Skip to main content

Introduction

  • Chapter

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

1.7. References

  • Appleby, P. G., & Oldfield, F. (1992). Application of lead-210 to sedimentation studies. In M. Ivanovich and R.S. Harman (eds.), Uranium-series disequilibrium: Applications to earth, marine, and environmental sciences (pp.731–738). Oxford: Clarendon Press.

    Google Scholar 

  • Bernard, J. M., & Iivari T. A. (2000). Sediment damages and recent trends in the United Sates. International Journal of Sediment Research, 15, 35–48.

    Google Scholar 

  • Brown, L. R., & Wolf E. C. (1984). Soil erosion: quiet crisis in the world economy, Worldwatch paper 60. Washington: Worldwatch Institute.

    Google Scholar 

  • Cambray, R. S., Playford, K., Lewis, G. N. J., & Carpenter R. C. (1989). Radioactivefallout in air and rain: results to the end of 1988. AERE-R-13575. Harwell: UK Atomic Energy Authority.

    Google Scholar 

  • Campbell, B. L., Loughran, R. J., & Elliott, G. L. (1982). Caesium-137 as an indicator of geomorphic processes in a drainage basin system. Australian Geography Studies, 20, 49–64.

    Google Scholar 

  • Carter, M. W., & Moghissi, A. A. (1977). Three decades of nuclear testing. Health Physics, 33. 55–71.

    PubMed  CAS  Google Scholar 

  • Clark, II, E. H (1985). The off-site cost of soil erosion. Journal of Soil and Water Conservation, 40, 19–22.

    Google Scholar 

  • Colacicco, D., Osborn, T., & Alt, K. (1989). Economic damage from soil erosion. Journal of Soil and Water Conservation, 44, 35–39.

    Google Scholar 

  • Cremers, A., Elsen, A., De Preter, P., & Maes, A. (1988). Quantitative analysis of radiocaesium retention in soils. Nature, 335, 247–249.

    Article  CAS  Google Scholar 

  • Crickmore, M. J., Tazioli, G. S. Appleby, P. G., & Oldfield, F. (1990). The use ofnuclear techniques in sediment transport and sedimentation problems, IHP-III Project 5.2 SC-90/WS-49. Paris: UNESCO.

    Google Scholar 

  • Dahlman, R. C., & Auerbach, S. I. (1968). Preliminary estimation of erosion and radiocesium redistribution in afescue meadow, ORNL-TM-2343. Oak Ridge: Oak Ridge National Laboratory.

    Google Scholar 

  • Davis, J. J. (1963). Caesium and its relationship to potassium in ecology. In V. Schultz and A.W. Klement Jr. (eds.), Radioecology (pp. 539–556). New York: Reinhold.

    Google Scholar 

  • de Jong, E., Begg, C. B. M., & Kachanoski, R. G. (1983). Estimates of soil erosion and deposition from some Saskatchewan soils. Canadian Journal of Soil Scienc, 63, 607–617.

    Google Scholar 

  • Elliott, G. L., Campbell B. L., & Loughran R. J. (1990). Correlation of erosion measurement and soil caesium-137 content. Journal of Applied Radiation and Isotopes, 41, 713–717.

    CAS  Google Scholar 

  • Fitzgerald, S. A., Klump, J. V., Swarzenski, P. W., Mackenzie, R. A., & Richards, K. D. (2001). Beryllium-7 as a tracer of short-term sediment deposition and resuspension in the Fox River, Wisconsin. Environmental Science and Technology, 35, 300–305.

    Article  PubMed  CAS  Google Scholar 

  • Foster, G. R. (1991). Advances in wind and water erosion prediction. Journal of Soil and Water Conservation, 46, 27–29.

    Google Scholar 

  • Frere, M. H., & Roberts, H. J. Jr. (1963). The loss of strontium90 from small cultivated watersheds. Soil Science Society of America Proceedings, 27, 82–83.

    Article  Google Scholar 

  • Goldberg, E. D. (1963). Geochronology with lead-210 radioactive dating, ST1/PUB/68(pp. 121–131). Vienna: IAEA.

    Google Scholar 

  • Graham, E. R. (1963). Factors affecting Sr-85 and I-131 removal by run off water. Water and Sewage Works, 110, 407–410.

    CAS  Google Scholar 

  • IAEA (1995). Use of nuclear techniques in studying soil erosion and siltation, IAEA-TECDOC-828. Vienna: IAEA.

    Google Scholar 

  • IAEA (1998). Use of 137 Cs in the study of soil erosion and sedimentation, IAEA-TECDOC-1028. Vienna: IAEA.

    Google Scholar 

  • Joshi, S. R. (1987). Non-destructive determination of lead-210 and radium-226 in sediments by direct photon analysis. Journal of Radioanalysis and Nuclear Chemistry Articles, 116, 169–182.

    CAS  Google Scholar 

  • Kachanoski, R. G. (1993). Estimating soil loss from changes in soil Cesium-137. Canadian Journal of Soil Science, 73, 515–526.

    Google Scholar 

  • Krishnaswami, S., Benninger, L. K., Aller R. C., & Von Damm, K. L. (1980). Atmospherically-derived radionuclides as tracers of sediment mixing and accumulation in near-shore marine and lake sediments: evidence from 7Be, 210Pb and 239,240Pu. Earth and Planetary Science Letters, 47, 307–318.

    Article  CAS  Google Scholar 

  • Lal, R. (2000). Soil management in developing countries. Soil Scienc, 165, 7–72.

    Google Scholar 

  • Lal, R. (ed.). (1994). Soil erosion. Ankeny, IA: Soil and Water Conservation Society.

    Google Scholar 

  • Libby, W. F. (1955). Radiocarbon dating. Chicago: University of Chicago Press.

    Google Scholar 

  • Longmore, M. E. (1982). The caesium-137 dating technique and associated applications in Australia — A review. In W. Ambrose and P. Duerden (eds.), Archaeometry: an Australasian perspective (pp. 310–321). Canberra: Australian National University Press.

    Google Scholar 

  • Loughran, R. J. (1989). The measurement of soil erosion. Progress in Physical Geography, 13, 216–233.

    Article  Google Scholar 

  • Loughran, R. J., Elliott G. L., Campbell B. L., Kiernan K., & Temple-Smith M. G. (1992). A reconnaissance survey of soil erosion in Australia. In Proceedings of the 7 th ISCO Conference Sydney, September 1992, Vol 2.1 (pp. 52–63). Sydney: International Soil Conservation Organization.

    Google Scholar 

  • Loughran, R. J., Elliott, G. L. Campbell B. L., & Shelly D. J. (1988). Estimation of soil erosion from caesium-137 measurements in a small cultivated catchment in Australia. Journal of Applied Radiation and Isotopes, 39, 1153–1157.

    Google Scholar 

  • McHenry, J. R., & Ritchie J. C. (1977). Estimating field erosion losses from fallout Cs-137 measurements. IAHS Publication 122 (pp. 26–33). Wallingford: IAHS Press.

    Google Scholar 

  • Menzel, R. G. (1960). Transport of strontium-90 in runoff. Science, 131. 499–500.

    CAS  PubMed  Google Scholar 

  • Murray, A.S., Marten, R., Johnston A., & Martin P. (1987). Analysis of naturally occurring radionuclides at environmental levels with gamma spectrometry. Journal ofRadiation and Nuclear Chemistry, 115, 263–288.

    CAS  Google Scholar 

  • Mutchler, C. K., Murphree, C. E., & McGregor K. C. (1994). Laboratory and field plots for erosion research. In R. Lal, (ed.), Soil erosion (pp. 11–37). Ankeny, IA: Soil and Water Conservation Society.

    Google Scholar 

  • Nozaki, Y., DeMaster, D.J., Lewis, D.M., & Turekain, K.K. (1978). Atmospheric 210Ph fluxes determined from soil profiles. Journal of Geophysical Research, 83(C8), 4047–4051.

    CAS  Google Scholar 

  • Oldfield, F. (1975). Lakes and their drainage basins as units of sediment-based ecological study. Hydrobiology. 103. 71–74.

    Google Scholar 

  • Olsen, C. R., Larsen, I. L., Lowry, P. D., & Cutshall, N. H. (1986). Geochemistry and deposition of 7Be in river-estuarine and coastal water. Journal ofGeophysical Research, 91, 896–908.

    CAS  Google Scholar 

  • Pennington, W., Cambray, R.S., & Fisher, E. M. (1973). Observations of lake sediment using fallout 117Cs as a tracer. Nature, 242, 324–326.

    Article  PubMed  CAS  Google Scholar 

  • Pennock, D.J., Lemmon, D.S., & de Jong, E. (1995). Cesium-137 measured erosion rates tor five parent-material groups in southwestern Saskatchewan. Canadian Journal of Soil Science, 75, 205–210.

    Google Scholar 

  • Pennock, D.J., & Zapata, F. (1995). Report of the FAO/IAEA Consultants Meeting on “The use of isotopes in studies of soil erosion,” CT-2665, Vienna: IAEA.

    Google Scholar 

  • Pimentel, D., Allen, J., Beers, A., Guinand, L., Linder, R., McLaughlin, P., Meer, B., Musonda, D., Perdue, D., Poisson, S., Siebert, S., Stone, K., Salazar, R., & Hawkins A. (1987). World agriculture and soil erosion. Bioscience, 37, 277–283.

    Google Scholar 

  • Pimentel, D., Harvey, C., Resosudarmo, P., Sinclair, K., Kurz D., McNair, M., Crist, S., Shpritz, L., Fitton, L., Saffouri, R., & Blair, R. (1995). Environmental and economic cost of soil erosion and conservation benefit. Science, 267, 1117–1123.

    CAS  PubMed  Google Scholar 

  • Playford, K., Toole, J., & Adsley, I. (1993). Radioactive fallout in air and rain: results to the end of 1991. AEA-EE-0498. Harwell: UK Atomic Energy Authority.

    Google Scholar 

  • Quine, T. A., & Walling, D. E. (1991). Rates of soil erosion on arable fields in Britain: quantitative data from caesium-137 measurements. Soil Use and Managemen, 7, 169–176.

    Google Scholar 

  • Renard, K. G., Foster, G. R., Weesies,. G. A., McCool, D. K, & Yoder, D. C. (1997). Predicting soil erosion by water: A guide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE). USDA Agricultural Handbook No. 537. Washington: United States Department of Agriculture.

    Google Scholar 

  • Renard, K. G., Foster, G. R., Weesies, G. A., & Porter, J. P. (1991). RUSLE Revised universal soil loss equation. Journal of Soil and Water Conservation, 46, 30–33.

    Google Scholar 

  • Ritchie, J. C., & McHenry, J. R. (1973). Determination of fallout Cs-137 and natural gamma-ray emitting radionuclides in sediments. International Journal of Applied Radiation and Isotopes, 24, 575–578.

    Article  PubMed  CAS  Google Scholar 

  • Ritchie, J. C., & McHenry, J. R. (1975). Fallout Cs-137: a tool in conservation research. Journal of Soil and Water Conservation, 30, 283–286.

    Google Scholar 

  • Ritchie, J. C., & McHenry, J. R. (1990). Application of radioactive fallout cesium-137 for measuring soil erosion and sediment accumulation rates and patterns: a review. Journal of Environmental Quality, 19, 215–233.

    Article  CAS  Google Scholar 

  • Ritchie, C., McHenry J. R., Hill, A. C., & Hawks P. H. (1972). Fallout caesium-137 in reservoir sediments. Health Physics, 22, 97–98.

    Google Scholar 

  • Ritchie, J. C., & Ritchie C. A. (1998). Bibliography of publications of 137Cs studies related to soil erosion and sediment deposition. In Use of 137 Cs in the study of soil erosion and sedimentation, IAEA-TECDOC-1028 (pp. 63–116), Vienna: IAEA.

    Google Scholar 

  • Ritchie, J. C., & Ritchie C. A. (2001). Bibliography of publications of 137 Cs studies related to soil erosion and sediment deposition, <http://hydrolab.arsusda.gov/cesium/>

  • Ritchie, J. C., Spraberry, J. A., & McHenry, J. R. (1974). Estimating soil erosion from the redistribution of fallout Cs-137. Soil Science Society of America Proceedings, 38. 137–139.

    Google Scholar 

  • Robbins, J. A. (1978). Geochemistry and Geophysical application of radioactive lead. In J. O. Nriagu (ed.), The biochemistry of lead in the environment (pp. 285–393). Amsterdam: Elsevier.

    Google Scholar 

  • Rogowski, A. S., & Tamura, T. (1965). Movement of 137Cs byrunoff, erosion and infiltration on thealluvial Captina silt loam. Health Physics, 11, 1333–1340.

    Google Scholar 

  • Rogowski, A. S., & Tamura T. (1970a). Environmental mobility of cesium-137. Radiation Botany, 10, 35–45.

    Article  CAS  Google Scholar 

  • Rogowski, A. S., & Tamura T. (1970b). Erosional behavior of cesium-137. Health Physics, 18, 467–477.

    PubMed  CAS  Google Scholar 

  • Schultz, R. K., Overstreet, R., & Barshad, I. (1960). On the soil chemistry of caesium-137. Soil Science, 89, 19–27.

    Google Scholar 

  • Tamura, T. (1964). Consequences of activity release: selective sorption reactions of cesium with soil minerals. Nuclear Safety, 5, 262–268.

    Google Scholar 

  • Turner, J. (2000). AGM on “Sediment tracing (finger-printing) by nuclear techniques and their application to the planning and design of erosion and sedimentation remediation strategies and the assessment of their effectiveness, with emphasis on dam sustainability,” IAEA Report AG-1090. Vienna: IAEA.

    Google Scholar 

  • UNEP (1992). Global assessment of soil degradation. Wageningen: ISRIC, and Nairobi: UNEP.

    Google Scholar 

  • Volchok, H. L., & Chieco, N. (1986). A compendium of the Environmental Measurement Laboratory’s research projects related to Chernobyl nuclear accident. USDOE Rep. EML-460. New York: Environmental Monitoring Laboratory.

    Google Scholar 

  • Wallbrink, P. J., & Murray A. S. (1993). The use of fallout radionuclide as indicators of erosion processes. Hydrological Processes, 7, 297–304.

    Google Scholar 

  • Wallbrink, P. J., & Murray A. S. (1994). Fallout of 7Be over south eastern Australia. Journal of Environmental Radioactivity, 25, 213–228.

    Article  CAS  Google Scholar 

  • Wallbrink, P. J., & Murray, A. S. (1996a) Distribution of 7Be in soils under different surface cover conditions and its potential for describing soil redistribution processes. Water Resources Research, 32. 467–476.

    Article  CAS  Google Scholar 

  • Wallbrink, P. J., & Murray, A. S. (1996b) Determining soil loss using the inventory ratio of excess lead-210 to cesium-137. Soil Science Society of America Journal, 60. 1201–1208.

    Article  CAS  Google Scholar 

  • Wallbrink, P. J., Murray, A. S., & Olley, J. M. (1999). Relating suspended sediment to its original soil depth using fallout radionuclides. Soil Science Society of America Journal, 63, 369–378.

    Article  CAS  Google Scholar 

  • Walling, D. E. (1989). The struggle against water erosion and a perspective on recent rcsearehin. In K. Ivanov and D. Pechinov (eds.), Water erosion, UNESCO technical document in hydrology, SC-89/WS-57 (pp. 39–60). Paris: UNESCO.

    Google Scholar 

  • Walling, D. E. (1998). Use of 137Cs and other fallout radionuclides in soil erosion investigations: Progress, problems and prospects. In Use of 137 Cs in the study ofsoilerosion and sedimentation. IAEA — TECDOC-1028 (pp. 39–62). Vienna: IAEA.

    Google Scholar 

  • Walling, D. E. (2000). Linking land use, erosion and sediment yields in river basins. Hydrobiology, 410, 223–240.

    Google Scholar 

  • Walling, D. E. (2002). Recent advances in the use of environmental radionuclides in soil erosion investigations. In Nuclear techniques in integrated plant nutrient, water and soil management. IAEA-CSP-IIP (pp. 279–301). Vienna: IAEA.

    Google Scholar 

  • Walling, D. E., & Bradley, S. B. (1988). The use of caesium-137 measurements to investigate sediment delivery from cultivated areas in Devon, IAHS publication 174 (pp. 325–335): Wallingford: IAHS Press.

    Google Scholar 

  • Walling, D. E., & He, Q. (1997). Models for converting 137 Cs measurements to estimates of soil redistribution rates on cultivated and uncultivated soils. Report to the IAEA as a contribution to the IAEA Co-ordinated Projects on Soil Erosion and Sedimentation. Exeter: Department of Geography, University of Exeter.

    Google Scholar 

  • Walling, D. E., & He, Q. (1999a). Improved models for estimating soil erosion rales from Cesium-137 measurements. Journal of Environmental Quality, 28, 611–622.

    Article  CAS  Google Scholar 

  • Walling, D. E., & He, Q. (1999b) Using fallout Lead-210 measurements to estimate soil erosion on cultivated land. Soil Science Society of America Journal, 63, 1404–1412.

    Article  CAS  Google Scholar 

  • Walling, D. E., & He, Q. (2000). The global distribution of bomb-derived 137 reference inventories. Report to the IAEA as a contribution to the IAEA Co-ordinated Projects on Soil Erosion and Sedimentation. Exeter: Department of Geography, University of Exeter.

    Google Scholar 

  • Walling, D. E., He, Q., & Blake, W. (1999). Use of B-7 and Cs-137 measurements to document short-and medium-term rates of water-induced soil erosion on agricultural land. Water Resources Research, 35, 3865–3874.

    Article  Google Scholar 

  • Walling, D. E., & Quine, T. A. (1990). Calibration of 137Cs measurements to provide quantitative erosion rate data. Land Degradation and Rehabilitation, 2, 161–175.

    Article  Google Scholar 

  • Walling, D. E., & Quine, T. A. (1991). The use of 137Cs measurements to investigate soil erosion on arable fields in the UK: potential applications and limitations. Journal of Soil Science, 42, 147–162.

    Google Scholar 

  • Walling, D. E., & Quine, T. A. (1993). Use of caesium-137 as a tracer of erosion and sedimentation: Handbook for the application of the caesium-137 technique. Exeter: UK Overseas Development Administration, Department of Geography. University of Exeter.

    Google Scholar 

  • Walling, D. E., & Quine, T. A. (1995). The use of fallout radionuclide measurements in soil erosion investigations in IAEA. In Nuclear techniques in soil-plant studies for sustainable agriculture and environmental preservation. STI/PUB/947(pp. 597–619). Vienna: IAEA.

    Google Scholar 

  • Walling, D. E., & Woodward J. C. (1992). Use of radiometric fingerprints to derive information on suspended sediment sources. In J. E. Bogen, D. E. Walling and T. Day (eds.), Erosion and sediment transport monitoring programmes in river basins. IAHS publication 210 (pp. 153–164). Wallingford: IAHS Press.

    Google Scholar 

  • Wischmeier, W. H. (1976). Use and misuse of the universal soil loss equation. Journal of Soil and Water Conservation, 31, 5–9.

    Google Scholar 

  • Wischmeier, W. H., Smith, D. D. (1965). Predicting rainfall-erosion losses for cropland east of the Rocky Mountains. Agriculture handbookno. 262. Washington: United States Department of Agriculture.

    Google Scholar 

  • Zapata, F. (2001a). Final Report of the co-ordinated research project on “Assessment of soil erosion through the use of the Cs-137 and related techniques as a basis for soil conservation, sustainable agricultural production and environmental protection.” Vienna: IAEA.

    Google Scholar 

  • Zapata, F. (2001b). Report of the consultants meeting on “Assessment of soil conservation technologies for sustainable agricultural production.” Vienna: IAEA.

    Google Scholar 

  • Zapata, F., & García-Agudo, E. (2000). Future prospects forthe 137Cs technique for estimating soil erosion and sedimentation rates. ActaGeologica Hispanica, 35, 197–205.

    Google Scholar 

  • Zapata, F., García-Agudo, E., Hera, C., Rozanski, K., & Froehlich K. 1995. Use of nuclear techniques in soil erosion and siltation studies. In Nuclear techniques in soil-plant studies for sustainable agriculture and environmental preservation. IAEA proceedings series STI/PUB/947 (pp. 631–642). Vienna: IAEA.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 IAEA

About this chapter

Cite this chapter

Zapata, F., Garcia-Agudo, E., Ritchie, J.C., Appleby, P.G. (2002). Introduction. In: Zapata, F. (eds) Handbook for the Assessment of Soil Erosion and Sedimentation Using Environmental Radionuclides. Springer, Dordrecht. https://doi.org/10.1007/0-306-48054-9_1

Download citation

  • DOI: https://doi.org/10.1007/0-306-48054-9_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1041-5

  • Online ISBN: 978-0-306-48054-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics