Skip to main content
  • 1428 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahn S.-J., Im Y.-J., Chung G.-C., Seong K.-Y. Sensitivity of plasma membrane H+-ATPase of cucumber root system in response to low root temperature. Plant Cell Rep 2000; 19:831–835

    Article  CAS  Google Scholar 

  • Altabella T., Palazón J., Ibarz E., Pinol T., Serrano R. Effect of auxin concentration and growth phase on the plasma membrane H+-ATPase of tobacco calli. Plant Sci 1990; 70:209–214

    Article  CAS  Google Scholar 

  • Balke N. “Effects of Allelochemicals on Mineral Uptake and Associated Physiological Processes.” In The Chemistry of Allelopathy. Biochemical Interactions among Plants, A.C. Thompson, ed. Washington, D.C., 1985

    Google Scholar 

  • Baur M., Meyer A.J., Heumann H.-G., Lützelschwab M., Michalke W. Distribution of plasma membrane H+-ATPase and polar current patterns in leaves and stems of Elodea canadensis. Bot Acta 1996; 109:382–387

    CAS  Google Scholar 

  • Baziramakenga R., Leroux G.D., Simard R.R. Effects of benzoic acids on membrane permeability of soybean roots. J Chem Ecol 1995; 21:1271–1285

    Article  CAS  Google Scholar 

  • Bradford M.M. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976; 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Buchanan B.B., Gruissem W., Jones R.L. Biochemistry and Molecular Biology of Plants. Rockville, Maryland: American Society of Plant Physiologists, 2000.

    Google Scholar 

  • Calera M.R., Anaya A.L., Gavilanes-Ruiz M. Effect of phytotoxic resin glycoside on activity of H+-ATPase from plasma membrane. J Chem Ecol 1995; 21:289–297

    Article  CAS  Google Scholar 

  • Chifflet S., Torriglia A., Chiesa R., Tolosa S. A method for the determination of inorganic phosphate in the presence of labile organic phosphate and high concentration of protein: Application to lens ATPases. Anal Biochem 1988; 168:1–4

    Article  PubMed  CAS  Google Scholar 

  • Cruz Ortega R., Anaya A.L., Gavilanes-Ruiz M., Sánchez Nieto S., Jiménez Estrada M. Effect of diacetyl piquerol on H+-ATPase activity of microsomes from Ipomoea purpurea. J Chem Ecol 1990; 16:2253–2261

    Article  CAS  Google Scholar 

  • Einhellig F.A. “Mechanism and Modes of Action of Allelochemicals.” In The Science of Allelopathy. R.A. Putnam, Ch-Sh Tang, eds. New York, John Wiley and Sons, 1986

    Google Scholar 

  • Friebe A., Roth U., Kück P., Schnabl H., Schulz M. Effects of 2,4-dihydroxy-1,4-benzoxazin-3-ones on the activity of plasma membrane H+-ATPase. Phytochemistry 1997; 44:979–983

    Article  CAS  Google Scholar 

  • Hager A., Debus G., Edel H.G., Stransky H., Serrano R. Auxin conduces exocytosis and the rapid synthesis of a high turnover pool of plasma membrane H+-ATPase. Planta 1991; 185:527–537

    Article  CAS  Google Scholar 

  • Hanson J.B., Trewavas A.J. Regulation of plant cell growth: the changing perspective. New Phytol 1982; 90:1–18

    CAS  Google Scholar 

  • Hodges T.K. “ATPases Associated with Membranes of Plant Cells.” In Encyclopedia of Plant Physiology. U. Luttge, M.G. Pitnam, eds. Berlin: Springer-Verlag, 1976

    Google Scholar 

  • Hodges T.K., Leonard R.T., Bracker C.E., Keenan T.W. Purification of an ion-stimulated ATPase from plant roots: association with plasma membranes. Proc Natl Acad Sci USA 1972; 69:3307–3311

    CAS  Google Scholar 

  • Jahn T., Baluska F., Michalke W., Harper J.F., Volkmann D. Plasma membrane H+-ATPase in the root apex: Evidence for strong expression in xylem parenchyma and asymmetric localization within cortical and epidermal cells. Physiol Plantarum 1998; 104:311–316

    CAS  Google Scholar 

  • Lanzetta P.A., Alvarez L.J., Reinach P.S., Candia O.A. An improved assay for nanomole amounts of inorganic phosphate. Anal Biochem 1979; 100:95–97

    Article  PubMed  CAS  Google Scholar 

  • Marré E. “Integration of Solute Transport in Cereals.” In Recent Advances in the Biochemistry of Cereals. D.L. Laidman, R.G. Wyn Jones, eds. New York: Academic Press, 1979

    Google Scholar 

  • Marré E., Ballarin-Denti A. The proton pumps of the plasmalemma and the tonoplast of higher plants. J Bioenerg Biomembr 1985; 17:1–21

    PubMed  Google Scholar 

  • Marré M.T., Moroni A., Albergoni F., Marré E. Plasmalemma redox activity and extrusion. I. Activation of the by ferricyanide-induced potential and cytoplasmic acidification. Plant Physiol 1988; 87:25–29

    Google Scholar 

  • Palmgren M.G. Proton gradients and plant growth: Role of the plasma membrane H+-ATPase. Adv Bot Res 1998; 28:1–70

    CAS  Google Scholar 

  • Penney C.L. A simple micro-assay for inorganic phosphate. Anal Biochem 1976; 75:201–210

    Article  PubMed  CAS  Google Scholar 

  • Politycka B. Peroxidase activity and lipid peroxidation in roots of cucumber seedlings influenced by derivatives of cinnamic and benzoic acids. Acta Physiol Plant 1996; 18:365–370

    CAS  Google Scholar 

  • Poole R.J. Energy coupling for membrane transport. Annu Rev Plant Physiol 1978; 29:437–460

    Article  CAS  Google Scholar 

  • Queirolo C.B., Andreo C.S., Niemeyer H.M., Corcuera L.J. Inhibition of ATPase from chloroplasts by a hydroxamic acid from the Gramineae. Phytochemistry 1983; 22:2455–2458

    Article  Google Scholar 

  • Rayle D.L., Cleland R. Control of plant cell enlargement by hydrogen ion. Curr Top Dev Biol 1977; 11:187–214

    PubMed  CAS  Google Scholar 

  • Serrano R. Plasma Membrane ATPase of Plants and Fungi. Boca Raton, Florida: CRC Press, 1985

    Google Scholar 

  • Serrano R. Structure and function of proton translocating ATPase in plasma membranes of plants and fungi. Biochem Biophys Acta 1988; 947:1–28

    PubMed  CAS  Google Scholar 

  • Serrano R. Structure and function of plasma membrane ATPase. Annu Rev Plant Physiol Plant Mol Biol 1989; 40:61–94

    Article  CAS  Google Scholar 

  • Zhang J., Kirkham M.B. Lipid peroxidation in sorghum and sunflower seedlings as affected by ascorbic acid, benzoic acid, and propyl gallate. Plant Physiol 1996; 149:489–493

    CAS  Google Scholar 

  • Zhao R., Dielen V., Kinet J.-M., Boutry M. Cosupression of a plasma membrane H+-ATP aseisoform impairs sucrose translocation, stomatal opening, plant growth, and male fertility. Plant Cell 2000; 12:535–546

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Manuel J. Reigosa Roger

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Kluwer Academic Publishers

About this chapter

Cite this chapter

Sánchez-Moreiras, A.M. (2001). ATP Phosphohydrolase Activity. In: Reigosa Roger, M.J. (eds) Handbook of Plant Ecophysiology Techniques. Springer, Dordrecht. https://doi.org/10.1007/0-306-48057-3_24

Download citation

  • DOI: https://doi.org/10.1007/0-306-48057-3_24

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-7053-6

  • Online ISBN: 978-0-306-48057-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics