Skip to main content

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

8.7. References

  • Alberts, B. P., Rackwitz R., Schimmack W., & Bunzl, K. (1998). Transect survey of radiocesium in soils and plants of two alpine pastures. The Science of the Total Environment, 216, 159–172.

    Google Scholar 

  • Askbrant, S., Melin, J., Sandalis, J., Rauret, G., Vallejo, R., Hinton, T., Cremers, A., Vandecasteele, C., Lewickyj, N., Ivanov, Y. A., Firsakova, S. K., Arkhipov, N. P., & Alexakhin, R. M. (1996). Mobility of radionuclides in undisturbed and cultivated soils in Ukraine, Belarus and Russia six years after the Chernobyl fallout. Journal of Environmental Radioactivity, 3, 287–312.

    Google Scholar 

  • Bakunov, N.A., & Arkhipov, N.R. (1995). Behaviour of Sr-90 and Cs-137 of weapons and reactor origin in the soil-plant system. Eurasian Soil Science, 28, 40–52.

    Google Scholar 

  • Bernard, C., Mabit L., Wicherek S., & Laverdiere M. R. (1998). Long-term soil redistribution in a small French watershed as estimated from cesium-137 data. Journal of Environmental Quality, 5, 1178–1183.

    Google Scholar 

  • Bogen, J., Berg, H., & Sandersen, F. (1994). The contribution of gully erosion to the sediment budget of the river Leira. IAHS Publication, 224, 307–315.

    Google Scholar 

  • Bonnett, P. J. P., Leeks, G. J. L., & Cambray, R. S. (1989). Transport processes for Chernobyl labelled sediments: preliminary evidence from upland mid-Wales. Land Degradation and Rehabilation, 1, 39–50.

    Google Scholar 

  • Borzilov, V. A., Konoplev, A. V., & Bulgakov, A. A. (1993). Application of the Chernobyl experience in developing methodology for assessing and predicting the consequences of radioactive contamination of the hydrosphere. Hydrological considerations in relation to nuclear power plants. Proceedings of an International Workshop (pp. 246–263). Paris: UNESCO,.

    Google Scholar 

  • Branca, M., & Voltaggio, M. (1993) Erosion rates in badlands of central Italy — estimated by radiocaesium isotope ratio from Chernobyl nuclear accident. Applied Geochemistry, 8, 437–445.

    Article  CAS  Google Scholar 

  • Bunzl, K., Schimmack, W., Kreutzer, K., & Schierl, R. (1989). Interception and retention of Chernobyl-derived 137Cs, 137Cs and 106Ru in a spruce stand. Science of the Total Environment, 78, 77–87.

    Article  PubMed  CAS  Google Scholar 

  • Callaway, J. C., De Laune, R. D., & Patrick, W. H. (1996). Chernobyl 137Cs used to determine sediment accretion rates at selected northern European coastal wetlands. Limnology and Oceanography, 41, 444–450.

    Article  CAS  Google Scholar 

  • Chesnokov, A. V., Fedin, V. I., Govorun, A. P., Ivanov, O. P., Liksonov, V. I., Potapov, V. N., Smirnov, S. V., Shcherbak, S. B., & Urutskoev, L. I. (1997). Collimated Detector Technique for Measuring a 137Cs Deposit in Soil under a Clean Protected Layer. Applied Radiation and Isotopes, 9, 1265–1272.

    Google Scholar 

  • De Cort, M., Dubois, G., Fridman, S. D., Germenchuk, M. G., Izrael, Y. A., Jones, A.R., Kelly, Kvasnikova, E. V., Matveenko, I. I., Nazarov, I. M., Sitak, V. A., Stukin, E. D., Tabachny, L. Y., Tsaturov, Y. S., & Avdyushin, S. I. (1998). Atlas of caesium deposition on Europe after the Chernobyl accident, European Commission Report EUR 16733. Luxembourg: European Commission.

    Google Scholar 

  • De Roo, A. P. J. (1991). The use of 137Cs as a tracer in an erosion study in South Limburg (the Netherlands) and the influence of Chernobyl fallout. Hydrological Proces, 5, 215–217.

    Google Scholar 

  • Devell, L., Guntay, S., & Powers, D. A. (1995). The Chernobyl reactor accident source term: development of a consensus view, CSNI report of NEA/OECD. Paris: OECD.

    Google Scholar 

  • Fridman, S. D., Kvasnikova, E. V., Glushko, O. V., Golosov, V. N., & Ivanova, N. N. (1997). Cesium-137 migration in the geographical complexes of the central Russian hills. Meteorology and Hydrology, 5, 45–55. (in Russian)

    Google Scholar 

  • Golosov, V. N., Panin, A. V., & Markelov, M. V. (1999a). Chernobyl 137Cs Redistribution in the Small Basin of the Lokna River, Central Russia. Physican Chemistry of the Earth (A), 10, 881–885.

    Google Scholar 

  • Golosov, V. N. (1998). Accumulation in balkas of Russian plain. In R. S. Chalov (ed.), Eroziya poch i ruslovye processy 11 (pp. 97–112). Moscow: Moscow State University. (in Russian)

    Google Scholar 

  • Golosov, V. N. (2000). Radiometric dating in studies of erosion and accumulation. Geomorphologiya, 2, 26–33. (in Russian)

    Google Scholar 

  • Golosov, V. N., & Ivanova, N.N. (In press). Sediment-associated Chernobyl 137Cs redistribution in small basins in central Russia. In R. J. Allison (ed.), Applied geomorphology: theory and practice. London: John Wiley & Sons.

    Google Scholar 

  • Golosov, V. N., & Kvasnikova, E. V. (2000). Erosion and deposition processes and migration of the artificial radionuclides in landscape. In Y. A. Izrael (ed.), Radioactivity after nuclear explosions and accidents, vol. 1 (pp. 733–741). Saint Petersburg: Hydrometeoizdat.

    Google Scholar 

  • Golosov, V. N., Markelov, M. V., Panin, A. V., & Walling, D. E. (1998). Cs-137 contamination of river systems in Central Russia as a result of the Chernobyl incident. In H. Wheather and C. Kirby (eds.), Hydrology in a changing environment, vol. 1 (pp. 535–546). London: WileyEurope.

    Google Scholar 

  • Golosov, V. N., Walling, D. E., & Panin, A. V. (2000a). Post-fallout redistribution of Chernobyl-derived Cs-137 in small catchments within the Lokna river basin. In M. Stone (ed.), The role of erosion and sediment transport in nutrient and contaminant transfer, IAHS publication 263 (pp. 49–58). Wallingford: IAHS Press.

    Google Scholar 

  • Golosov, V. N., Walling, D. E., Panin, A. V., Stukin, E. D., Kvasnikova, E. V., & Ivanova, N. N. (1999b). The spatial variability of Chernobyl-derived Cs-137 inventories in small agricultural drainage basin in Central Russia 11 years after the Chernobyl incident. Applied Radiations and Isotopes, 51, 341–352.

    CAS  Google Scholar 

  • Golosov, V. N., Walling, D. E., Stukin, E. D., Nikolaev, A. N., Kvasnikova, E. V., & Panin, A. V. (2000b). Application of a field-portable scintillation detector for studying the distribution of Cs-137 inventories in a small basin in Central Russia. Journal Environmental Radioactivity, 4, 79–94.

    Google Scholar 

  • Govorun, A. P., Liksonov, V. I., Romasko, V. P., Fedin, V. I., Urutskoev, L. I., & Chesnokov, A. V. (1994). Spectrum sensitive portable collimated gamma-radiometer CORAD. Pribory i Tekhnika Experimenta, 5, 207–208. (in Russian)

    Google Scholar 

  • Haak, E., & Rydberg, T. (1998). Deposition, transfer and migration of 137Cs and 137Sr in Swedish agricultural environments, and use of 137Cs for erosion studies. In Use of 137 Cs in the study of soil erosion and sedimentation, IAEA-TECDOC-1028 (pp. 27–38). Vienna: IAEA.

    Google Scholar 

  • He, Q., & Walling, D. E. (1996). Interpreting the particle size effect in the adsorption of 137Cs and unsupported by mineral soils and sediments. Journal of Environmental Radioactivity, 30, 117–137.

    Article  CAS  Google Scholar 

  • He, Q., Walling, D. E., & Owens, P. N. (1996). Interpreting the 137Cs profiles observed in several small lakes and reservoirs in southern England. Chemical Geology, 129, 115–131.

    Article  CAS  Google Scholar 

  • Higgitt, D.L., Froehlich, W., & Walling, D. E. (1992). Application and limitations of Chernobyl radiocaesium measurements in a Carpathian erosion investigation, Poland. Land Degradation and Rehabilitation, 3, 15–26.

    Article  Google Scholar 

  • Higgitt, D. L., Rowan, J. S., & Walling, D. E. (1993). Catchment scale deposition and redistribution of Chernobyl radiocaesium in upland Britain. Environment International, 19, 155–166.

    Article  CAS  Google Scholar 

  • Izrael, Y. A. (ed.) (1990). Chernobyl: radionuclide contamination of the environment 295. St. Petersburg: Gidrometeoizdat. (in Russian)

    Google Scholar 

  • Izrael, Y. A. (1996). Radioactive fallout after nuclear explosions and accidents 356, Saint Petersburg: Progress-Pogoda. (in Russian).

    Google Scholar 

  • Izrael, Y. A., & Soudakova, E. A. (eds.) (1998) Atlas of radioactive contamination of European Russia, Belarus and Ukraine. Moscow: Federal Service of Geodesy and Cartography.

    Google Scholar 

  • Kachanoski, R. G. (1987). Comparison of measured soil cesium-137 losses and erosion rates. Canadian Journal of Soil Science, 67, 199–203.

    Article  CAS  Google Scholar 

  • Kvasnikova, E. V., Stukin, E. D., & Golosov, V. N. (1999). Variability of Chernobyl contamination of Cs-137 in relation to distance from the Chernobyl nuclear power station. Meteorology and Hydrology, 2, 5–12 (in Russian).

    Google Scholar 

  • Litvin, L. F., Golosov, V. N., Dobrovol’skaya, N. G., Ivanova, N. N., Krasnov, S. F., & Kiryuhma, Z. P. (1996). Redistribution 137Cs by water erosion processes. Journal of Water Resource, 3, 286–291.

    Google Scholar 

  • Margineanu, R., Ionita, I., Breban, D., & Gheorghiu, D. (2000). Inventory of 137Cs from Chernobyl accident in the Moldavian Tableland of Romania. In Izrael, Y. A. (ed.), Radioactivity after nuclear explosions and accidents, vol. 1 (pp. 742–748), Saint Petersburg: Hydrometeoizdat.

    Google Scholar 

  • Owens, P. N., & Walling, D. E. (1996). Spatial variability of caesium-137 inventories at reference sites: an example from two contrasting sites in England and Zimbabwe. Applied Radiation and Isotopes, 47, 699–707.

    Article  CAS  Google Scholar 

  • Panin, A. V., Walling, D. E., & Golosov, V. N. (2001). The role of soil erosion and fluvial processes in the post-fallout redistribution of Chernobyl-derived caesium-137: a case study of the Lapki catchment, Central Russia. Geomorphology, 40, 185–204.

    Article  Google Scholar 

  • Rowan, J. S., Higgitt, D. L., & Walling, D. E. (1993). Incorporation of Chernobyl-derived radiocaesium in reservoir sedimentary profiles. In McManus J. and Duck R. (eds.), Geomorphology and sedimentology of lakes and reservoirs (pp. 55–71). London: Wiley.

    Google Scholar 

  • Silant’ev, K. A., & Silant’ev, A. N. (1997). Analysis of radionuclide contamination of territory using 137Cs spatial distribution in the soil. Atomnaya Energiya, 4, 323–325. (in Russian)

    Google Scholar 

  • Sogon, S., Penven, M-J., Bonte, P., & Muxart, T. (1999). Estimation of sediment yield and soil loss using suspended sediment load and 137Cs measurements on agricultural land, Brie Plateau, France. In Garnier J. and Mouchel J.-M. (eds.), Man and river systems (pp.251–261). Dordrecht: Kluwer.

    Google Scholar 

  • Sutherland, R. A. (1996). Caesium-137 soil sampling and inventory variability in reference locations: a literature survey. Hydrological Processes, 10, 43–53.

    Article  Google Scholar 

  • Sutherland, R. A. (1998). Potential for reference site resampling in estimating sediment redistribution and assessing landscape stability by the caesium-137 method. Hydrological Processe, 7, 995–1007.

    Google Scholar 

  • Vanden Berghe, I., & Gulinck, H. (1987). Fallout 137Cs as a tracer for soil mobility in the landscape framework of the Belgian loamy region. Pedologie, 37, 5–20.

    Google Scholar 

  • Velasco, R. H., Toso J. P., & Belli, M. (1997). Radiocesium in the Northeastern part of Italy after the Chernobyl accident: vertical soil transport and soil-to-plant transfer. Journal of Environmental Radioactivity, 1, 73–83.

    Google Scholar 

  • Walling, D. E., Golosov, V.N., Kvasnikova, E.V., & Vandecasteele, C. (2000a). Radioecological aspects of soil pollution in small catchments. Pochvovedenie, 7, 888–897.

    Google Scholar 

  • Walling, D. E. (1998). Use of 137Cs and other fallout radionuclides in soil erosion investigations: progress, problems and prospects. In Use of 137Cs in the study of soil erosion and sedimentation, IAEA-TECDOC-1028 (pp.39–62). Vienna: IAEA.

    Google Scholar 

  • Walling, D. E., Golosov, V. N., Panin, A. V., & He, Q. (2000b). Use of radiocaesium to investigate erosion and sedimentation in areas with high levels of Chernobyl fallout. In I. D. L. Foster (ed.), Tracers in geomorphology (pp. 183–200), Chichester: Wiley.

    Google Scholar 

  • Walling, D. E., & Quine, T. A. (1993). Using Chernobyl-derived fallout radionuclides to investigate the role of downstream conveyance losses in the suspended sediment budget of the river Severn, UK. Physical Geography, 14, 239–253.

    Google Scholar 

  • Walling, D. E., Quine, T. A., & Rowan, J. S. (1992a). Fluvial transport and redistribution of Chernobyl fallout radionuclides. Hydrobiologia, 235/236, 231–246.

    Google Scholar 

  • Walling, D. E., & He, Q. (1997). Use of fallout in investigations of overbank sediment deposition on river flood plains. Catena, 29, 263–282.

    Article  CAS  Google Scholar 

  • Walling, D. E., Quine, T. A., & He, Q. (1992b). Investigating contemporary rates of floodplain sedimentation. In Carling, P. A. and Petts, G. E. (eds.), Lowland floodplain rivers: Geomorphological perspectives (pp. 166–184). Chichester: Wiley.

    Google Scholar 

  • Wicherek, S. P., & Bernard, C. (1995). Assessment of soil movements in a watershed from Cs-137 data and conventional measurements (example: the Parisian Basin). Catena, 25, 141–151.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 IAEA

About this chapter

Cite this chapter

Golosov, V.N. (2002). Special Considerations for Areas Affected by Chernobyl Fallout. In: Zapata, F. (eds) Handbook for the Assessment of Soil Erosion and Sedimentation Using Environmental Radionuclides. Springer, Dordrecht. https://doi.org/10.1007/0-306-48054-9_8

Download citation

  • DOI: https://doi.org/10.1007/0-306-48054-9_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1041-5

  • Online ISBN: 978-0-306-48054-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics