Skip to main content

Spatial Distribution of Caesium-137

  • Chapter

Conclusion

It has been shown that 137Cs inventories have a coefficient of variation of approximately 20% at reference sites (Pennock, 2000), and that this variability is probably because of random spatial variability (Owens and Walling, 1996). At reference sites it is recommended that a grid-sampling network is employed, with the collection of three replicate cores within 1 m of each sampling point. The cores may be bulked for 137Cs analysis (Owens and Walling, 1996). While the number of samples needed to estimate the reference value within the required statistical limits will depend on the variability found during analysis, between fifteen and thirty samples will usually be necessary for an accurate estimate of central tendency (Pennock, 2000).

Owens and Walling (1996), suggest that Eq. 6.2 is used to determine a “reference range” rather than a single value, which might imply a greater accuracy than is really the case. This range can then be used to determine points of net soil loss and gain within the landscape.

Sampling for spatial variability of 137Cs may take the form of transects or, preferably, a grid (Chapter 2). There has been no standardization of sampling frequency, as Tables 6.2 and 6.3 reveal. Rather, each study’s methodology has been established according to the study aims, the perceived field-variability of the isotope (e.g. has cultivation mixed the soil, or is micro-topography a factor in the redistribution of 137Cs?), and the number of samples that can be analysed in the laboratory. It is, however, recommended that at least twenty samples be taken along transects or in a grid pattern. Samples can be taken by core to a depth that will incorporate the total 137Cs profile, previously determined by depth sampling, although the deposition of sediment particularly at the slope-base may over-thicken the profile in areas affected by water erosion. Excavation, soil auger or other suitable means should be used to sample such sites to greater depths (Chapter 3).

It is recommended that at least some basic soil properties be measured (e.g. texture, organic matter, bulk density and horizon/plough layer depth) to aid 137Cs interpretation (Chapter 2). Topographic characteristics can be used to group landform elements, and land-use types can be grouped for 137Cs comparisons. The selection of appropriate models to transform 137Cs data into estimates of soil losses and gains that can be related to controlling factors such as soil erodibility, slope characteristics, and land use and management are discussed in Chapter 7.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

6.6. References

  • Bachhuber, H., Bunzl, K., & Schimmack, W. (1987). Spatial variability of fallout-137Cs in the soil of a cultivated field. Environmental Monitoring and Assessment, 8, 93–101.

    Article  CAS  Google Scholar 

  • Basher, L. R. (2000). Surface erosion assessment using 137Cs: examples from New Zealand. Acta Geologica Hispanica, 35, 219–228.

    Google Scholar 

  • Basher, L.R., Matthews, K. M., & Zhi, L. (1995). Surface erosion assessment in the south Canterbury downlands, New Zealand, using 137Cs distribution. Australian Journal of Soil Research, 33, 787–803.

    Article  CAS  Google Scholar 

  • Bernard, C., & Laverdière, M. R. (2000). Using 137Cs as a tool for the assessment and management of erosion/sedimentation risks in view of the restoration of the Rainbow Smelt (Osmerus mordax) fish population in the Boyer River basin (Québec, Canada). Acta Geologica Hispanica, 35, 321–327.

    Google Scholar 

  • Bouhlassa, S., Moukhchane, M., & Aiachi, A. (2000). Estimates of soil erosion and deposition of cultivated soils of Nakhla watershed, Morocco, using 137Cs technique and calibration models. Acta Geologica Hispanica, 35, 239–249.

    Google Scholar 

  • Brown, R. B., Cutshall, N. H., & Kling, G. F. (1981). Agricultural erosion indicated by 137Cs redistribution. I. Levels and distribution of 137Cs activity in soils. Soil Science Society of America Journal, 45, 1184–1190.

    CAS  Google Scholar 

  • Buján, A., Santanatoglia, O. J., Chagas, C., Massobrio, M., Castiglioni, M., Yéňez, M. S., Ciallella, H., & Fernandez, J. (2000). Preliminary study on the use of the 137Cs method for soil erosion investigation in the pampean region of Argentina. Acta Geologica Hispanica, 35, 271–277.

    Google Scholar 

  • Campbell, B. L., Loughran, R. J., & Elliott, G. L. (1982). Caesium-137 as an indicator of geomorphic processes in a drainage basin system. Australian Geographical Studies, 20, 49–64.

    Article  Google Scholar 

  • Campbell, B. L., Loughran, R. J., Elliott, G. L., & Shelly, D. J. (1986). Mapping drainage basin sediment sources using caesium-137. In Drainage basin sediment delivery. International Association of Hydrological Sciences Publication, 159, 437–446.

    Google Scholar 

  • Chappell, A. (1996). Modelling the spatial variation of processes in the redistribution of soil: digital terrain models and 137Cs in southwest Niger. Geomorphology, 17, 249–261.

    Article  Google Scholar 

  • Chappell, A., Warren, A., Oliver, M. A., & Charlton, M. (1998). The utility of 137Cs for measuring soil redistribution rates in southwest Niger. Geoderma, 81, 313–337.

    Article  Google Scholar 

  • Costa-Cabral, M. C., & Burges, S. J. (1994). Digital elevation model networks (DEMON): A model of flow over hillslopes for computation of contributing area and dispersal areas. Water Resources Research, 30, 1681–1692.

    Article  Google Scholar 

  • de Jong, E., Begg, C. B. M., & Kachanoski, R. G. (1983). Estimates of soil erosion and deposition for some Saskatchewan soils. Canadian Journal of Soil Science, 63, 607–617.

    Google Scholar 

  • de Jong, E., Wang, C., & Rees, H. W. (1986). Soil redistribution on three cultivated New Brunswick hillslopes calculated from 137Cs measurements, solum data and the USLE. Canadian Journal of Soil Research, 66, 721–730.

    Google Scholar 

  • Elliott, G. L., & Cole-Clark, B. E. (1993). Estimates of erosion on potato lands on krasnozem soils at Dorrigo, NSW, using the caesium-137 technique. Australian Journal of Soil Research, 31, 209–223.

    Article  Google Scholar 

  • Foster, I. D. L., Dalgleish, H., Dearing, J. A., & Jones, E. D. (1994). Quantifying soil erosion and sediment transport in drainage basins; some observations on the use of 137Cs. In Variability in stream erosion and sediment transport. International Association of Hydrological Sciences Publication, 224, 55–64.

    CAS  Google Scholar 

  • Fulajtar, E. (2000). Assessment of soil erosion through the use of 137Cs at Laslovke Bohunice, Western Slovakia. Acta Geologica Hispanica, 35, 291–300.

    Google Scholar 

  • Garcia-Agudo, E. (1998). Global distribution of 137Cs inputs for soil erosion and sedimentation studies. In Use of 137 Cs in the study of soil erosion ami sedimentation, IAEA-TECDOC-1028 (pp. 117–121). Vienna: IAEA.

    Google Scholar 

  • Garcia-Oliva, F., Martinez Lugo, R., & Maass, J. M. (1995). Long-term net soil erosion as determined by 137Cs redistribution in an undisturbed and perturbed tropical deciduous forest ecosystem. Geoderma, 68, 135–147.

    Article  CAS  Google Scholar 

  • Govers, G. (1985). Selectivity and transport capacity of thin Hows in relation to rill erosion. Catena, 12, 35–49.

    Article  Google Scholar 

  • Govers, G., Lobb, D. A., & Quine, T. A. (1999). Tillage erosion and translocation: emergence of a new paradigm in soil erosion research. Sail Tillage Research, 51, 167–174.

    Article  Google Scholar 

  • Higgitt, D. L. (1995). The development and application of caesium-137 measurements in erosion investigations. In I. D. L. Foster, A. M. Gurnell and B. W. Webb (eds.), Sediment and water quality in river catchments (pp. 287–305). Chichester: John Wiley & Sons.

    Google Scholar 

  • Ionita, I., & Margineanu, R. M. (2000). Application of 137Cs for measuring soil erosion/deposition rates in Romania. Acta Geologica Hispanica, 35, 311–319.

    Google Scholar 

  • Li, Y., Lindstrom, M. J., Zhang, J., & Yang, J. (2000). Spatial variability of soil erosion and soil quality on hillslopes in the Chinese Loess Plateau. Acta Geologica Hispanica, 35, 261–270.

    CAS  Google Scholar 

  • Longmore, M. E., O’Leary, B. M., Rose, C. W., & Chandica, A. L. (1983). Mapping soil erosion and accumulation with the fallout isotope caesium-137. Australian Journal of Soil Research, 21, 373–385.

    Article  Google Scholar 

  • Loughran, R. J., Campbell, B. L., & Walling, D. E. (1987). Soil erosion and sedimentation indicated by caesium-137: Jackmoor Brook catchment, Devon, England. Catena, 14, 201–212.

    Article  Google Scholar 

  • Loughran, R. J., Campbell, B. L., Elliott, G. L., Cummings, D., & Shelly, D. J. (1989). A caesium-137-sediment hillslope model with tests from south-eastern Australia. Zeitschri für Geomorphologie, 33, 235–250.

    Google Scholar 

  • Loughran, R. J., Elliott, G. L., Campbell, B. L., Curtis, S. J., Cummings, D., & Shelly, D.J. (1993). Estimation of erosion using the radionuclide caesium-137 in three diverse areas in eastern Australia. Applied Geography, 13, 169–188.

    Article  Google Scholar 

  • Loughran, R. J., Elliott, G. L., Maliszewski, L. T., & Campbell, B. L. (2000). Soil loss and viticulture at Pokolbin, New South Wales, Australia. In The hydrology-geomorphology interface: rainfall, floods, sedimentation, land use. International Association of Hydrological Sciences Publication, 261, 141–152.

    Google Scholar 

  • Martz, L. W., & de Jong, E. (1987). Using cesium-137 to assess the variability of net soil erosion and its association with topography in a Canadian prairie landscape. Catena, 14, 439–451.

    Article  CAS  Google Scholar 

  • Martz, L. W., & de Jong, E. (1991). Using cesium-137 and landform classification to develop a net soil erosion budget for a small Canadian prairie watershed. Catena, 18, 289–308.

    Article  Google Scholar 

  • McFarlane, D. J., George, R. J., Loughran, R. J., Elliott, G. L., Ryder, A. T., Bennett, D., & Tille, P. J. (2000). A national reconnaissance survey of soil erosion in Australia: Western Australia. Newcastle: Australian National Landcare Program and The University of Newcastle.

    Google Scholar 

  • McHenry, J. R., & Ritchie, J. C. (1977). Physical and chemical parameters affecting transport of 137Cs in arid watersheds. Water Resources Researc, 13, 923–927.

    Article  CAS  Google Scholar 

  • Moore, I. D., & Burch, G. J. (1986). Physical basis of the length-slope factor in the Universal Soil Loss Equation. Soil Science Society of America Journal, 50, 1294–1298.

    Google Scholar 

  • Moore, I. D., & Grayson, R. B. (1991). Terrain-based catchment partitioning and runoff prediction using vector elevation data. Water Resources Research, 27, 1177–1191.

    Article  Google Scholar 

  • Morris, C. D., & Loughran, R. J. (1994). Distribution of caesium-137 in soils across a hillslope hollow. Hydrological Processes, 8, 531–541.

    Article  Google Scholar 

  • Nagle, G. N., Lassoie, J. P., Fahey, T. J., & McIntyre, S. C. (2000). The use of caesium-137 to estimate agricultural erosion on steep slops in a tropical watershed. Hydrological Processes, 14, 957–969.

    Article  Google Scholar 

  • Ormerod, L. M. (1999). Sedimentation rates and sediment provenance within a predominantly urbanised catchment: Ironbark Creek, New South Wales. PhD thesis. Callaghan: University of New Castle.

    Google Scholar 

  • Owens, P. N., & Walling, D. E. (1996). Spatial variability of caesium-137 inventories at reference sites: an example from two contrasting sites in England and Zimbabwe. Applied Radiation and Isotopes, 47, 699–707.

    Article  CAS  Google Scholar 

  • Pennock, D. J. (2000). Suitability of 137Cs redistribution as an indicator of soil quality. Acta Geologica Hispanica, 35, 213–217.

    Google Scholar 

  • Pennock, D. J., & Corre, M. D. (2001). Development and application of landform segmentation procedures. Soil Tillage Research, 58, 151–162.

    Article  Google Scholar 

  • Pennock, D. J., & de Jong, E. (1987). The influence of slope curvature on soil erosion and deposition in hummock terrain. Soil Science, 144, 209–217.

    Article  Google Scholar 

  • Pennock, D. J., & de Jong, E. (1990). Spatial pattern of soil redistribution in Boroll landscapes, southern Saskatchewan, Canada. Soil Science, 150, 867–873.

    Article  Google Scholar 

  • Queralt, I., Zapata, F., & Garcia-Agudo, E. (eds.). (2000). Assessment of soil erosion and sedimentation through the use of the 137Cs and related techniques. Acta Geologica Hispanica, 35, 195–367.

    Google Scholar 

  • Quine, T. A. (1999). Use of caesium-137 data for validation of spatially distribuled erosion models: the implications of tillage erosion. Catena, 37, 415–430.

    Article  CAS  Google Scholar 

  • Quine, T. A., & Walling, D. E. (1993). Use of caesium-137 measurements to investigate relationships between erosion rates and topography. In D. S. G. Thomas and R. J. Allison (eds.), Landscape sensitivity (pp. 31–48). Chichester: John Wiley & Sons Ltd.

    Google Scholar 

  • Quine, T. A., Walling, D. E., Chakela, Q. K., Mandiringana, O. T., & Zhang, X. (1999). Rates and patterns of tillage and water erosion on terraces and contour strips: evidence from caesium-137 measurements. Catena, 36, 115–142.

    Article  Google Scholar 

  • Renard, K. G., Foster, G. A., Weesies, G. A., McCool, D. K., & Yoder, D. C. (1997). Predicting soil erosion by water: A guide to conservation planning with the revised Universal Soil Loss Equation (RUSLE), USDA Agricultural Handbook No. 703. Washington: USDA.

    Google Scholar 

  • Richley, L., Loughran, R. J., Elliott, G. L., & Saynor, M. J. (1997). A national reconnaissance survey of soil erosion in Australia: Tasmania. Newcastle: Australian National Landcare Program and The University of Newcastle.

    Google Scholar 

  • Ritchie, J. C., & McHenry, J. R. (1978). Fallout cesium-137 in cultivated and noncultivated north central United States watersheds. Journal of Environmental Quality, 7, 40–44.

    Article  CAS  Google Scholar 

  • Soileau, J. M., Hajek, B. F., & Touchton, J.T. (1990). Soil erosion and deposition evidence in a small watershed using fallout cesium-137. Soil Science Society of America Journal, 54, 1712–1719.

    Article  CAS  Google Scholar 

  • Sogon, S., Pcnven, M.-J., Bonte, P., & Muxart, T. (1999). Estimation of sediment yield and soil loss using suspended sediment load and 137Cs measurements on agricultural land, Brie Plateau, France. Hydrobiologia, 410. 251–261.

    Article  CAS  Google Scholar 

  • Sutherland, R. A. (1991). Examination of caesium-137 areal activities in control (uneroded) locations. Sail Technology, 4, 33–50.

    Article  Google Scholar 

  • Sutherland, R. A. (1992). Caesium-137 estimates of erosion in agricultural areas. Hydrological Processes, 6, 215–225.

    Article  Google Scholar 

  • Sutherland, R. A. (1996). Caesium-137 soil sampling and inventory variability in reference locations: a literature survey. Hydrological Processes, 10, 43–53.

    Article  Google Scholar 

  • Theocharopoulos, S. P., Florou, H., Kritidis, P., Belis, D., Tsouloucha, F., Christou, M., Kouloumbis, P., & Nikolaou, T. (2000). Use of 137Cs isotope technique in soil erosion studies in central Greece. Acta Geologica Hispanica, 35, 301–310.

    Google Scholar 

  • Walling, D.E. (1990) Linking the field to the river: sediment delivery from agricultural land. In J. Boardman, I. D. L. Foster and J. A. Dearing (eds.), Soil Erosion on Agricultural Land (pp. 129–152). Chichester: John Wiley & Sons Ltd.

    Google Scholar 

  • Walling, D. E., & He, Q. (2000). The global distribution of bomb-derived 137 Cs reference inventories. Report to the IAEA as a contribution to the co-ordinated research projects on soil erosion and sedimentation. Exeter: Department of Geography, University of Exeter.

    Google Scholar 

  • Walling, D. E., & Quine, T. A. (1991). Use of 137Cs measurements to investigate soil erosion on arable fields in the UK: potential applications and limitations. Journal of Soil Science, 42, 147–165.

    Article  Google Scholar 

  • Whitelock, B., & Loughran, R. J. (1994). Sediment production and storage in a urbanizing basin, Lake Macquarie, New South Wales, Australia. In Variability in stream erosion and sediment transport, International Association of Hydrological Sciences Publication, 224, 103–110

    CAS  Google Scholar 

  • Wilding, L. P., & Drees, L. R. (1983). Spatial variability and pedology. In L. P. Wilding, N. E. Smeck, & G. F. Hall (eds.), Pedogenesis and soil taxonomy: I. Concepts and interactions (pp. 83–116). New York: Elsevier Science.

    Chapter  Google Scholar 

  • Zhang, X., Quine, T. A., Walling, D. E., & Zhou Li (1994). Application of the caesium-137 technique in a study of soil erosion on gully slopes in a yuan area of the Loess Plateau near Xinfeng, Gansu province, China. Geografiska Annaler, 76A, 103–120.

    Article  Google Scholar 

  • Zhang, X. B., Quine, T. A., Walling, D. E., & Wen, A. B. (2000). A study of soil erosion on a steep cultivated slope in the Mt. Gongga Region near Luding, Sichuan, China, using the 137Cs technique. Acta Geologica Hispanica, 35, 229–238.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 IAEA

About this chapter

Cite this chapter

Loughran, R.J., Pennock, D.J., Walling, D.E. (2002). Spatial Distribution of Caesium-137. In: Zapata, F. (eds) Handbook for the Assessment of Soil Erosion and Sedimentation Using Environmental Radionuclides. Springer, Dordrecht. https://doi.org/10.1007/0-306-48054-9_6

Download citation

  • DOI: https://doi.org/10.1007/0-306-48054-9_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1041-5

  • Online ISBN: 978-0-306-48054-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics