Skip to main content

Intracellular Salt Concentrations and Ion Metabolism in Halophilic Microorganisms

  • Chapter
Halophilic Microorganisms and their Environments

Part of the book series: Cellular Origin, Life in Extreme Habitats and Astrobiology ((COLE,volume 5))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

6.7. References

  • Antón, J., Oren, A., Benlloch, S., Rodríguez-Valera, F., Amann, R., and Rosselló-Mora, R. 2002. Salinibacter ruber gen. nov., sp. nov., a novel extreme halophilic Bacterium from saltern crystallizer ponds. Int. J. Syst. Evol. Microbiol. 52: 485–491.

    PubMed  Google Scholar 

  • Batterton, J.C., and van Baalen, C. 1971. Growth responses of blue-green algae to sodium chloride concentration. Arch. Mikrobiol. 76: 151–165.

    Article  PubMed  CAS  Google Scholar 

  • Baxter, R.M., and Gibbons, N.E. 1956. Effects of sodium and potassium chloride on certain enzymes of Micrococcus halodenitrificans and Pseudomonas salinaria. Can. J. Microbiol, 2: 599–606.

    Article  PubMed  CAS  Google Scholar 

  • Bayley, S.T., and Morton, R.A. 1978. Recent developments in the molecular biology of extremely halophilic bacteria. CRC Crit. Rev. Microbiol. 6: 151–205.

    Article  PubMed  CAS  Google Scholar 

  • Belliveau, J.W., and Lanyi, J.K. 1978. Calcium transport in Halobacterium halobium envelope vesicles. Arch. Biochem. Biophys. 186: 98–105.

    Article  PubMed  CAS  Google Scholar 

  • Bental, M., Degani, H., and Avron, M. 1988. 23Na-NMR studies of the intracellular sodium ion concentration in the halotolerant alga Dunaliella salina. Plant Physiol. 87: 813–817.

    Article  PubMed  CAS  Google Scholar 

  • Besnard, M., Martinac, B., and Ghazi, A. 1997. Voltage-dependent porin-like ion channels in the archaeon Haloferax volcanii. J. Biol. Chem. 272: 992–995.

    Article  PubMed  CAS  Google Scholar 

  • Bickel-Sandkötter, S., Gärtner, W., and Dane, M. 1996. Conversion of energy in halobacteria: ATP synthesis and phototaxis. Arch. Microbiol. 166: 1–11.

    Article  PubMed  Google Scholar 

  • Brown, A.D. 1976. Microbial water stress. Bacteriol. Rev. 40: 803–846.

    PubMed  CAS  Google Scholar 

  • Brown, A.D. 1990. Microbial water stress physiology. Principles and perspectives. Jolm Wiley & Sons, Chichester.

    Google Scholar 

  • Brown, A.D., and Duong, A. 1982. State of water in extremely halophilic bacteria: heat of dilution of Halobacterium halobium. J. Membr. Biol. 64: 187–193.

    Article  Google Scholar 

  • Brown, A.D., and Sturtevant, J.M. 1980. State of water in extremely halophilic bacteria: freezing transitions of Halobacterium halobium observed by differential scanning calorimetry. J. Membr. Biol. 54: 21–30.

    Article  CAS  Google Scholar 

  • Chan, K., Leung, O.C., and Lee, L.H. 1979. Influence of temperature on ionic sparing effect and cell-associated cations in the moderate halophile, Micrococcus varians var. halophilus. Microbios 24: 81–91.

    CAS  Google Scholar 

  • Christian, J.H.B., and Waltho, J.A. 1962. Solute concentrations within cells of halophilic and non-halophilic bacteria. Biochim. Biophys. Acta 65: 506–508.

    Article  PubMed  CAS  Google Scholar 

  • Csonka, L.N. 1989. Physiological and genetic responses of bacteria to osmotic stress. Microbiol. Rev. 53: 121–147.

    PubMed  CAS  Google Scholar 

  • Cummings, S.P., Williamson, M.P., and Gilmour, D.J. 1993. Turgor regulation in a novel Halomonas species. Arch. Microbiol. 160: 319–323.

    Article  CAS  Google Scholar 

  • De Médicis, E. 1986. Magnesium, manganese and mutual depletion systems in halophilic bacteria. FEMS Microbiol. Rev. 37: 137–143.

    Google Scholar 

  • De Médicis, E., Paquette, J., Gauthier, J.-J., and Shapcott, D. 1986. Magnesium and manganese content of halophilic bacteria. Appl. Environ. Microbiol. 52: 567–573.

    PubMed  Google Scholar 

  • Dohrmann, A.-B., and Müller, V. 1999. Chloride dependence of endospore germination in Halobacillus halophilus. Arch. Microbiol. 172: 264–267.

    Article  PubMed  CAS  Google Scholar 

  • Duschl, A., and Wagner, G. 1986. Primary and secondary chloride transport in Halobacterium halobium. J. Bacteriol. 168: 548–552.

    PubMed  CAS  Google Scholar 

  • Ehrenfeld, J., and Cousin, J.-L. 1982. Ionic regulation of the unicellular alga Dunaliella. J. Membr. Biol. 70: 47–57.

    Article  CAS  Google Scholar 

  • Gabbay-Azaria, R., and Tel-Or, E. 1991. Regulation of intracellular Na+ content during NaCl upshock in the marine cyanobacterium Spirulina subsalsa cells. Biores. Technol. 38: 215–220.

    Article  CAS  Google Scholar 

  • Gabbay-Azaria, R., and Tel-Or, E. 1993. Mechanisms of salt tolerance in eyanobacteria, pp. 123–132 In: Gresshoff, P.M. (Ed.), Plant responses to the environment. CRC Press, Boca Raton.

    Google Scholar 

  • Gabbay-Azaria, R., Schonfeld, M., Tel-Or, S., Messinger, R., and Tel-Or, E. 1992. Respiratory activity in the marine cyanobacterium Spirulina subsalsa and its role in salt tolerance. Arch. Microbiol. 157: 183–190.

    CAS  Google Scholar 

  • Galinski, E.A. 1995. Osmoadaptation in bacteria. Adv. Microb. Physiol. 37: 273–328.

    Article  CAS  Google Scholar 

  • Garty, H., and Caplan, S.R. 1977. Light-dependent rubidium transport to intact Halobacterium halobium cells. Biochim. Biophys. Acta 459: 532–545.

    Article  PubMed  CAS  Google Scholar 

  • Gilboa, H., Kogut, M, Chalamish, S., Regev, R., Avi-Dor, Y., and Russell, N.J. 1991. Use of 23Na nuclear magnetic resonance spectroscopy to determine the true intracellular concentration of free sodium in a halophilic eubacterium. J. Bacteriol. 173: 7021–7023.

    PubMed  CAS  Google Scholar 

  • Gimmler, H. 2000. Primary sodium plasma membrane ATPases in salt-tolerant algae: facts and fictions. J. Exp. Bot. 51: 1171–1178.

    Article  PubMed  CAS  Google Scholar 

  • Gimmler, H., Kaaden, R., Kirchner, U., and Weyand, A. 1984. The chloride sensitivity of Dunaliella parva enzymes. Zeitschr. Pflanzenphysiol. 114: 131–150.

    CAS  Google Scholar 

  • Ginzburg, B.Z. 1978. Regulation of cell volume and osmotic pressure in Dunaliella, pp. 543–560 In: Caplan, S.R., and Ginzburg, M. (Eds.), Energetics and structure of halophilic microorganisms. Elsevier, Amsterdam.

    Google Scholar 

  • Ginzburg, M. 1978. Ion metabolism in whole cells of Halobacterium halobium and H. marismortui, pp. 561–577 In: Caplan, S.R, and Ginzburg, M. (Eds.), Energetics and structure of halophilic microorganisms. Elsevier/North Holland Biomedical Press, Amsterdam.

    Google Scholar 

  • Ginzburg, M. 1981. Measurements of ion concentrations in Dunaliella parva subjected to hypertonic shocks. J. Exp. Bot. 32: 333–340.

    Article  CAS  Google Scholar 

  • Ginzburg, M., Sachs, I., and Ginzburg, B.Z. 1970. Ion metabolism in a Halobacterium. I. Influence of age of culture on intracellular concentrations. J. Gen. Physiol. 55: 187–207.

    Article  PubMed  CAS  Google Scholar 

  • Ginzburg, M., Sachs, L., and Ginzburg, B.Z. 1971. Ion metabolism in a Halobacterium. II. Ion concentrations in cells at different levels of metabolism. J. Membr. Biol. 5: 78–101.

    Article  CAS  Google Scholar 

  • Gochnauer, MB., and Kushner, D.J. 1971. Potassium binding, growth, and survival of an extremely halophilic bacterium. Can. J. Microbiol. 17: 17–23.

    Article  PubMed  CAS  Google Scholar 

  • Goldberg, M., and Gilboa, H. 1978. Sodium exchange between two sites. The binding of sodium to halotolerant bacteria. Biochim. Biophys. Acta 538: 268–283.

    PubMed  CAS  Google Scholar 

  • Goldberg, M., Risk, M., and Gilboa, H. 1983. Lithium nuclear magnetic resonance measurements in halotolerant bacterium Ba1 Biochim. Biophys. Acta 763: 35–40.

    Article  CAS  Google Scholar 

  • Hagemann, M., Fulda, S., and Schubert, H. 1994. DNA, RNA, and protein synthesis in the cyanobacterium Synechocystis sp. PCC 6803 adapted to different salt concentrations. Curr. Microbiol. 28: 201–207.

    Article  CAS  Google Scholar 

  • Hamaide, F., Kushner, D.J., and Sprott, G.D. 1983. Proton motive force and Na+/H+ antiport in a moderate halophile. J. Bacteriol. 156: 537–544.

    PubMed  CAS  Google Scholar 

  • Hamaide, F., Kushner, D.J., and Sprott, G.D. 1985. Proton circulation in Vibrio costicola. J. Bacteriol. 161: 681–686.

    PubMed  CAS  Google Scholar 

  • Imhoff, J.F. 1993. Osmotic adaptation in halophilic and halotolerant microorganisms, pp. 211–253 In: Vreeland, R.H., and Hochstein, L.I. (Eds.), The biology of halophilic bacteria. CRC Press, Boca Raton.

    Google Scholar 

  • Incharoensakdi, A., and Takabe, T. 1988. Determination of intracellular chloride ion concentration in a halotolerant cyanobacterium Aphanothece halophytica. Plant Cell Physol. 29: 1073–1075.

    CAS  Google Scholar 

  • Kamekura, M., and Kushner, D.J. 1984. Effect of chloride and glutamate ions on in vitro protein synthesis by the moderate halophile Vibrio costicola. J. Bacteriol. 160: 385–390.

    PubMed  CAS  Google Scholar 

  • Kamekura, M., and Onishi, H. 1982. Cell-associated cations of the moderate halophilic Micrococcus varians ssp. halophilus grown in media of high concentrations of LiCl, NaCl, KCl, RbCl, or CsCl. Can. J. Microbiol. 28: 155–161.

    Article  CAS  Google Scholar 

  • Kanner, B.I., and Racker, E. 1975. Light-dependent proton and rubidium translocation in membrane vesicles from Halobacterium halobium. Biochem. Biophys. Res. Commun. 64: 1054–1061.

    Article  PubMed  CAS  Google Scholar 

  • Karni, L., and Avron, M. 1988. Ion content of the halotolerant alga Dunaliella salina. Plant Cell Physiol. 29: 1311–1314.

    CAS  Google Scholar 

  • Katz, A., and Avron, M. 1985. Determination of intracellular osmotic volume and sodium concentration in Dunaliella. Plant Physiol. 78: 817–820.

    Article  PubMed  CAS  Google Scholar 

  • Katz, A., and Pick, U. 2001. Plasma membrane electron transport coupled toNa4 extrusion in the halotolerant alga Dunaliella. Biochim. Biophys. Acta 1504: 423–431.

    Article  PubMed  CAS  Google Scholar 

  • Katz, A., Pick, U., and Avron, M. 1989. Characterization and reconstitution of the Na+/H+ antiporter from the plasma membrane of the halophilic alga Dunaliella. Biochim. Biophys. Acta 983: 1–14.

    Article  Google Scholar 

  • Katz, A., Bental, M., Degani, H., and Avron, M. 1991. In vivo pH regulation by Na+/H+ antiporter in the halotolerant alga Dunaliella salina. Plant Physiol. 96: 110–115.

    Article  PubMed  CAS  Google Scholar 

  • Katz, A., Pick, U., and Avron, M. 1992. Modulation of antiporter activity by extreme pH and salt in the halotolerant alga Dunaliella salina. Plant Physiol. 100: 1224–1229.

    Article  PubMed  CAS  Google Scholar 

  • Ken-Dror, S., and Avi-Dor, Y. 1985. Regulation of respiration by Na+ and K+ in the halotolerant bacterium Ba1. Arch. Biochem. Biophys. 243: 238–245.

    Article  PubMed  CAS  Google Scholar 

  • Ken-Dror, S., Shnaiderman, R., and Avi-Dor, Y. 1984. Uncoupler-stimulated Na+ pump and its possible role in the halotolerant bacterium, Arch. Biochem. Biophys. 229: 640–649.

    Article  CAS  Google Scholar 

  • Ken-Dror, S., Lanyi, J.K., Schobert, B., Silver, B., and Avi-Dor, Y. 1986a. An NADH-quinone oxidoreductase of the halotolerant bacterium Ba1 is specifically dependent on sodium ions. Arch. Biochem. Biophys. 244: 766–772.

    Article  PubMed  CAS  Google Scholar 

  • Ken-Dror, S., Preger, R., and Avi-Dor, Y. 1986b. Functional characterization of the uncoupler-insensitiveNa+ pump of the halotolerant bacterium, Ba1. Arch. Biochem. Biophys. 244: 122–127.

    Article  PubMed  CAS  Google Scholar 

  • Kloda, A., and Martinac, B. 2001. Mechanosensitive channels in archaea. Cell Biochem. Biophys. 34: 349–381.

    Article  PubMed  CAS  Google Scholar 

  • Krulwich, T.A. 1983. Na+/H+ antiporters. Biochim. Biophys. Acta 726: 245–264.

    PubMed  CAS  Google Scholar 

  • Kushner, D.J. 1978. Life in high salt and solute concentrations, pp. 317–368 In: Kushner, D.J. (Ed.), Microbial life in extreme environments. Academic Press, London.

    Google Scholar 

  • Kushner, D.J. 1988. What is the “true” internal environment of halophilic and other bacteria? Can. J. Microbiol. 34: 482–486.

    Article  Google Scholar 

  • Kushner, D.J. 1989a. Halophilic bacteria: life in and out of salt, pp. 60–64 In: Hattori, T., Ishida, Y., Maruyama, Y., Morita, R.Y., and Uchida, A. (Eds.), Recent advances in microbial ecology. Japan Scientific Societies Press, Tokyo.

    Google Scholar 

  • Kushner, D.J. 1989b. Halophilic bacteria: their life in and out of salt, pp. 280–288 In: Da Costa, M.S., Duarte, J.C., and Williams, R.A.D. (Eds.), Microbiology of extreme environments and its potential for biotechnology. Elsevier Applied Science, London.

    Google Scholar 

  • Kushner, D.J., and Kamekura, M. 1988. Physiology of halophilic eubacteria, pp. 109–138 In: Rodriguez-Valera, F. (Ed.), Halophilic bacteria. Vol. I. CRC Press, Boca Raton.

    Google Scholar 

  • Lanyi, J.K. 1974. Salt-dependent properties of proteins from extremely halophilic bacteria. Bacteriol. Rev. 38: 272–290.

    PubMed  CAS  Google Scholar 

  • Lanyi, J.K. 1979. The role of Na+ in transport processes of bacterial membranes. Biochim. Biophys. Acta 559: 377–397.

    PubMed  CAS  Google Scholar 

  • Lanyi, J.K. 1986. Halorhodopsin: a light-driven chloride ion pump. Ann. Rev. Biophys. Biophys. Chem. 15: 11–28.

    Article  CAS  Google Scholar 

  • Lanyi, J.K., and Hilliker, K. 1976. Passive potassium ion permeability of Halobacterium halobium cell envelope membranes. Biochim. Biophys. Acta 448: 181–184.

    Article  PubMed  CAS  Google Scholar 

  • Lanyi, J.K., and MacDonald, R.E. 1976. Existence of electrogenic hydrogen/sodium transport in Halobacterium cell envelope vesicles. Biochemistry 15: 4608–4614.

    Article  PubMed  CAS  Google Scholar 

  • Lanyi, J.K., and Silverman, M.P. 1972. The state of binding of intracellular K+ in Halobacterium cutirubrum. Can. J. Microbiol. 18: 993–995.

    Article  PubMed  CAS  Google Scholar 

  • Lanyi, J.K., and Silverman, M.P. 1979. Gating effects in Halobacterium halobium membrane transport. J. Biol. Chem. 254: 4750–4755.

    PubMed  CAS  Google Scholar 

  • Lanyi, J.K., Helgerson, S.L., and Silverman, M.P. 1979. Relationship between proton motive force and potassium ion transport in Halobacterium halobium envelope vesicles. Arch. Biochem. Biophys. 193: 329–339.

    Article  PubMed  CAS  Google Scholar 

  • Le Dain, A.C., Saint, N., Kloda, A., Ghazi, A., and Martinac, B. 1998. Mechanosensitive ion channels of the archaeon Haloferax volcanii. J. Biol. Chem. 273: 12116–12119.

    Article  PubMed  Google Scholar 

  • Luisi, B.F., Lanyi, J.K., and Weber, H.J. 1980. Na+ transport via Na+/H+ antiport in Halobacterium halobium envelope vesicles. FEBS Lett. 117: 354–358.

    Article  PubMed  CAS  Google Scholar 

  • Masui, M., and Wada, S. 1973. Intracellular concentrations of Na+. K+ and of a moderately halophilic bacterium. Can. J. Microbiol. 19: 1181–1186.

    Article  PubMed  CAS  Google Scholar 

  • Matheson, A.T., Sprott, G.D., McDonald, I.J., and Tessier, H. 1976. Some properties of an unidentified halophile: growth characteristics, internal salt concentrations, and morphology. Can. J. Microbiol. 22: 780–786.

    Article  PubMed  CAS  Google Scholar 

  • Melamud, R., Risk, M., and Gilboa, H. 1981. Sodium binding in Halobacterium halobium measured by the nuclear magnetic resonance technique. Biochim. Biophys. Acta 678: 311–315.

    CAS  Google Scholar 

  • Mermelstein, L.D., and Zeikus, J.G. 1998, Anaerobic nonmethanogenic extremophiles, pp. 255–284 In: Horikoshi, K., and Grant, W.D. (Eds.), Extremophiles. Microbial life in extreme environments. Wiley-Liss, New York.

    Google Scholar 

  • Meseguer, I., Torreblanca, M., and Konishi, T. 1995. Specific inhibition of the halobacterial Na+/H+ antiporter by halocin H6. J. Biol. Chem. 270: 6450–6455.

    Article  PubMed  CAS  Google Scholar 

  • Meury, J., and Kohiyama, M. 1989. ATP is required for K+ active transport in the archaebacterium Haloferax volcanii. Arch. Microbiol. 151: 530–536.

    Article  CAS  Google Scholar 

  • Miguelez, E., and Gilmour, D.J. 1994. Regulation of cell volume in the salt tolerant bacterium Halomonas elongata. Lett. Appl. Microbiol. 19: 363–365.

    Article  Google Scholar 

  • Miller, D.M., Jones, J.H., Yopp, J.H., Tindall, D.R, and Schmid, W.E. 1976. Ion metabolism in a halophilic bluegreen alga, Aphanothece halophytica. Arch. Microbiol. 111: 145–149.

    Article  PubMed  CAS  Google Scholar 

  • Murakami, N., and Konishi, T. 1990. Cooperative regulation of the Na+/H+-antiporter in Halobacterium halobium by ΔpH and ΔΦ Arch. Biochem. Biophys. 281: 13–20.

    Article  CAS  Google Scholar 

  • Nagala, S., Ogawa, Y., and Mimura, H. 1991. Internal cation concentrations of the halotolerant bacterium Brevibacterium sp. in response to the concentrations and species of external salt. J. Gen. Appl. Microbiol. 37: 403–414.

    Article  Google Scholar 

  • Nagata, S., Adachi, K., Shirai, K., and Sano, H. 1995. 23Na NMR spectroscopy of Na+ free in the halotolerant bacterium Brevibacterium sp. and Escherchia coli. Microbiology UK 140: 729–736.

    Article  Google Scholar 

  • Ng, W.V., Kennedy, S.P., Mahairas, G.G., Berquist, B., Pan, M., Shukla, H.D., Lasky, S.R., Baliga, N.S., Thorsson, V., Sbrogna, J., Swartzell, S., Weir, D., Hall, J., Dahl, T.A., Welti, R., Goo, Y.A., Leithauser, B., Keller, K., Cruz, R., Danson, M.J., Hough, D.W., Maddocks, D.G., Jablonski, P.E., Krebs, M.P., Angevine, C.M., Dale, H., Isenberger, T.A., Peck, R.F., Pohlschroder, M., Spudich, J.L., Jong, K.-H., Alam, M., Freitas, T., Hou, S., Daniels, C.J., Dennis, P.P., Omer, A.D., Ebhardt, H., Lowe, T.M., Liang, P., Riley, M., Hood, L., and DasSarma, S. 2000. Genome sequence of Halobacterium species NRC-1. Proc. Natl. Acad. Sci. USA 97: 12176–12181.

    Article  PubMed  CAS  Google Scholar 

  • Nikolaev, Y.A., and Matveeva, N.I. 1990. A comparative study of the energization of alanine transport in the moderately halophilic bacterium Vibrio costicola and the halotolerant bacterium Micrococcus varians, at different pH. Mikrobiologiya 59: 933–937 (Microbiology 59: 643–646).

    CAS  Google Scholar 

  • Oren, A. 1986a. Relationships of extremely halophilic bacteria towards divalent cations, pp. 52–58 In: Megusar, F., and Gantar, M. (Eds.), Perspectives in microbial ecology. Slovene Society for Microbiology, Ljubljana.

    Google Scholar 

  • Oren, A. 1986b. Intracellular salt concentration of the anaerobic halophilic eubacteria Haloanaerobium praevalens and Halobacteroides halobius. Can. J. Microbiol. 32: 4–9.

    CAS  Google Scholar 

  • Oren, A. 1999. Life at high salt concentrations, In: Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K.-H. and Stackebrandt, E. (Eds.), The Prokaryotes. A handbook on the biology of bacteria: ecophysiology, isolation, identification, applications. 3rd. Ed. Springer-Verlag, New York (electronic publication).

    Google Scholar 

  • Oren, A., Heldal, M., and Norland, S. 1997. X-ray microanalysis of intracellular ions in the anaerobic halophilic eubacterium Haloanaerobium praevalens. Can. J. Microbiol. 43: 588–592.

    Article  CAS  Google Scholar 

  • Pérez-Fillol, M., and Rodríguez-Valera, F. 1986. Potassium ion accumulation in cells of different halobacteria. Microbiología SEM 2: 73–80.

    Google Scholar 

  • Pick, U., Karni, L., and Avron, M. 1986a. Determination of ion content and ion fluxes in the halotolerant alga Dunaliella salina. Plant Physiol. 81: 92–96.

    Article  PubMed  CAS  Google Scholar 

  • Pick, U, Ben-Amotz, A., Karni, L., Seebregts, C.J., and Avron, M. 1986b. Partial characterization of K+ and Ca2+ uptake systems in the halotolerant alga Dunaliella salina. Plant Physiol. 81: 875–881.

    Article  PubMed  CAS  Google Scholar 

  • Pick, U., Katz, A., Weiss, M., and Avron, M. 1987. Dunaliella- a model system for cellular ion regulation in plants and algae, pp. 241–255 In: Leaver, C.J., and Sze, H. (Eds.), Plant membranes: structure, function, biogenesis. Alan R. Liss, New York.

    Google Scholar 

  • Reed, R.H. 1984. Use and abuse of osmo-terminology. Plant Cell Environ. 7: 165–170.

    Google Scholar 

  • Reed, R.H., Chudek, J.A., Foster, R., and Stewart, W.D.P. 1984. Osmotic adjustment in cyanobacteria from hypersaline environments. Arch. Microbiol. 138: 333–337.

    Article  CAS  Google Scholar 

  • Reed, R.H., Warr, S.R.B., Richardson, D.L., Moore, D.J., and Stewart, W.D.P. 1985. Multiphasic osmotic adjustment in a euryhaline cyanobacterium. FEMS Microbiol. Lett. 28: 225–229.

    Article  CAS  Google Scholar 

  • Rengpipat, S., Lowe, S.E., and Zeikus, J.G. 1988. Effect of extreme salt concentrations on the physiology and biochemistry of Halobacteroides acetoethylicus. J. Bacteriol. 170: 3065–3071.

    PubMed  CAS  Google Scholar 

  • Roeßler, M., and Müller, V. 1998. Quantitative and physiological analysis of chloride depenence of growth in Halobacillus halophilus. Appl. Environ. Microbiol. 64: 3813–3817.

    PubMed  Google Scholar 

  • Roeßler, M., and Müller, V. 2002. Chloride, a new environmental signal molecule involved in gene regulation in a moderately halophilic bacterium, Halobacillus halophilus. J. Bacteriol., submitted for publication.

    Google Scholar 

  • Roeßler, M., Wanner, G., and Müller, V. 2000. Motility and flagellum synthesis in Halobacillus halophilus are chloride dependent. J. Bacteriol. 182: 532–535.

    Article  PubMed  Google Scholar 

  • Sadler, M., McAninch, M., Alico, R., and Hochstein, L.I. 1980. The intracellular Na+ and K+ composition of the moderately halophilic bacterium, Paracoccus halodenitrificans. Can. J. Microbiol. 26: 496–502.

    Article  PubMed  CAS  Google Scholar 

  • Sakhnini, A., and Gilboa, H. 1993. Double quantum sodium NMR studies of the halotolerant bacterium. Biophys. Chem. 46: 21–25.

    Article  CAS  Google Scholar 

  • Schobert, B., and Lanyi, J.K. 1982. Halorhodopsin is a light-driven chloride pump. J. Biol. Chem. 257: 10306–10313.

    PubMed  CAS  Google Scholar 

  • Shindler, D.B., Wydro, R.M., and Kushner, D.J. 1977. Cell-bound cations of the moderately halophilic bacterium Vibrio costicola. J. Bacteriol. 130: 698–703.

    PubMed  CAS  Google Scholar 

  • Shnaiderman, R., and Avi-Dor, Y. 1982. The uptake and extrusion of salts by the halotolerant bacterium, Ba1, Arch. Biochem. Biophys. 213: 177–185.

    Article  CAS  Google Scholar 

  • Speelmans, G., Poolman, B., and Konings, W.N. 1995. Na+ as coupling ion in energy transduction in extremophilic Bacteria and Archaea. World J. Microbiol. Biotechnol. 11: 58–70.

    Article  CAS  Google Scholar 

  • Sydow, U., Wohland, P., Wolke, I., and Cypionka, H. 2002. Bioenergetics of the alkaliphilic sulfate-reducing bacterium Desulfonatronovibrio hydrogenovorans. Microbiology UK 148: 853–860.

    CAS  Google Scholar 

  • Tokuda, H., and Unemoto, T. 1983. Growth of a marine Vibrio alginolyticus and moderately halophilic V. costicola becomes uncoupler resistant when the respiration-dependent Na+ pump functions. J. Bacteriol. 156: 636–643.

    PubMed  CAS  Google Scholar 

  • Tsujimoto, K., Semadesi, M., Huflejt, M., and Packer, L. 1988. Intracellular pH of halobacteria can be determined by the fluorescent dye 2′,7′-bis(carboxyethyl)-5(6)-carboxyfluorescein. Biochem. Biophys. Res. Commun. 155: 123–129.

    Article  PubMed  CAS  Google Scholar 

  • Udagawa, T., Unemoto, T., and Tokuda, H. 1986. Generation of Na+ electrochemical potential by theNa+-motive NADH oxidase and Na+/H+ antiport system of a moderately halophilic Vibrio costicola. J. Biol. Chem. 261: 2616–2622.

    PubMed  CAS  Google Scholar 

  • Unemoto, T., Akagawa, A., Mizugaki, M., and Hayashi, M. 1992. Distribution of Na+-dependent respiration and a respiration-driven electrogenic pump in moderately halophilic bacteria. J. Gen. Microbiol. 138: 1999–2005.

    CAS  Google Scholar 

  • van de Vosseberg, J.L.C.M., Ubbink-Kok, T., Elferink, M.H.L., Driessen, A.J.M., and Konings, W.N. 1995. Ion permeability of the cytoplasmic membrane limits the maximum growth temperature of bacteria and archaea. Mol. Microbiol. 18: 925–932.

    Article  Google Scholar 

  • van de Vosseberg, J.L.C.M., Driessen, A.J.M., Grant, W.D., and Konings, W.N. 1999. Lipid membranes from halophilic and alkali-halophilic Archaea have a low H+ and Na+ permeability at high salt concentration. Extremophiles 3: 253–257.

    Article  Google Scholar 

  • Ventosa, A., Nieto, J.J., and Oren, A. 1998. Biology of moderately halophilic aerobic bacteria. Microbiol. Mol. Biol. Rev. 62: 504–544.

    PubMed  CAS  Google Scholar 

  • Vreeland, R.H. 1987. Mechanisms of halotolerance in microorganisms. CRC Crit. Rev. Microbiol. 14: 311–356.

    Article  CAS  Google Scholar 

  • Vreeland, R.H. 1993. Taxonomy of halophilic bacteria, pp. 105–134 In: Vreeland, R.H., and Hochstein, L.I. (Eds.), The biology of halophilic bacteria. CRC Press, Boca Raton.

    Google Scholar 

  • Vreeland, R.H., Mierau, B.D., Litchfield, C.D., and Martin, E.L. 1983. Relationship of the internal solute composition to the salt tolerance of Halomonas elongata. Can. J. Microbiol. 29: 407–414.

    Article  CAS  Google Scholar 

  • Wagner, G., Hartmann, R., and Oesterhelt, D. 1978. Potassium uniport and ATP synthesis in Halobacterium halobium. Eur. J. Biochem. 89: 169–179.

    Article  PubMed  CAS  Google Scholar 

  • Weiss, M., Haimovich, G., and Pick, U. 2001. Phosphate and sulfate uptake in the halotolerant alga Dunaliella are driven by Na+-symport mechanisms. J. Plant Physiol. 158: 1519–1525.

    Article  CAS  Google Scholar 

  • Weisser, J., and Trüper, H.G. 1985. Osmoregulation in a new haloalkaliphilic Bacillus from the Wadi Natrun (Egypt). Syst. Appl. Microbiol. 6: 7–11.

    CAS  Google Scholar 

  • Yopp, J.H., Miller, D.M., and Tindall, D.R. 1978. Regulation of intracellular water potential in the halophilic blue-green alga Aphanothece halophytica (Chroococcales), pp. 619–624 In: Caplan, S.R., and Ginzburg, M. (Eds.), Energetics and structure of halophilic microorganisms. Elsevier/North Holland Biomedical Press, Amsterdam.

    Google Scholar 

  • Zmiri, A., and Ginzburg, B.-Z. 1983. Extracellular space and cellular sodium content in pellets of Dunaliella parva (Dead Sea, 75). Plant Sci. Lett. 30: 211–218.

    Article  CAS  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Kluwer Academic Publishers

About this chapter

Cite this chapter

(2003). Intracellular Salt Concentrations and Ion Metabolism in Halophilic Microorganisms. In: Halophilic Microorganisms and their Environments. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol 5. Springer, Dordrecht. https://doi.org/10.1007/0-306-48053-0_7

Download citation

  • DOI: https://doi.org/10.1007/0-306-48053-0_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0829-0

  • Online ISBN: 978-0-306-48053-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics