Skip to main content

Constraint Satisfaction

  • Chapter
Handbook of Metaheuristics

Part of the book series: International Series in Operations Research & Management Science ((ISOR,volume 57))

Abstract

Many problems can be formulated in terms of satisfying a set of constraints. This chapter focuses on methods for modeling and solving such problems used in artificial intelligence and implemented in constraint programming languages.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Amilhastre, H. Fargier and P. Marquis (2002) Consistency restoration and explanations in dynamic CSPs—application to configuration. Artificial Intelligence, 135, 199–234.

    Article  MathSciNet  Google Scholar 

  2. F. Bacchus, X. Chen, P. van Beek and T. Walsh (2002) Binary vs. non-binary constraints. Artificial Intelligence.

    Google Scholar 

  3. B. De Backer, V. Furnon, P. Prosser, P. Kilby and P. Shaw (1997) Local search in constraint programming: Application to the vehicle routing problem. Presented at the CP-97 Workshop on Industrial Constraint-based Scheduling.

    Google Scholar 

  4. C. Bessiere, E. Freuder and J. Regin (1999) Using constraint metaknowledge to reduce arc consistency computation, Artificial Intelligence, 107, 125–148.

    Article  MathSciNet  Google Scholar 

  5. S. Bistarelli, H. Fargier, U. Montanari, F. Rossi, T. Schiex, and G. Verfaille (1996) Semiring-based CSPs and valued CSPs: Basic properties. In: M. Jampel, E.C. Freuder and M. Maher (eds.), Over-Constrained Systems, Volume 1106 of Lecture Notes in Computer Science. Springer, Berlin, pp. 111–150.

    Google Scholar 

  6. B. Cheng, K. Choi, J. Lee and J. Wu (1999) Increasing constraint propagation by redundant modeling: an experience report. Constraints, 4, 167–192.

    Article  Google Scholar 

  7. P. Cheeseman, B. Kanefsky and W. Taylor (1991) Where the really hard problems are. In: Proceedings Twelth International Joint Conference in Artificial Intelligence. Morgan Kaufmann, San Mateo, pp. 331–337.

    Google Scholar 

  8. R. Debruyne and C. Bessière (2001) Domain filtering consistencies. Journal of Artificial Intelligence Research, 14, 205–230.

    MathSciNet  Google Scholar 

  9. R. Dechter (1990). Enhancement schemes for constraint processing: backjumping, learning, and cutset decomposition. Artificial Intelligence, 41, 273–312.

    Article  MathSciNet  Google Scholar 

  10. R. Dechter and D. Frost (2002) Backjump-based backtracking for constraint satisfaction problems. Artificial Intelligence, 136, 147–188.

    Article  MathSciNet  Google Scholar 

  11. P. Deransart, M. Hermenegildo and J. Maluszynski (eds.) (2000) Analysis and Visualization Tools for Constraint Programming. Lecture Notes in Computer Science No. 1870. Springer, Berlin.

    Google Scholar 

  12. R. Dechter, I. Meiri and J. Pearl (1991) Temporal constraint networks. Artificial Intelligence, 49, 61–95.

    Article  MathSciNet  Google Scholar 

  13. E. Freuder (1978) Synthesizing constraint expressions. Communications of the ACM, 11, 958–966.

    MathSciNet  Google Scholar 

  14. E. Freuder (1982) A sufficient condition for backtrack-free search. Journal of the Association for Computing Machinery, 29, 24–32.

    MATH  MathSciNet  Google Scholar 

  15. E. Freuder (1991) Eliminating interchangeable values in constraint satisfaction problems. In: Proceedings Ninth National Conference on Artificial Intelligence. AAAI Press/MIT, Menlo Park/Cambridge, pp. 227–233.

    Google Scholar 

  16. E. Freuder and R. Wallace (1992). Partial constraint satisfaction. Artificial Intelligence, 58, 1–70.

    MathSciNet  Google Scholar 

  17. F. Focacci, A. Lodi and M. Milano (1999) Cost-based domain filtering. In: J. Jaffar (ed.), Principles and Practice of Constraint Programming Volume 1713 of Lecture Notes in Computer Science. Springer.

    Google Scholar 

  18. C. Gomes, B. Selman and N. Crato (1997) Heavy-tailed Distributions in Combinatorial Search. Volume 1330 of Lecture Notes in Computer Science. Springer.

    Google Scholar 

  19. W. Harvey and M. Ginsberg (1995) Limited discrepancy search. In: Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence (IJCAI-95). Morgan Kaufmann, pp. 607–615.

    Google Scholar 

  20. P. Jeavons, D. Cohen and M. Gyssens (1997) Closure properties of constraints. Journal of the ACM, 44, 527–548.

    Article  MathSciNet  Google Scholar 

  21. J. Jaffar and J.-L. Lassez (1987) Constraint logic programming. Proceedings of the Annual ACM Symposium on Principles of Programming Languages (POPL). ACM, pp. 111–119.

    Google Scholar 

  22. G. Kondrak and P. van Beek (1997) A theoretical evaluation of selected backtracking algorithms. Artificial Intelligence, 89, 365–387.

    Article  MathSciNet  Google Scholar 

  23. F. Laburthe and Y. Caseau (1998) SALSA: a language for search algorithms. 4th International Conference on the Principles and Practice of Constraint Programming (CP’98). Pisa, Italy, October.

    Google Scholar 

  24. A. Mackworth (1977) Consistency in networks of relations. Artificial Intelligence, 8, 99–118.

    Article  MATH  Google Scholar 

  25. S. Minton (1996) Automatically configuring constraint satisfaction programs. A case study. Constraints, 1, 7–43.

    Article  MathSciNet  Google Scholar 

  26. S. Minton, M.D. Johnston, A.B. Philips and P. Laird (1992) Minimizing conflicts: a heuristic repair method for constraint satisfaction and scheduling. Artificial Intelligence, 58, 61–205.

    Article  MathSciNet  Google Scholar 

  27. L. Michel and P. Van Hentenryck (1999) Localizer: a modeling language for local search. INFORMS. Journal on Computing.

    Google Scholar 

  28. G. Pesant and M. Gendreau (1996) A view of local search in constraint programming. In: Principles and Practice of Constraint Programming CP96: Proceedings of the Second International Conference, Volume 1118 of Lecture Notes in Computer Science. Springer, Berlin, pp. 353–366.

    Google Scholar 

  29. J.-C. Régin (2001) Minimization of the number of breaks in sports scheduling problems using constraint programming. In: E. Freuder and R. Wallace (eds.), Constraint Programming and Large Scale Discrete Optimization, volume 57 of DIMACS Series in Discrete Mathematics and Theoretical Computer Science. American Mathematical Society, Providence, RI, pp. 115–130.

    Google Scholar 

  30. D. Sabin and E. Freuder (1997) Understanding and Improving the MAC Algorithm. In: Principles and Practice of Constraint Programming—CP97: Proceedings of the Third International Conference, volume 1330 of Lecture Notes in Computer Science. Springer, Berlin, pp. 167–181.

    Google Scholar 

  31. H.M. Salkin (1970) On the merit of the generalized origin and restarts in implicit enumeration. Operations Research, 18, 549–554.

    MATH  Google Scholar 

  32. P. Shaw (1998) Using constraint programming and local search methods to solve vehicle routing problems. In: Michael Maher and Jean Francois Puget (eds.), Principles and Practice of Constraint Programming CP98, Volume 1520 of Lecture Notes in Computer Science. Springer. pp. 417–431.

    Google Scholar 

  33. B. Selman, H. Levesque and D. Mitchell (1992) A new method for solving hard satisfiability problems. Proceedings of the 10th National Conference on Artificial Intelligence (AAAI-92). San Jose, CA, USA, pp. 440–446.

    Google Scholar 

  34. E. Tsang (1993) Foundations of Constraint Satisfaction. Academic Press, London.

    Google Scholar 

  35. Pascal Van Hentenryck (1999) The OPL Optimization Programming Language. The MIT Press, Cambridge, MA.

    Google Scholar 

  36. P. Van Hentenryck, H. Simonis and M. Dincbas (1992) Constraint satisfaction using constraint logic programming. Artificial Intelligence, 58, 113–159.

    MathSciNet  Google Scholar 

  37. G. Verfaillie, M. Lemaitre and T. Schiex (1996) Russian doll search for solving constraint optimization problems. Proceedings of AAAI, pp. 181–187.

    Google Scholar 

  38. A. Veron, K. Schuerman and M. Reeve (1993) Why and how in the ElipSys OR-parallel CLP system. Proceedings of PARLE.

    Google Scholar 

  39. M. Wallace, S. Novello and J. Schimpf (1997) ECLiPSe—a platform for constraint programming. ICL Systems Journal 12(1), 159–200.

    Google Scholar 

  40. T. Walsh (2002) Stochastic constraint programming. Proceedings of ECAI-2002.

    Google Scholar 

  41. M. Yokoo (1994) Weak-commitment search for solving constraint satisfaction problems. Proceedings of AAAI, pp. 313–318.

    Google Scholar 

  42. M. Yokoo, E. Durfee, T. Ishida and K. Kuwabara (1998) The distributed CSP: Formalization and algorithms. IEEE Transactions on Knowledge and Data Engineering, 10, 673–685.

    Article  Google Scholar 

  43. W. Zhang (1998) Complete anytime beam search. Proceedings of AAAI, pp. 425–430.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Kluwer Academic Publishers

About this chapter

Cite this chapter

Freuder, E.C., Wallace, M. (2003). Constraint Satisfaction. In: Glover, F., Kochenberger, G.A. (eds) Handbook of Metaheuristics. International Series in Operations Research & Management Science, vol 57. Springer, Boston, MA. https://doi.org/10.1007/0-306-48056-5_14

Download citation

  • DOI: https://doi.org/10.1007/0-306-48056-5_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4020-7263-5

  • Online ISBN: 978-0-306-48056-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics