Turnquist, M.A. (1983). A Stochastic Dynamic Network Model for Railroad Car Distribution. Transportation Science, 17:123–145.

    Google Scholar 

  • Jovanović, D. and Harker, P.T. (1991). Tactical Scheduling of Rail Operations: the SCAN I Decision Support System. Transportation Science, 25(1):46–64.

    Google Scholar 

  • Keaton, M.H. (1989). Designing Optimal Railroad Operating Plans: Lagrangian Relaxation and Heuristic Approaches. Transportation Research B: Methodological, 23B(6):415–431.

    Google Scholar 

  • Keaton, M.H. (1991). Service-Cost Tradeoffs for Carload Freight Traffic in the U.S. Rail Industry. Transportation Research A: Policy and Practice, 25A(6):363–374.

    Google Scholar 

  • Keaton, M.H. (1992). Designing Optimal Railroad Operating Plans: A Dual Adjustment Method for Implementing Lagrangian Relaxation. Transportation Science, 26:263–279.

    MATH  Google Scholar 

  • Kim, D. and Barnhart, C. (1997). Transportation Service Network Design: Models and Algorithms. Report, Center for Transportation Studies, Massachusetts Institute of Technology.

    Google Scholar 

  • Kim, D., Barnhart, C., Ware, K., and Reinhardt, G. (1999). Multimodal Express Package Delivery: A Service Network Design Application. Transportation Science, 33(4):391–407.

    Google Scholar 

  • Kraay, D., Harker, P.T., and Chen, B. (1991). Optimal Pacing of Trains in Freight Railroads: Model Formulation and Solution. Operations Research, 39(1): 82–99.

    Google Scholar 

  • Kuby, M.J. and Gray, R.G. (1993). The Hub Network Design Problem with Stopovers and Feeders: The Case of Federal Express. Transportation Research A: Policy and Practice, 27A(1):1–12.

    Google Scholar 

  • Laarhoven, P. and Aarts, E.H.L. (1987). Simulated Annealing: Theory and Applications. Reidel, Dordrecht.

    Google Scholar 

  • Labbé, M., Peeters, D., and Thisse, J.-F. (1995). Location on Networks. In Ball, M., Magnanti, T.L., Monma, C.L., and Nemhauser, G.L., editors, Network Routing, volume 8 of Handbooks in Operations Research and Management Science, pages 551–624. North-Holland, Amsterdam.

    Google Scholar 

  • Labbé, M. and Louveaux, F.V. (1997). Location Problems. In Dell’Amico, M., Maffioli, F., and Martello, S., editors, Annotated Bibliographies in Combinatorial Optimization, pages 261–281. John Wiley & Sons, New York, NY.

    Google Scholar 

  • Lamar, B.W., Sheffi, Y., and Powell, W.B. (1990). A Capacity Improvement Lower Bound for Fixed Charge Network Design Problems. Operations Research, 38(4):704–710.

    Google Scholar 

  • Larin, D., Crainic, T.G., Simonka, G., James-Lefebvre, L., Dufour, G., and Florian, M. (2000). STAN User’s Manual, Release 6. INRO Consultants, Inc., Montréal, QC, Canada.

    Google Scholar 

  • Leddon, C.D. and Wrathall, E. (1967). Scheduling Empty Freight Car Fleets on the Louisville and Nashville Railroad. In Second International Symposium on the Use of Cybernetics on the Railways, pages 1–6.

    Google Scholar 

  • Lemaréchal, C. (1989). Nondifferentiable Optimization. In Nemhauser, G.L., Rinnoy Kan, A.H.G., and Todd, M.J., editors, Optmization, volume 1 of Handbooks in Operations Research and Management Science, pages 529–572. North-Holland, Amsterdam.

    Google Scholar 

  • Magnanti, T.L., Mirchandani, P., and Vachani, R. (1993). The Convex Hull of Two Core Capacitated Network Design Problems. Mathematical Programming, 60:233–250.

    Article  MathSciNet  Google Scholar 

  • Magnanti, T.L., Mirchandani, P., and Vachani, R. (1995). Modeling and Solving the Two-Facility Capacitated Network Loading Problem. Operations Research, 43:142–157.

    MathSciNet  Google Scholar 

  • Magnanti, T.L. and Wong, R.T. (1986). Network Design and Transportation Planning: Models and Algorithms. Transportation Science, 18(1):1–55.

    Google Scholar 

  • Markowicz, B.P. and Turnquist, M.A. (1990). Applying the LP Solution to the Daily Distribution of Freight Cars. Technical report, Cornell University.

    Google Scholar 

  • McGaughey, K., Gohring, W., and McBrayer, R.N. (1973). Planning Locomotive and Caboose Distribution. Rail International, 3:151–158.

    Google Scholar 

  • Minoux, M. (1986). Network Synthesis and Optimum Network Design Problems: Models, Solution Methods and Applications. Networks, 19:313–360.

    MathSciNet  Google Scholar 

  • Mirchandani, P.S. and Francis, R.L., editors (1990). Discrete Location Theory. John Wiley & Sons, New York, NY.

    Google Scholar 

  • Misra, S. (1972). Linear Programming of Empty Wagon Disposition. Rail International, 3:151–158.

    Google Scholar 

  • Morlok, E.K. and Peterson, R.B. (1970). A Final Report on a Development of a Geographic Transportation Network Generation and Evaluation Model. In Proceedings of the Eleventh Annual Meeting, pages 99–103. Transportation Research Forum.

    Google Scholar 

  • Nagurney, A. (1993). Network Economics — A Variational Inequality Approach. Kluwer Academic Publishers, Norwell, MA.

    Google Scholar 

  • Nemhauser, G.L. and Wolsey, L.A. (1988). Integer and Combinatorial Optimization. Wiley, New York, NY.

    Google Scholar 

  • Newton, H.N. (1996). Network Design Under Budget Constraints with Application to the Railroad Blocking Problem. PhD thesis, Industrial and Systems Engineering, Auburn University, Auburn, Alabama, U.S.A.

    Google Scholar 

  • Newton, H.N., Barnhart, C., and Vance, P.H. (1998). Constructing Railroad Blocking Plans to Minimize Handling Costs. Transportation Science, 32(4):330–345.

    Google Scholar 

  • Nobert, Y. and Roy, J. (1998). Freight Handling Personnel Scheduling at Air Cargo Terminals. Transportation Science, 32(3):295–301.

    Google Scholar 

  • Pallottino, S. and Scutellà, M.G. (1998). Shortest path Algorithms in Transportation Models: Classical and Innovative Aspects. In Marcotte, P. and Nguyen, S., editors, Equilibrium and Advanced Transportation Modelling, pages 245–281. Kluwer Academic Publishers, Norwell, MA.

    Google Scholar 

  • Petersen, E.R. (1971a). Bulk Service Queues: With Applications to Train Assembly Times. Working Paper 71-2, CIGGT, Queen’s University, Kingston, Canada.

    Google Scholar 

  • Petersen, E.R. (1971b). Queues with Random Batch Size with Applications to Railroad Modeling. Working Paper 71–77, CIGGT, Queen’s University, Kingston, Canada.

    Google Scholar 

  • Petersen, E.R. (1974). Over-the-Road Transit Time for a Single Track Railway. Transportation Science, 8(1):65–74.

    Google Scholar 

  • Petersen, E.R. (1975a). A Primal-Dual Traffic Assignment Algorithm. Management Science, 22:87–95.

    MATH  MathSciNet  Google Scholar 

  • Petersen, E.R. (1975b). Interference Delays on a Partially Double-Tracked Railway with Intermediate Signalling. In Proceedings of the Sixteenth Annual Meeting. Transportation Research Forum.

    Google Scholar 

  • Petersen, E.R. (1977a). Capacity of a Single Track Rail Line. Working Paper 77-38, CIGGT, Queen’s University, Kingston, Canada.

    Google Scholar 

  • Petersen, E.R. (1977b). Railyard Modeling: Part I. Prediction of Put-through Time. Transportation Science, 11(1):37–49.

    Google Scholar 

  • Petersen, E.R. (1977c). Railyard Modeling: Part II. The Effect of Yard Facilities on Congestion. Transportation Science, 11(1):50–59.

    Google Scholar 

  • Petersen, E.R. (1984). Rail Analysis Interactive Language (RAIL): A Decision Support System. In Florian, M., editor, Transportation Planning Models, pages 363–380. North-Holland, Amsterdam.

    Google Scholar 

  • Petersen, E.R. and Fullerton, H.V., editors (1975). The Railcar Network Model. Working Paper 75-11, CIGGT, Queen’s University, Kingston, Canada.

    Google Scholar 

  • Petersen, E.R. and Taylor, A.J. (1993). A Structured Model for Rail Line Simulation and Optimization. Transportation Science, 16(2): 192–206.

    Google Scholar 

  • Powell, W.B. (1981). Stochastic Delays in Transportation Terminals: New Results in the Theory and Application of Bulk Queues. PhD thesis, Department of Civil Engineering, Massachusetts Institute of Technology, Cambridge, MA, U.S.A.

    Google Scholar 

  • Powell, W.B. (1986a). A Local Improvement Heuristic for the Design of Less-than-Truckload Motor Carrier Networks. Transportation Science, 20(4):246–357.

    Google Scholar 

  • Powell, W.B. (1986b). Analysis of Vehicle Holding and Cancellation Strategies in Bulk Arrival, Bulk Service Queues. Transportation Science, 19:352–377.

    Google Scholar 

  • Powell, W.B. (1986c). Approximate, Closed Form Moment Formulas for Bulk Arrival, Bulk Service Queues. Transportation Science, 20(1):13–23.

    MATH  MathSciNet  Google Scholar 

  • Powell, W.B. (1986d). Iterative Algorithms for Bulk Arrival, Bulk Service Queues with Poisson and non-Poisson Arrivals. Transportation Science, 20(2):65–79.

    MATH  MathSciNet  Google Scholar 

  • Powell, W.B. (1987). An Operational Planning Model for the Dynamic Vehicle Allocation Problem with Uncertain Demands. Transportation Research B: Methodological, 21B:217–232.

    Google Scholar 

  • Powell, W.B. (1988). A Comparative Review of Alternative Algorithms for the Dynamic Vehicle Allocation Problem. In B.L. Golden and A.A. Assad, editor, Vehicle Routing: Methods and Studies, pages 249–292. North-Holland, Amsterdam.

    Google Scholar 

  • Powell, W.B. (1996a). A Stochastic Formulation of the Dynamic Assignment Problem, with an Application to Truckload Motor Carriers. Transportation Science, 30(3): 195–219.

    MATH  Google Scholar 

  • Powell, W.B. (1996b). Toward a Unified Modeling Framework for Real-Time Logistics Control. Military Journal of Operations Research, I(4):69–79.

    Google Scholar 

  • Powell; W.B. (1998). On Languages for Dynamic Resource Scheduling Problems. In T.G. Crainic and G. Laporte, editor, Fleet Management and Logistics, pages 127–157. Kluwer Academic Publishers, Norwell, MA.

    Google Scholar 

  • Powell, W.B. and Carvalho, T.A. (1998a). Dynamic Control of Logistics Queueing Networks for Large-Scale Fleet Management. Transportation Science, 32(2):90–109.

    Google Scholar 

  • Powell, W.B. and Carvalho, T.A. (1998b). Real-Time Optimization of Containers and Flatcars for Intermodal Operations. Transportation Science, 32(2): 110–126.

    Google Scholar 

  • Powell, W.B., Carvalho, T.A., Godfrey, G.A., and Simaõ, H.P. (1995a). Dynamic Fleet Management as a Logistics Queueing Network. Annals of Operations Research, 61:165–188.

    Article  Google Scholar 

  • Powell, W.B. and Cheung, R.K.-M. (1994a). A Network Recourse Decomposition Method for Dynamic Networks with Random Arc Capacities. Networks, 24:369–384.

    MathSciNet  Google Scholar 

  • Powell, W.B. and Cheung, R.K.-M. (1994b). Stochastic Programs over Trees with Random Arc Capacities. Networks, 24:161–175.

    MathSciNet  Google Scholar 

  • Powell, W.B. and Cheung, R.K.-M. (2000). SHAPE — A Stochastic Hybrid Approximation Procedure for Two-Stage Stochastic Programs. Operations Research, 48(1):73–79.

    MathSciNet  Google Scholar 

  • Powell, W.B. and Frantzeskakis, L. (1994). Restricted Recourse Strategies for Dynamic Networks with Random Arc Capacities. Transportation Science, 28(1):3–23.

    MathSciNet  Google Scholar 

  • Powell, W.B. and Humblet, P. (1986). Queue Length and Waiting Time Transforms for Bulk Arrival, Bulk Service Queues with a General Control Strategy. Operations Research, 34:267–275.

    MathSciNet  Google Scholar 

  • Powell, W.B., Jaillet, P., and Odoni, A. (1995b). Stochastic and Dynamic Networks and Routing. In ]Ball, M., Magnanti, T.L., Monma, C.L., and Nemhauser, G.L., editors, Network Routing, volume 8 of Handbooks in Operations Research and Management Science, pages 141–295. North-Holland, Amsterdam.

    Google Scholar 

  • Powell, W.B. and Koskosidis, Y.A. (1992). Shipment Routing Algorithms with Tree Constraints. Transportation Science, 26(3):230–245.

    Google Scholar 

  • Powell, W.B. and Shapiro, J.A. (2001). A Representational Paradigm for Stochastic, Dynamic Resource Transformation Problems. Annals of Operations Research.

    Google Scholar 

  • Powell, W.B. and Sheffi, Y. (1983). The Load-Planning Problem of Motor Carriers: Problem Description and a Proposed Solution Approach. Transportation Research A: Policy and Practice, 17(6):471–480.

    Google Scholar 

  • Powell, W.B. and Sheffi, Y. (1986). Interactive Optimization for Motor Carrier Load Planning. Journal of Business Logistics, 7(2):64–90.

    Google Scholar 

  • Powell, W.B. and Sheffi, Y. (1989). Design and Implementation of an Interactive Optimization System for the Network Design in the Motor Carrier Industry. Operations Research, 37(1): 12–29.

    Google Scholar 

  • Powell, W.B., Sheffi, Y., Nickerson, K.S., Butterbaugh, K., and Atherton, S. (1992). Maximizing Profits for North American Van Lines’ Truckload Division: A New Framework for Pricing and Operations. Interfaces, 18(1):21–41.

    Google Scholar 

  • Raghavan, S. and Magnanti, T.L. (1997). Network Connectivity, In Dell’Amico, M., Maffioli, F., and Martello, S., editors, Annotated Bibliographies in Combinatorial Optimization, pages 335–354. John Wiley & Sons, New York, NY.

    Google Scholar 

  • Regan, A.C. (1997). Real-Time Information for Improved Efficiency of Commercial Vehicle Operations. PhD thesis, University of Texas at Austin, Austin TX, U.S.A.

    Google Scholar 

  • Regan, A.C., Mahmassani, H.S., and Jaillet, P. (1995). Improving the Efficiency of Commercial Vehicle Operations Using Real-Time Information: Potential Uses and Assignment Strategies. Transportation Research Record, 1493:188–198.

    Google Scholar 

  • Regan, A.C., Mahmassani, H.S., and Jaillet, P. (1996a). Dynamic Decision Making for Commercial Vehicle Operations Using Real-Time Information. Transportation Research Record, 1537:91–97.

    Google Scholar 

  • Regan, A.C., Mahmassani, H.S., and Jaillet, P. (1996b). Dynamic Dispatching Strategies under Real-Time Information for Carrier Fleet Management. In Lesort, J.B., editor, Transportation and Traffic Theory, pages 737–756. Pergamon.

    Google Scholar 

  • Regan, A.C., Mahmassani, H.S., and Jaillet, P. (1998). Evaluation of Dynamic Fleet Management Systems: A Simulation Framework. Transportation Research Record, 1645:176–184.

    Google Scholar 

  • Roy, J. (1984). Un modèle de planification globale pour le transport routier des marchandises. PhD thesis, Ecole des Hautes Etudes Commerciales, Université de Montréal, Montréal, Canada.

    Google Scholar 

  • Roy, J. and Crainic, T.G. (1992). Improving Intercity Freight Routing with a Tactical Planning Model. Interfaces, 22(3):31–44.

    Google Scholar 

  • Roy, J. and Delorme, L. (1989). NETPLAN: A Network Optimization Model for Tactical Planning in the Less-than-Truckload Motor-Carrier Industry. INFOR, 27(1):22–35.

    Google Scholar 

  • Salkin, H.M. and Mathur, K. (1989). Foundations of Integer Programming. North-Holland, Amsterdam.

    Google Scholar 

  • Séguin, R., Potvin, J.YJ., Gendreau, M., Crainic, T.G., and Marcotte, P. (1997). Real-time Decision Problems: An Operational Research Perspective. Journal of the Operational Research Society, 48:162–174.

    Article  Google Scholar 

  • Shan, Y. (1985). A Dynamic Multicommodity Network Flow Model for Real-Time Optimal Rail Freight Car Management. PhD thesis, Princeton University, Princeton, NJ, U.S.A.

    Google Scholar 

  • Toth, P. and Vigo, D., editors (2002). The Vehicle Routing Problem, volume 9 of SIAM Monographs on Discrete Mathematics and Applications. SIAM.

    Google Scholar 

  • Turnquist, M.A. (1994). Economies of Scale and Network Optimization for Empty Car Distribution. Technical report, Cornell University.

    Google Scholar 

  • Turnquist, M.A. and Daskin, M.S. (1982). Queuing Models of Classification and Connection Delay in Railyards. Transportation Science, 16(2):207–230.

    Google Scholar 

  • Turnquist, M.A. and Markowicz, B.P. (1989). An Interactive Microcomputer-Based Planning Model for Railroad Car Distribution. Technical report, Cornell University.

    Google Scholar 

  • White, W. (1972). Dynamic Transshipment Networks: An Algorithm and its Application to the Distribution of Empty Containers. Networks, 2(3):211–236.

    MATH  Google Scholar 

  • White, W.W. (1968). A Program for Empty Freight Car Allocation. Technical Report 360D.29.002, IBM Contributed Program Library, IBM Corporation, Program Information Department, Hawthorne, N.Y.

    Google Scholar 

  • White, W.W. and Bomberault, A.M. (1969). A Network Algorithm for Empty Freight Car Allocation. IBM Systems Journal, 8(2):147–171.

    Google Scholar 

  • Winston, C. (1983). The Demand for Freight Transportation: Models and Applications. Transportation Research A: Policy and Practice, 17A:419–427.

    Google Scholar 

  • Yang, J., Jaillet, P., and Mahmassani, H.S. (2002). Study of a Real-Time Multi-Vehicle Truckload Pick-Up and Delivery Problem. Transportation Science, forthcoming.

    Google Scholar 

  • Yang, J., Mahmassani, H.S., and Jaillet, P. (1999). On-Line Algorithms for Truck Fleet Assignment and Scheduling under Real-Time Information. Transportation Research Record, 1667:107–113.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Kluwer Academic Publishers

About this chapter

Cite this chapter

Crainic, T.G. (2003). Long-Haul Freight Transportation. In: Hall, R.W. (eds) Handbook of Transportation Science. International Series in Operations Research & Management Science, vol 56. Springer, Boston, MA. https://doi.org/10.1007/0-306-48058-1_13

Download citation

  • DOI: https://doi.org/10.1007/0-306-48058-1_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4020-7246-8

  • Online ISBN: 978-0-306-48058-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics