Skip to main content

Cellular Metabolism and Physiology of Hhalophilic Microorganisms

  • Chapter
Halophilic Microorganisms and their Environments

Part of the book series: Cellular Origin, Life in Extreme Habitats and Astrobiology ((COLE,volume 5))

  • 632 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

4.5. References

  • Aitken, D.M., and Brown, A.D. 1969. Citrate and glyoxylate cycles in the halophil, Halobacterium salinarum. Biochim. Biophys. Acta 177: 351–354.

    PubMed  CAS  Google Scholar 

  • Alam, M., Lebert, M., Oesterhelt, D., and Hazelbauer, G.L. 1989. Methyl-accepting taxis proteins in Halobacterium halobium. EMBO J. 8: 631–640.

    PubMed  CAS  Google Scholar 

  • Altekar, W., and Rajagopalan, R. 1990. Ribulose bisphosphate carboxylase activity in halophilic Archaebacteria. Arch. Microbiol. 153: 169–174.

    Article  CAS  Google Scholar 

  • Altekar, W., and Rangaswamy, V. 1990. Induction of a modified EMP pathway for fructose breakdown in a halophilic archaebacterium. FEMS Microbiol. Lett. 69: 139–144.

    Article  CAS  Google Scholar 

  • Altekar, W., and Rangaswamy, V. 1991. Ketohexokinase (ATP: D-fructose 1-phosphotransferasc) initiates fructose breakdown via the modified EMP pathway in halophilic archaebacteria. FEMS Microbiol. Lett. 83:241–246.

    CAS  Google Scholar 

  • Altekar, W., and Rangaswamy, V. 1992. Degradation of endogenous fructose during catabolism of sucrose and mannitol in halophilic archaebacteria. Arch. Microbiol. 158: 356–363.

    Article  CAS  Google Scholar 

  • Alvarez-Ossorio, M., Muriana, F.J.G., De La Rosa, F.F., and Relimpio, A.M. 1992. Purification and characterization of nitrate reductase from the halophile archaebacterium Haloferax mediterranei. Z. Naturforsch. 47c: 670–676.

    Google Scholar 

  • Basinger, G.W., and Oliver, J.D. 1979. Inhibition of Halobacterium cutirubrum lipid biosynthesis by bacitracin. J. Gen. Microbiol. 111: 423–427.

    CAS  Google Scholar 

  • Begonia, G.B., and Salin, M.L. 1991. Elevation of superoxide dismutase in Halobacterium halobium by heat shock. J. Bacteriol. 173: 5582–5584.

    PubMed  CAS  Google Scholar 

  • Bertrand, J.C., Almallah, M., Aquaviva, M., and Mille, G. 1990. Biodegradation of hydrocarbons by an extremely halophilic archaebacterium. Lett. Appl. Microbiol. 11: 260–263.

    Article  CAS  Google Scholar 

  • Bhaumik, S.R., and Sonawat, H.M. 1994. Pyruvate metabolism in Halobacterium salinarium studied by intracellular13C nuclear magnetic resonance spectroscopy. J. Bacteriol. 176: 2172–21

    PubMed  CAS  Google Scholar 

  • Bickel-Sandkötter, S., Gärtner, W., and Dane, M. 1996. Conversion of energy in halobacteria: ATP synthesis and phototaxis. Arch. Microbiol. 166: 1–11.

    Article  PubMed  Google Scholar 

  • Bickel-Sandkötter, S., Wagner, V., and Schumann, D. 1998. ATP-synthesis in archaea: structure-function relations of the halobacterial A-ATPase. Photosynthesis Res. 57: 335–345.

    Article  Google Scholar 

  • Birkeland, N.K., and Ratkje, S.K. 1985. Active uptake of glutamate in vesicles of Halobacterium salinarium. Membr. Biochem. 6: 1–17.

    Article  PubMed  CAS  Google Scholar 

  • Bolobova, A.V., Simankova, M.C., and Markovich, N.A. 1992. Cellulase complex of a new halophilic bacterium Halocella cellulolytica. Mikrobiologiya 61: 804–811 (Microbiology 61: 557–562).

    CAS  Google Scholar 

  • Bonelo, G., Ventosa, A., Megías, M., and Ruiz-Berraquero, F. 1984. The sensitivity of halobacteria to antibiotics. FEMS Microbiol. Lett. 21: 341–345.

    Article  CAS  Google Scholar 

  • Bonet, M.L., and Schobert, B. 1992. The catalytic site is located on subunit I of the ATPase from Halobacterium saccharovorum — a direct photoaffinity labeling study. Eur. J. Biochem. 207: 369–376.

    Article  PubMed  CAS  Google Scholar 

  • Bonora, P., Principi, H., Hochkoeppler, A., Borghese, R., and Zannoni, D. 1998. The respiratory chain of the halophilic anoxygenic purple bacterium Rhodospirillum sodomense. Arch. Microbiol. 170: 435–441.

    Article  PubMed  CAS  Google Scholar 

  • Borowitzka, L.J. 1981. The microflora. Adaptations to life in extremely saline lakes. Hydrobiologia 81: 33–46.

    Article  Google Scholar 

  • Brandt, K.K., and Ingvorsen, K. 1997. Desulfobacter halotolerans sp. nov., a halotolerant acetate-oxidizing sulfate-reducing bacterium isolated from sediments of Great Salt Lake, Utah. Syst. Appl. Microbiol. 20: 366–373.

    Google Scholar 

  • Bräsen, C., and Schönheit, P. 2001. Mechanisms of acetate formation and acetate activation in halophilic archaea. Arch. Microbiol. 175: 360–368.

    Article  PubMed  Google Scholar 

  • Brooun, A., Zhang, W.S., and Alam, M. (1997) Primary structure and functional analysis of the soluble transducer protein HtrXI in the Archaeon Halobacterium salinarium. J. Bacteriol. 179: 2963–2968.

    PubMed  CAS  Google Scholar 

  • Brown-Peterson, N.J., and Salin, M.L. 1994. Salt stress in a halophilic bacterium: alterations in oxidative metabolism and oxy-intermediate scavenging systems. Can. J. Microbiol. 40: 1057–1063.

    Article  CAS  Google Scholar 

  • Brown-Peterson, N.J., Chen, H., and Salin, M.L. 1994. Enhanced superoxide production by membrane vesicles from Halobacterium halobium in a hyposaline environment. Biochem. Biophys. Res. Commun. 205: 1736–1740.

    Article  PubMed  CAS  Google Scholar 

  • Brown-Peterson, N.J., Begonia, G.B., and Salin, M.L. 1995. Alterations in oxidative activity and superoxide dismutase in Halobacterium halobium in response to aerobic respiratory inhibitors. Free Radical Biol. Med. 18: 249–256.

    Article  CAS  Google Scholar 

  • Bykhovsky, V.Y.A., Pusheva, M.A., Zaitseva, N.I., Zhilina, T.N., Pankovskii, D.B., and Detkova, E.N. 1994. Biosynthesis of corrinoids and its possible precursors in extremely halophilic homoacetogenic bacterium Acetohalobium arabaticum gen. nov., sp. nov. Pritladnaya Mikrobiologiya Biochimiya 30: 93–103 (in Russian).

    Google Scholar 

  • Cartení-Farina, M., Porcelli, M., Cacciapuoti, G., De Rosa, M., Gambacorta, A., Grant, W.D., and Ross, H.N.M. 1985. Polyamines in halophilic archaebacteria. FEMS Microbiol. Lett. 28: 323–327.

    Article  Google Scholar 

  • Caumette, P., Cohen, Y., and Matheron, R. 1990. Isolation and characterization of Desulfovibrio halophilus sp. nov., a halophilic sulfate-reducing bacterium isolated from Solar Lake (Sinai). Syst. Appl. Microbiol. 14: 33–38.

    Google Scholar 

  • Cayol, J.-L., Fardeau, M.-L., Garcia, J.-L., and Ollivier, B. 2002. Evidence of interspecies hydrogen transfer from glycerol in saline environments. Extremophiles 6: 131–134.

    Article  PubMed  CAS  Google Scholar 

  • Cheah, K.S. 1970. The membrane-bound ascorbate oxidase system of Halobacterium halobium. Biochim. Biophys. Acta 205: 148–160.

    Article  PubMed  CAS  Google Scholar 

  • Chen, K.Y., and Martynowicz, H. 1984. Lack of detectable polyamines in an extremely halophilic bacterium. Biochem. Biophys. Res. Commun. 30: 423–429.

    Article  Google Scholar 

  • Chow, K.-C., and Mark, K.-K. 1980. Antibiotic susceptibility of Halobacterium cutirubrum. Microbios Lett. 15: 117–122.

    CAS  Google Scholar 

  • Cimmino, C., Scoarughi, G.L., and Donini, P. 1993. Stringency and relaxation among the halobacteria. J. Bacteriol. 175: 6659–6662.

    PubMed  CAS  Google Scholar 

  • Conrad, R., Frenzel, P., and Cohen, Y. 1995. Methane emission from hypersaline microbial mats: lack of aerobic methane oxidation activity. FEMS Microbiol. Ecol. 16: 297–305.

    Article  CAS  Google Scholar 

  • Dane, M., Steinert, K., Esser, K., Bickel-Sandkötter, S., and Rodriguez-Valera, F. 1992. Properties of the plasma membrane ATPases of the halophilic archaebacteria Haloferax mediterranei and Haloferax volcanii. Z. Naturforsch. 47c: 835–844.

    Google Scholar 

  • Danon, A., and Caplan, S.R. 1977. CO 2 fixation by Halobacterium halobium. FEBS Lett. 74: 255–258.

    Article  PubMed  CAS  Google Scholar 

  • Dees, C., and Oliver, J.D. 1977. Growth inhibition of Halobacterium cutirubrum by cerulenin, a potent inhibitor of fatty acid synthesis. Biochem. Biophys. Res. Commun. 78: 36–44.

    Article  PubMed  CAS  Google Scholar 

  • DeFrank, J.J., and Cheng, T.C. 1991. Purification and properties of an organophosphorus acid anhydrase from a halophilic bacterial isolate. J. Bacteriol. 173: 1938–1943.

    PubMed  CAS  Google Scholar 

  • DeFrank, J.J., Beaudry, W.T., Cheng, T.C., Harvey, S.P., Stroup, A.N., and Szafraniec, L.L. 1993. Screening of halophilic bacteria and Alteromonas species for organophosphorus hydrolyzing enzyme activity. Chem. Biol. Interact. 87: 141–148.

    Article  PubMed  CAS  Google Scholar 

  • Del Moral, A., Roldan, E., Navarro, M., Monteoliva-Sanchez, M., and Ramos-Cormenzana, A. 1987. Formation of calcium carbonate crystals by moderately halophilic bacteria. Geomicrobiol. J. 5: 79–87.

    Article  Google Scholar 

  • Denda, K., Fujiwara, T., Seki, M., Yoshida, M., Fukumori, Y., and Yamanaka, T. 1991. Molecular cloning of the cytochrome aa 3 gene from the archaeon (archaebacterium) Halobacterium halobium. Biochem. Biophys. Res. Commun. 181: 316–322.

    Article  PubMed  CAS  Google Scholar 

  • Dhar, N.M., and Altekar, W. 1986a. A class I (Schiff base) fructose-1,6-bisphosphate aldolase of halophilic archaebacterial origin. FEBS Lett. 199: 151–154.

    Article  CAS  Google Scholar 

  • Dhar, N.M., and Altekar, W. 1986b. Distribution of class I and class II fructose bisphosphate aldolases in halophilic archaebacteria. FEMS Microbiol. Lett. 35: 177–181.

    Article  CAS  Google Scholar 

  • Doronina, N.Y., and Trotsenko, Y.A. 1997. Aerobic methylotrophic bacterial communities of hypersaline ecosystems. Mikrobiologiya 66: 130–136 (Microbiology 66: 111–117).

    Google Scholar 

  • Ducharme, L., Matheson, A.T., Yaguchi, M., and Visentin, L.P. 1972. Utilization of amino acids by Halobacterium cutirubrum in chemically defined medium. Can. J. Microbiol. 18: 1349–1351.

    Article  PubMed  CAS  Google Scholar 

  • Dundas, I.E.D. 1977. Physiology of Halobacteriaceae. Adv. Microb. Physiol. 15: 85–120.

    Article  PubMed  CAS  Google Scholar 

  • Dundas, I.D., and Halvorson, H.O. 1966. Arginine metabolism in Halobacterium salinarium, an obligately halophilic bacterium. J. Bacteriol. 91: 113–119.

    PubMed  CAS  Google Scholar 

  • Dundas, I.D., Srinivasan, V.R., and Halvorson, H.O. 1963. A chemically defined medium for Halobacterium salinarium strain I. Can. J. Microbiol. 9: 619–624.

    Article  CAS  Google Scholar 

  • Eddy, M.L., and Jablonski, P.E. 2000. Purification and characterization of a membrane-associated ATPase from Natronococcus occultus, a haloalkaliphilic archaeon. FEMS Microbiol. Lett. 189: 211–214.

    Article  PubMed  CAS  Google Scholar 

  • Emerson, D., Chauhan, S., Oriel, P., and Breznak, J.A. 1994. Haloferax sp. D1227, a halophilic Archaeon capable of growth on aromatic compounds. Arch. Microbiol. 161: 445–452.

    Article  CAS  Google Scholar 

  • Ewersmeyer-Wenk, B, Zähner, H., Krone, B., and Zeeck, A. 1981. Metabolic products of microorganisms. 207. Haloquinone, a new antibiotic active against halobacteria. I. Isolation, characterization and biological properties. J. Antibiot. 34: 1531–1537.

    PubMed  CAS  Google Scholar 

  • Fernandez-Linares, L., Acquaviva, M., Bertrand, J.-C., and Gauthier, M. 1996. Effect of sodium chloride concentration on growth and degradation of eicosane by the marine halotolerant bacterium Marinobacter hydrocarbonoclasticus. Syst. Appl. Microbiol. 19: 113–121.

    CAS  Google Scholar 

  • Ferrer, M.R., Quevedo-Sarmiento, J., Bejar, V., Delgado, R., Ramos-Cormenzana, A., and Rivadeneyra, M.A. 1988a. Calcium carbonate formation by Deleya halophila: effect of salt concentration and incubation temperature. Geomicrobiol. J. 6: 49–57.

    Article  CAS  Google Scholar 

  • Ferrer, M.R., Quevedo-Sarmiento, J., Rivadeneyra, M.A., Bejar, V., Delgado, R., and Ramos-Cormenzana, A. 1988b. Calcium carbonate precipitation by two groups of moderately halophilic microorganisms at different temperatures and salt concentrations. Curr. Microbiol. 17: 221–227.

    Article  CAS  Google Scholar 

  • Fischer, R.S., Bonner, C.A., Boone, D.R., and Jensen, R.A. 1993. Clues from a halophilic methanogen about aromatic amino acid biosynthesis in archaebacteria. Arch. Microbiol. 160: 440–446.

    Article  CAS  Google Scholar 

  • Fischer, M., Gokhman, I., Pick, U., and Zamir, A. 1996. A salt-resistant plasma membrane carbonic anhydrase is induced by salt in Dunaliella salina. J. Biol. Chem. 271: 17718–17723.

    Article  Google Scholar 

  • Fischer, M., Gokhman, I., Pick, U., and Zamir, A. 1997. A structurally novel transferrin-like protein accumulates in the plasma membrane of the unicellular green alga Dunaliella salina. J. Biol. Chem. 272: 1565–1570.

    Article  Google Scholar 

  • Fischer, M., Zamir, A, and Pick, U. 1998. Iron uptake by the halotolerant alga Dunaliella is mediated by a plasma membrane transferrin. J. Biol. Chem. 273: 17553–17558.

    Article  Google Scholar 

  • Flannery, W.L., and Kennedy, D.M. 1962. The nutrition of Vibrio costicola. I. A simplified synthetic medium. Can. J. Microbiol. 8: 923–928.

    Article  CAS  Google Scholar 

  • Forterre, P., Elie, C., and Kohiyama, M. 1984. Aphidicolin inhibits growth and DNA synthesis in halophilic archaebacteria. J. Bacteriol. 159: 800–802.

    PubMed  CAS  Google Scholar 

  • Franzmann, P.D., Stackebrandt, E., Sanderson, K., Volkmann, J.K., Cameron, D.E., Stevenson, P.L., McMeekin, T.A., and Burton, H.R. 1988. Halobacterium lacusprofundi sp. nov., a halophilic bacterium isolated from Deep Lake, Antarctica. Syst. Appl. Microbiol. 11: 20–27.

    CAS  Google Scholar 

  • Fu, W., and Oriel., P. 1998. Gentisate 1,2-dioxygenase from Haloferax sp. D1227. Extremophiles 3: 45–53.

    Article  Google Scholar 

  • Fu, W., and Oriel, P. 1999. Degradation of 3-phenylpropionic acid by Haloferax sp. D1227. Extremophiles 2: 439–446.

    Article  Google Scholar 

  • Fujiwara,, T., Fukumori, Y., and Yamanaka, T. 1987. aa3-Type cytochrome c oxidase occurs in Halobacterium halobium and its activity is inhibited by higher concentrations of salts. Plant Cell Physiol. 28: 29–36.

    CAS  Google Scholar 

  • Fujiwara, T., Fukumori, Y., and Yamanaka, T. 1989. Purification and properties of Halobacterium halobium “cytochromeaa3” which lacks CuA and CuB. J. Biochem. 105: 287–292.

    PubMed  CAS  Google Scholar 

  • Fujiwara, T., Fukumori, Y., and Yamanaka, T. 1993. Halobacterium halobium cytochrome b-558 and cytochrome b-562: purification and some properties. J. Biochem. 113: 48–54.

    PubMed  CAS  Google Scholar 

  • Fukumori, Y., Fujiwara, T., Okada-Takahashi, Y., Mukohata, Y., and Yamanaka, T. 1985. Purification and properties of a peroxidase from Halobacterium halobium L-33. J. Biochem. 98: 1055–1061.

    PubMed  CAS  Google Scholar 

  • Gauthier, M.J., Lafay, B., Christen, R., Fernandez, L., Acquaviva, M., Bonin, P., and Bertrand, J.-C. 1992. Marinobacter hydrocarbonoclasticus gen. nov., sp. nov., a new, extremely halotolerant, hydrocarbondegrading marine bacterium. Int. J. Syst. Bacteriol. 42: 568–576.

    Article  PubMed  CAS  Google Scholar 

  • Ghosh, M., and Sonawat, H.M. 1998. Kreb’s cycle in Halobacterium salinarum investigated by 13 C nuclear magnetic resonance spectroscopy. Extremophiles 2: 427–433.

    Article  PubMed  CAS  Google Scholar 

  • Giani, D., Giani, L., Cohen, Y., and Krumbein, W.E. 1984. Methanogenesis in the hypersaline Solar Lake (Sinai). FEMS Microbiol. Lett. 25: 219–224.

    Article  CAS  Google Scholar 

  • Gochnauer, M.B., and Kushner, D.J. 1969. Growth and nutrition of extremely halophilic bacteria. Can. J. Microbiol. 15: 1157–1165.

    Article  PubMed  CAS  Google Scholar 

  • Grant, M.A., and Hochstein, L.I. 1984. A dissimilatory nitrite reductase in Paracoccus halodenitrificans Arch. Microbiol. 137: 79–84.

    CAS  Google Scholar 

  • Grant, M.A., Cronin, S.E., and Hochstein, L.I. 1984. Solubilization and resolution of the membrane-bound nitrite reductase from Paracoccus halodenitrifricans into nitrite and nitric oxide reductases. Arch. Microbiol. 140: 183–186.

    Article  CAS  Google Scholar 

  • Grey, V.L., and Fitt, P.S. 1976. An improved synthetic growth medium for Halobacterium cutirubrum. Can. J. Microbiol. 22: 440–442.

    Article  PubMed  CAS  Google Scholar 

  • Hallberg, C., and Baltscheffsky, H. 1979. Partial purification of membrane-bound b-type cytochrome from Halobacterium halobium. Acta Chem. Scand. B 33: 600–601.

    Article  Google Scholar 

  • Hallberg, C., and Baltscheffsky, H. 1981. Solubilization and separation of two b-type cytochromes from a carotenoid mutant of Halobacterium halobium. FEBS Lett. 125: 201–204.

    Article  PubMed  CAS  Google Scholar 

  • Hallberg, C., and Hederstedt, L. 1981. Succinate dehydrogenase activity and succinate-reducible cytochrome in Halobacterium halobium. Acta Chem. Scand. B 35: 601–605.

    Article  Google Scholar 

  • Hallberg-Gradin, C., and Colmsjö, A. 1989, Four different b-type cytochromes in the halophilic archaebacterium, Halobacterium halobium. Arch. Biochem. Biophys. 272: 130–136.

    Article  PubMed  CAS  Google Scholar 

  • Hamaide, F., Sprott, G.D., and Kushner, D.J. 1984a. Energetics of sodium-dependent α-aminoisobutyric acid transport in the moderate halophile Vibrio costicola. Biochim. Biophys. Acta 766: 77–87.

    Article  PubMed  CAS  Google Scholar 

  • Hamaide, F., Sprott, G.D., and Kushner, D.J. 1984b. Energetic basis of development of salt-tolerant transport in a moderately halophilic bacterium, Vibrio costicola. Arch. Microbiol. 140:231–235.

    Article  CAS  Google Scholar 

  • Hamana, K. 1997. Polyamine distribution patterns within the families Aeromonadaceae, Vibrionaceae, Pasteurellaceae, and Halomonadaceae, and related genera of the gamma subclass of the Proteobacteria. J. Gen. Appl. Microbiol. 43: 49–59.

    Article  PubMed  CAS  Google Scholar 

  • Hamana, K., Kamekura, M., Onishi, H., Akazawa, T., and Matsuzaki, S. 1985. Polyamines in photosynthetic eubacteria and extreme-halophilic archaebacteria. J. Biochem. 97: 1653–1658.

    PubMed  CAS  Google Scholar 

  • Hamana, K., Hamana, H., and Itoh, T. 1995. Ubiquitous occurrence of agmatine as the major polyamine within extremely halophilic archaebacteria. J. Gen. Appl. Microbiol. 41: 153–158.

    Article  CAS  Google Scholar 

  • Hartmann, R., Sickinger, H.-D., and Oesterhelt. D. 1980. Anaerobic growth of halobacteria. Proc. Natl. Acad. Sci. USA 77: 3821–3825.

    Article  PubMed  CAS  Google Scholar 

  • Hartsel, S.C., Kolodziej, B.J., and Cassim, J.Y. 1988. Spectral evidence for cytochrome o in the brown membrane of Halobacterium halobium. Arch. Biochem. Biophys. 264: 74–81.

    Article  PubMed  CAS  Google Scholar 

  • Hayes, V.E.A., Ternan, N.G., and McMullan, G. 2000. Organophosphonate metabolism by a moderately halophilic bacterial isolate. FEMS Microbiol. Lett. 186: 171–175.

    Article  PubMed  CAS  Google Scholar 

  • Hildebrandt, P., Matysik, J., Schrader, B., Scharf, B., and Engelhard, M. 1994. Raman spectroscopic study of the blue copper protein halocyanin from Natronobacterium pharaonis. Biochemistry 33: 11426–11431.

    Article  PubMed  CAS  Google Scholar 

  • Hilpert, R., Winter, J., Hammes, W., and Kandler, O. 1981. The sensitivity of archaebacteria to antibiotics. Zbl. Baktl. Hyg., 1 Abt. Orig. C 2: 11–20.

    CAS  Google Scholar 

  • Hochman, A., Nissany, A., and Amizur, M. 1988. Nitrate reduction and assimilation by a moderately halophilic, halotolerant bacterium Ba 1 Biochim. Biophys. Acta 965: 82–89.

    CAS  Google Scholar 

  • Hochstein, L.I. 1978. Carbohydrate metabolism in the extremely halophilic bacteria: the role of glucose in the regulation of citrate synthase activity, pp. 397–412 In: Caplan, S.R., and Ginzburg, M. (Eds.), Energetics and structure of halophilic microorganisms. Elsevier/North Holland Biomedical Press, Amsterdam.

    Google Scholar 

  • Hochstein, L.I. 1988. The physiology and metabolism of the extremely halophilic bacteria, pp. 67–83 In: Rodriguez-Valera, F. (Ed.), Halophilic bacteria, Vol. II. CRC Press, Boca Raton.

    Google Scholar 

  • Hochstein, L.I. 1991. Nitrate reduction in the extremely halophilic bacteria, pp. 129–137 In: Rodriguez-Valera. F. (Ed.), General and applied aspects of halophilic microorganisms. Plenum Press, New York.

    Google Scholar 

  • Hochstein, L.I. 1992. ATP synthesis in Halobacterium saccharovorum: evidence that synthesis may be catalysed by and F 0 F 1 -ATP synthase. FEMS Microbiol. Lett. 97: 155–160.

    Article  CAS  Google Scholar 

  • Hochstein, L.I., and Lang, F. 1991. Purification and properties of a dissimilatory nitrate reductase from Haloferax denitrificans. Arch. Biochem. Biophys. 288: 380–385.

    Article  PubMed  CAS  Google Scholar 

  • Hochstein, L.I., and Lawson, D. 1993. Is ATP synthesized by a vacuolar-ATPase in the extremely halophilic bacteria? Experientia 49: 1059–1063.

    Article  CAS  Google Scholar 

  • Hochstein, L.I., and Tomlinson, G.A. 1984. The growth of Paracoccus halodenitrificans in a defined medium. Can. J. Microbiol. 30: 837–840.

    Article  PubMed  CAS  Google Scholar 

  • Hochstein, L.I., and Tomlinson, G.A. 1985. Denitrification by extremely halophilic bacteria. FEMS Microbiol. Lett. 27: 329–331.

    Article  PubMed  CAS  Google Scholar 

  • Hochstein, L.I., Dalton, B.P., and Pollock, G. 1976. The metabolism of carbohydrates by extremely halophilic bacteria: identification of galactonic acid as a product of galactose metabolism. Can. J. Microbiol. 22: 1191–1196.

    Article  PubMed  CAS  Google Scholar 

  • Hochstein, L.I., Kristjansson, H., and Altekar, W. 1987. The purification and subunit structure of a membranebound ATPase from the archaebacterium Halobacterium saccharovorum. Biochem. Biophys. Res. Commun. 147: 295–300.

    Article  PubMed  CAS  Google Scholar 

  • Hochuli, M., Patzelt, H., Oesterhelt, D., Wüthrich, K., and Szyperski, T. 1999. Amino acid biosynthesis in the halophilic archaeon Haloarcula hispanica. J. Bacteriol. 181: 3226–3237.

    PubMed  CAS  Google Scholar 

  • Holmes, M.L., and Dyall-Smith, M.L. 1991. Mutations in DNA gyrase results in novobiocin resistance in halophilic archaebacteria. J. Bacteriol. 173: 642–648.

    PubMed  CAS  Google Scholar 

  • Hou, S., Larsen, R.W., Boudko, D., Riley, C.W., Karatan, E., Zimmer, M., Ordal, G.W., and Alam, M. 2000. Myoglobin-like aerotaxis transducers in Archaea and Bacteria. Nature 203: 540–544.

    Article  CAS  Google Scholar 

  • Hunter, M.I.S., and Millar, S.J.W. 1980. Effect of wall antibiotics on the growth of the extremely halophilic coccus, Sarcina marina NCMB 778. J. Gen. Microbiol. 120: 255–258.

    CAS  Google Scholar 

  • Ihara, K., Abe, T., Sugimura, K.-I., and Mukohata, Y. 1992. Halobacterial A-ATP synthase in relation to VATPase. J. Exp. Biol. 172: 475–485.

    PubMed  CAS  Google Scholar 

  • Javor, B.J. 1983a. Planktonic standing crop and nutrients in a saltern ecosystem. Limnol. Oceanogr. 28: 153–159.

    Article  CAS  Google Scholar 

  • Javor, B.J. 1983b. Nutrients and ecology of the Western Salt and Exportadora de Sal saltern brines, pp. 195–205 In: 6th International symposium on salt, Vol. 1. Salt Institute, Toronto.

    Google Scholar 

  • Javor, B.J. 1984. Growth potential of halophilic bacteria isolated from solar salt environments: carbon sources and salt requirements. Appl. Environ. Microbiol. 48: 352–360.

    PubMed  CAS  Google Scholar 

  • Javor, B.J. 1988. CO 2 fixation in halobacteria. Arch. Microbiol. 149: 433–440.

    Article  CAS  Google Scholar 

  • Jensen, R.A., d’Amato, T.A., and Hochstein, L.I. 1988. An extreme-halophile archaebacterium possesses the interlock type of prephenate dehydratase characteristic of the Gram-positive eubacteria. Arch. Microbiol. 148: 365–371.

    Article  PubMed  CAS  Google Scholar 

  • Johnsen, U, Selig, M., Xavier, K.B., Santos, H., and Schönheit, P. 2001. Different glycolytic pathways for glucose and fructose in the halophilic archaeon Halococcus saccharolyticus. Arch. Microbiol. 175: 52–61.

    Article  PubMed  CAS  Google Scholar 

  • Jolley, K.A., Maddocks, D.G., Gyles, S.L., Mullan, Z., Tang, S.-L., Dyall-Smith, M.L., Hough, D.W., and Danson, M.J. 2000. 2-Oxoacid dehydrogenase multienzyme complexes in the halophilic Archaea? Gene sequences and protein structural predictions. Microbiology UK 146: 1061–1069.

    CAS  Google Scholar 

  • Kaidoh, K., Miyauchi, S., Abe, A., Tanabu, S., Nara, T., and Kamo, N. 1996. Rhodamine 123 efflux transporter in Haloferax volcanii is induced when cultured under ‘metabolic stress’ by amino acids: the efflux system resembles that in a doxorubicin-resistant mutant. Biochem. J. 314: 355–359.

    PubMed  CAS  Google Scholar 

  • Kalyuzhnaya, M.G., Khmelenina, V.N., Starostina, N.G., Baranova, S.B., Suzina, N.E., and Trotsenko, Y.A. 1998. A new moderately halophilic methanotroph of the genus Methylobacter. Mikrobiologiya 67: 532–539 (Microbiology 67: 438–444).

    Google Scholar 

  • Kalyuzhnaya, M.G., Khmelenina, V.N., Suzina, N.E., Lysenko, A.M., and Trotsenko, Y.A. 1999. New methanotrophic isolates from soda lakes of the southeastern Transbaikal region. Mikrobiologiya 68: 677–685 (Microbiology 68: 592–600).

    Google Scholar 

  • Kamekura, M., Wallace, R., Hipkiss, A.R., and Kushner, D.J. 1985. Growth of Vibrio costicola and other moderate halophiles in a chemically defined minimal medium. Can. J. Microbiol. 31: 870–872.

    Article  PubMed  CAS  Google Scholar 

  • Kamekura, M., Bardocz, S., Anderson, P., Wallace, R., and Kushner, D.J. 1986. Polyamines in moderately and extremely halophilic bacteria. Biochim. Biophys. Acta 880: 204–208.

    CAS  Google Scholar 

  • Karamanou, S., and Katinakis, P. 1988. Heat shock proteins in the moderately halophilic bacterium Deleya halophila: protective effect of high salt concentration against thermal shock. Ann. Microbiol. 139: 505–514.

    CAS  Google Scholar 

  • Katinakis, P. 1989. The pattern of protein synthesis induced by heat-shock of the moderately halophilic bacterium Chromobacterium marismortui. protective effect of high salt concentration against the thermal shock. Microbiologica 12: 61–67.

    PubMed  CAS  Google Scholar 

  • Kauri, T., Wallace, R., and Kushner, D.J. 1990. Nutrition of the halophilic archaebacterium, Haloferax volcanii. Syst. Appl. Microbiol. 13: 14–18.

    CAS  Google Scholar 

  • Kevbrin, V.V., and Zavarzin, G.A. 1992a. Methanethiol utilization and sulfur reduction by anaerobic halophilic saccharolytic bacteria. Curr. Microbiol. 24: 247–250.

    Article  CAS  Google Scholar 

  • Kevbrin, V.V., and Zavarzin, G.A. 1992b. Effect of sulfur compounds on the growth of the halophilic homoacetogenic bacterium Acetohalobium arabaticum. Mikrobiologiya 61: 812–817 (Microbiology 61: 563–567).

    CAS  Google Scholar 

  • Kevbrin, V.V., Zhilina, T.N., and Zavarzin, G.A. 1995. Physiology of the halophilic homoacetic bacterium Acetohalobium arabaticum. Mikrobiologiya 64: 165–170 (Microbiology 64: 134–138).

    CAS  Google Scholar 

  • Kevbrina, M.V., and Plakunov, V.K. 1992. Acetate metabolism in Natronococcus occultus. Mikrobiologiya 61: 770–775 (Microbiology 61: 534–538).

    CAS  Google Scholar 

  • Kevbrina, M.V., Zvyagintseva, I.S., and Plakunov, V.K. 1989. The uptake of [14 C] acetate in Natronococcus occultus. Mikrobiologiya 58: 892–896 (Microbiology 58: 719–723).

    CAS  Google Scholar 

  • Khmelenina, V.N., Starostina, N.G., Tsvetkova, M.G., Sokolov, A.P., Suzina, N.E., and Trotsenko, Y.A. 1996. Methanotrophic bacteria in saline reservoirs of Ukraina and Tuva. Mikrobiologiya 65: 696–703 (Microbiology 65: 609–615).

    CAS  Google Scholar 

  • Khmelenina, V.N., Kalyuzhneya, M.G., Starostina, N.G., Suzina, N.E., and Trotsenko, Y.A. 1997. Isolation and characterization of halotolerant alkaliphilic methanotrophic bacteria from Tuva soda lakes. Curr. Microbiol. 35: 257–261.

    Article  CAS  Google Scholar 

  • Khmelenina, V.N., Kalyuzhnaya, M.G., Sakharovsky, V.G., Suzina, N.E., Trotsenko, Y.A., and Gottschalk, G. 1999. Osmoadaptation in halophilic and alkaliphilic methanotrophs. Arch. Microbiol. 172: 321–329.

    Article  PubMed  CAS  Google Scholar 

  • Kneifel, H., Stetter, K.O., Andreesen, J.R., Wiegel, J., König, H., and Schoberth, S.M. 1986. Distribution of polyamines in representative species of archaebacteria. Syst. Appl. Microbiol. 7: 241–245.

    CAS  Google Scholar 

  • Kokoeva, M.V., and Oesterhelt, D. 2000. BasT, a membrane-bound transducer protein for amino acid detection in Halobacterium salinarum. Mol. Microbiol. 35: 647–656.

    Article  PubMed  CAS  Google Scholar 

  • Konishi, T., and Murakami, N. 1984. Detection of two DCCD binding components in the envelope membrane of H. halobium. FEBS Lett. 169: 283–296.

    Article  CAS  Google Scholar 

  • Koops, H.-P., and Möller, U. 1992. The lithotrophic ammonia-oxidizing bacteria, pp. 2625–2638 In: Balows, A., Trüper, H.G., Dworkin, M., Harder, W., and Schleifer, K.-H. (Eds.), The prokaryotes. A handbook on the biology of bacteria: ecophysiology, isolation, identification, applications. 2nd ed. Springer-Verlag, New York.

    Google Scholar 

  • Koops, H.-P., Böttcher, B., Möller, U., Pommerening-Röser, A., and Stehr, G. 1990. Description of a new species of Nitrosococcus. Arch. Microbiol. 154: 244–248.

    Article  CAS  Google Scholar 

  • Krekeler, D., Sigalevich, P., Teske, A., Cypionka, H., and Cohen, Y. 1997. A sulfate-reducing bacterium from the oxic layer of a microbial mat from Solar Lake (Sinai), Desulfovibrio oxyclinae sp. nov. Arch. Microbiol. 167: 369–375.

    Article  CAS  Google Scholar 

  • Krishnan, G., and Altekar, W. 1991. An unusual class I (Schiff base) fructose-1,6-bisphosphate aldolase from the halophilic archaebacterium Haloarcula vallismortis. Eur. J. Biochem. 195: 343–350.

    Article  PubMed  CAS  Google Scholar 

  • Kristjansson, H., and Hochstein, L.I. 1985. Dicyclohexylcarbodiimide-sensitive ATPase in Halobacterium saccharovorum. Arch. Biochem. Biophys. 241: 590–595.

    Article  PubMed  CAS  Google Scholar 

  • Krone, B., Hinrichs, A., and Zeeck, A. 1981. Metabolic products of microorganisms. 208. Haloquinone, a new antibiotic active against halobacteria. II. Chemical structure and derivatives. J. Antibiot. 34: 1538–1543.

    PubMed  CAS  Google Scholar 

  • Kulichevskaya, I.S., Milekhina, E.I., Borezinkov, I.A., Zvyagintseva, I.S., and Belyaev, S.S. 1991. Oxidation of petroleum hydrocarbons by extremely halophilic archaehacteria. Mikrobiologiya 60: 860–866 (Microbiology 60: 596–601).

    CAS  Google Scholar 

  • Kushner, D.J. 1993. Growth and nutrition of halophilic bacteria, pp. 87–103 In: Vreeland, R.H., and Hochstein, L.I. (Eds.), The biology of halophilic bacteria. CRC Press, Boca Raton.

    Google Scholar 

  • Lai, M.-C., and Gunsalus, R.P. 1992. Glycine betaine and potassium ion are the major compatible solutes in the extremely halophilic methanogen Methanohalophilus strain Z7302. J. Bacteriol. 174: 7474–7477.

    PubMed  CAS  Google Scholar 

  • Lai, M., Sowers, K.R., Robertson, D.E., Roberts, M.F., and Gunsalus, R.P. 1991. Distribution of compatible solutes in the halophilic methanogenic archaebacteria. J. Bacteriol. 173: 5352–5358.

    PubMed  CAS  Google Scholar 

  • Lanyi, J.K., Renthal, R., and MacDonald, R.E. 1976. Light-induced glutamate transport in Halobacterium halobium envelope vesicles. II. Evidence that the driving force is a light-dependent sodium gradient. Biochemistry 15: 1603–1610.

    Article  PubMed  CAS  Google Scholar 

  • Liaw, H.J., and Mah, R.A. 1992. Isolation and characterization of Haloanaerobacter chitinovorans gen. nov., sp. nov., a halophilic, anaerobic, chitinolytic bacterium from a solar saltern. Appl. Environ. Microbiol. 58: 260–266.

    PubMed  CAS  Google Scholar 

  • Lin, X., and White, R.H. 1987. Structure of sulfohalopterin-2 from Halobacterium marismortui. Biochemistry 26: 6211–6217.

    Article  CAS  Google Scholar 

  • Lin, X., and White, R.H. 1988. Distribution of charged pterins in nonmethanogenic archaebacteria. Arch. Microbiol. 150: 541–546.

    Article  CAS  Google Scholar 

  • Litchfield, C.D., Irby, A., and Vreeland, R.H. 1999. The microbial ecology of solar salt plants, pp. 39–52 In: Oren, A. (Ed.), Microbiology and biogeochemistry of hypersaline environments. CRC Press, Boca Raton.

    Google Scholar 

  • Lobyreva, L.B., Ivashko, R.S., and Plakunov, V.K. 1991. Intracellular pool and transport of aromatic amino acids in Halobacterium salinarium cells. Mikrobiologiya 60: 227–231 (Microbiology 60: 149–152).

    CAS  Google Scholar 

  • Lobyreva, L.B., Kokoeva, M.V., and Plakunov, V.K. 1994. Physiological role of tyrosine transport systems in Halobacterium salinarium. Arch. Microbiol. 162: 126–130.

    Article  CAS  Google Scholar 

  • Long, S., and Salin, M.L. 2000. Archaeal promoter-directed expression of the Halobacterium salinarum catalase-peroxidase gene. Extremophiles 4: 351–356.

    Article  PubMed  CAS  Google Scholar 

  • MacDonald, R.E., and Lanyi, J.K. 1975. Light-induced transport in Halobacterium halobium envelope vesicles: a chemiosmotic system. Biochemistry 14: 2882–2889.

    Article  PubMed  CAS  Google Scholar 

  • MacLeod, R.A. 1986. Salt requirements for membrane transport and solute retention in some moderate halophiles. FEMS Microbiol. Rev. 39: 109–113.

    Article  CAS  Google Scholar 

  • Majumdar, A., and Sonawat, H.M. 1998. A two-dimensional 1 H detected 13 C NMR investigation of pyruvate metabolism in Halobacterium salinarium. J. Biochem. 123: 115–119.

    PubMed  CAS  Google Scholar 

  • Maltseva, O., McGowan, C., Fulthorpe, R., and Oriel, P. 1996. Degradation of 2,4-dichlorophenoxyacetic acid by haloalkaliphilic bacteria. Microbiology UK 142: 1115–1122.

    Article  CAS  Google Scholar 

  • Mancinelli, R.L., and Hochstein, L.I. 1986. The occurrence of denitrification in extremely halophilic bacteria. FEMS Microbiol. Lett. 35: 55–58.

    Article  PubMed  CAS  Google Scholar 

  • Mancinelli, R.L., Cronin, S., and Hochstein, L.I. 1986. The purification and properties of a cd-cytochrome nitrite reductase from Paracoccus halodenitrificans. Arch. Microbiol. 145: 202–208.

    Article  PubMed  CAS  Google Scholar 

  • Mankin, A.S., and Garrett, R.A. 1991. Chloramphenicol resistance mutations in the single 23S rRNA gene of the archaeon Halobacterium halobium. J. Bacteriol. 173: 3559–3563.

    PubMed  CAS  Google Scholar 

  • Martin, E.L., Duryea-Rice, T., Vreeland, R.H., Hilsabeck, L., and Davis, C. 1983. Effects of NaCl on the uptake of α-[ 14 C]aminoisobutyric acid by the halotolerant bacterium Halomonas elongata. Can. J. Microbiol. 29: 1424–1429.

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Espinosa, R.M., Marhuenda-Egea, F.C., and Bonete, M.J. 2001. Purification and characterisation of a possible assimilatory nitrite reductase from the halophile archaeon Haloferax mediterranei. FEMS Microbiol. Lett. 196: 113–118.

    Article  PubMed  CAS  Google Scholar 

  • Mattar, S., and Engelhard, M. 1997. Cytochrome ba 3 from Natronobacterium pharaonis — an archaeal four-subunit cytochrome-c type oxidase. Eur. J. Biochem. 250: 332–341.

    Article  PubMed  CAS  Google Scholar 

  • Mattar, S., Scharf, B., Kent, S.B.H., Rodewald, K., Oesterhelt, D., and Engelhard, M. 1994. The primary structure of halocyanin, an archaeal blue copper protein, predicts a lipid anchor for membrane fixation. J. Biol. Chem. 269: 14939–14945.

    PubMed  CAS  Google Scholar 

  • Matveeva, N.I., Nikolaev, Y.A., and Plakunov, V.K. 1990. Dependence of transport of amino acids into cells of halophilic and halotolerant bacteria on NaCl content and osmolarity of the medium. Mikrobiologiya 59: 5–11 (Microbiology 59: 1–5).

    CAS  Google Scholar 

  • May, B.P., and Dennis, P.P. 1987. Superoxide dismutase from the extremely halophilic archaebacterium Halobacterium cutirubrum. J. Bacteriol. 169: 1417–1422.

    PubMed  CAS  Google Scholar 

  • May, B.P., Tam, P., and Dennis, P.P. 1989. The expression of the superoxide dismutase gene in Halobacterium cutirubrum and Halobacterium volcanii. Can. J. Microbiol. 35: 171–175.

    Article  PubMed  CAS  Google Scholar 

  • McMeekin, T.A., and Franzmann, P.D. 1988. Effect of temperature on the growth rates of halotolerant and halophilic bacteria isolated from Antarctic saline lakes. Polar Biol. 8: 281–285.

    Article  Google Scholar 

  • Meyer, T.E. 1985. Isolation and characterization of soluble cytochromes, ferredoxins and other chromophoric proteins from the halophilic phototrophic bacterium Ectothiorhodospira halophila. Biochim. Biophys. Acta 806: 175–183.

    Article  PubMed  CAS  Google Scholar 

  • Meyer, T.E., Fitch, J.C., Bartsch, R.G., Tollin, G., and Cusanovich, M.A. 1990a. Soluble cytochromes and a photoactive yellow protein isolated from the moderately halophilic purple phototrophic bacterium, Rhodospirillum salexigens. Biochim. Biophys. Acta 1016: 364–370.

    Article  PubMed  CAS  Google Scholar 

  • Meyer, T.E., Fitch, J.C., Bartsch, R.G., Tollin, G., and Cusanovich, M.A. 1990b. Unusual high redox potential ferredoxins and soluble cytochromes from the moderately halophilic purple phototrophic bacterium, Rhodospirillum salinarum. Biochim. Biophys. Acta 1017: 118–124.

    Article  CAS  Google Scholar 

  • Michel, H., and Oesterhelt, D. 1980. Electrochemical proton gradient across the cell membrane of Halobacterium halobium: effect of DCCD, relation to intracellular ATP, ADP and phosphate concentration, and influence of the potassium gradient. Biochemistry 19: 4607–4614.

    Article  PubMed  CAS  Google Scholar 

  • Miyauchi, S., Komatsubara, M., and Kamo, K. 1992. In archaebacteria, there is a doxorubicin efflux pump similar to mammalian P-glycoprotein. Biochim. Biophys. Acta 1110: 144–150.

    Article  PubMed  CAS  Google Scholar 

  • Miyauchi, S., Tanabu, S., Abe, A., Okumura, R., and Kamo, N. 1997. Culture in the presence of sugars increases activity of multi-drug efflux transporter on Haloferax volcanii. Microb. Drug Resist. 3: 359–363.

    Article  PubMed  CAS  Google Scholar 

  • Moldoveanu, N., and Kates, M. 1989. Effect of bacitracin on growth and phospholipid, glycolipid and bacterioruberin biosynthesis in Halobacterium cutirubrum. J. Gen. Microbiol. 135: 2504–2508.

    Google Scholar 

  • Monstadt, G.M., and Holldorf, A.M. 1991. Arginine deiminase from Halobacterium salinarum: purification and properties. Biochem. J. 273: 739–746.

    PubMed  CAS  Google Scholar 

  • Montalvo-Rodriguez, R., López-Garriga, J., Vreeland, R.H., Oren, A., Ventosa, A., and Kamekura, M. 2000. Haloterrigena thermotolerans sp. nov., a halophilic Archaeon from Puerto Rico. Int. J. Syst. Evol. Microbiol. 50: 1065–1071.

    PubMed  CAS  Google Scholar 

  • Montero, C.G., Ventosa, A., Rodriguez-Valera, F., Kates, M., Moldoveanu, N., and Ruiz-Berraquero, F. 1989. Halococcus saccharolyticus sp. nov., a new species of extremely halophilic non-alkaliphilic cocci. Syst. Appl. Microbiol. 12: 167–171.

    Google Scholar 

  • Moschettini, G., Hochkoeppler, A., Monti, B., Benelli, B., and Zannoni, D. 1997. The electron transport system of the halophilic purple nonsulfur bacterium Rhodospirillum salinarum. 1. A functional and thermodynamic analysis of the respiratory chain in aerobically and photosynthetically grown cells. Arch. Microbiol. 168: 302–309.

    Article  PubMed  CAS  Google Scholar 

  • Moschettini, G., Bonora, P., Zaccherini, E., Hochkoeppler, A., Principi, I., and Zannoni, D. 1999. The primary quinone acceptor and the membrane-bound c-type cytochromes of the halophilic purple nonsulftir bacterium Rhodospirillum salinarum: a spectroscopic and thermodynamic study. Photosyth. Res. 62: 43–53.

    Article  CAS  Google Scholar 

  • Mouné, S., Manac’h, M., Hirshler, A., Caumette, P., Willison, J.C., and Matheron, R. 1999. Haloanaerobacter salinarius sp. nov., a novel halophilic fermentative bacterium that reduces glycine-betaine to trimethylamine with hydrogen or serine as electron donors; emendation of the genus Haloanaerobacter. Int. J. Syst. Bacteriol. 49: 103–112.

    Article  PubMed  Google Scholar 

  • Mukohata, Y., and Yoshida, M. 1987a. Activation and inhibition of ATPase synthesis in cell envelope vesicles of Halobacterium halobium. J. Biochem. 101:311–318.

    PubMed  CAS  Google Scholar 

  • Mukohata, Y., and Yoshida, M. 1987b. The H + -translocating ATP synthase in Halobacterium halobium differs from F 0 F 1 -ATPase/synthase. J. Biochem. 102: 797–802.

    PubMed  CAS  Google Scholar 

  • Mukohata, Y., Isoyama, M., and Fuke, A. 1986. ATP synthesis in cell envelope vesicles of Halobacterium halobium driven by membrane potential and/or base-acid transition. J. Biochem. 99: 1–8.

    PubMed  CAS  Google Scholar 

  • Mylona, P., and Katinakis, P. 1992. Oxidative stress in the moderately halophilic bacterium Deleya halophila: effect of NaCl concentration. Experientia 48: 54–57.

    Article  CAS  Google Scholar 

  • Nagata, Y., Tanaka, K., Iida, T., Kera, Y., Yamada, R., Nakajima, Y., Fujiwara, T., Fukumori, Y., Yamanaka, T., Koga, Y., Tsuji, S., and Kawaguchi-Nagata, K. 1999. Occurrence of D-amino acids in a few archaea and dehydrogenase activities in hyperthermophile Pyrobaculum islandicum. Biochim. Biophys. Acta 1435: 160–166.

    Article  PubMed  CAS  Google Scholar 

  • Nanba, T., and Mukohata, Y. 1987. A membrane-bound ATPase from Halobacterium halobium: purification and characterization. J. Biochem. 102: 591–598.

    PubMed  CAS  Google Scholar 

  • Newton, G.L., and Javor, B. 1985. γ-Glutamylcysteine and thiosulfate are the major low-molecular-weight thiols in halobacteria. J. Bacteriol. 161: 438–441.

    PubMed  CAS  Google Scholar 

  • Ng, W.V., Kennedy, S.P., Mahairas, G.G., Berquist, B., Pan, M, Shukla, H.D., Lasky, S.R., Baliga, N.S., Thorsson, V., Sbrogna, J., Swartzell, S., Weir, D., Hall, J., Dahl, T.A., Welti, R., Goo, Y.A., Leithauser, B., Keller, K., Cruz, R., Danson, M.J., Hough, D.W., Maddocks, D.G., Jablonski, P.E., Krebs, M.P., Angevine, C.M., Dale, H., Isenberger, T.A., Peck, R.F., Pohlschroder, M., Spudich, J.L, Jong, K.-H., Alam, M., Freitas, T., Hou, S., Daniels, C.J., Dennis, P.P., Omer, A.D., Ebhardt, H., Lowe, T.M., Liang, P., Riley, M., Hood, L., and DasSarma, S. 2000. Genome sequence of Halobacterium species NRC-1. Proc. Natl. Acad. Sci. USA 97: 12176–12181.

    Article  PubMed  CAS  Google Scholar 

  • Nikolayev, Y.A., and Matveyeva, N.I. 1990a. A comparative study of the energization of alanine transport in the moderately halophilic bacterium Vibrio costicola and in the halotolerant bacterium Micrococcus varians, at different pH. Mikrobiologiya 59: 933–937 (Microbiology 59: 643–646).

    Google Scholar 

  • Nikolayev, Y.A., Matveyeva, N.I., and Plakunov, V.K. 1990b. Properties of amino acids transport systems in some weak and temperate halophiles and in halotolerant bacteria. Mikrobiologiya 59: 213–221 (Microbiology 59: 132–138).

    Google Scholar 

  • Nissenbaum, A., Stiller, M., and Nishri, A. 1990. Nutrients in pore waters from Dead Sea sediments. Hydrobiologia 197: 83–90.

    Article  CAS  Google Scholar 

  • Oesterhelt, D. 1982. Anaerobic growth of halobacteria. Meth. Enzymol. 88: 417–420.

    Article  Google Scholar 

  • Oesterhelt, D., and Krippahl, G. 1983. Phototrophic growth of halobacteria and its use for isolation of photosynthetically-deficient mutants. Ann. Microbiol. 134B: 137–150.

    CAS  Google Scholar 

  • Oh-Hama, T., Stolowich, N.J., and Scott, A.I. 1991. 5-Aminolevulinic acid biosynthesis in Propionibacterium shermanii and Halobacterium salinarium: distribution of the two pathways of 5-aminolevulinic acid biosynthesis in prokaryotes. J. Gen. Appl. Microbiol. 39: 513–519.

    Article  Google Scholar 

  • Ollivier, B., Hatchikian, C.E., Prensier, G., Guezennec, J., and Garcia, J.-L. 1991. Desulfohalobium retbaense gen. nov. sp. nov., a halophilic sulfate-reducing bacterium from sediments of a hypersaline lake in Senegal. Int. J. Syst. Bacteriol. 41: 74–81.

    Article  CAS  Google Scholar 

  • Ollivier, B., Caumette, P., Garcia, J.-L., and Mah, R.A. 1994. Anaerobic bacteria from hypersaline environments. Microbiol. Rev. 58: 27–38.

    PubMed  CAS  Google Scholar 

  • Ollivier, B., Fardeau, M.-L., Cayol, J.-L., Magot, M., Patel, B.K.C., Prensier, G., and Garcia, J.-L. 1998. Methanocalculus halotolerans gen. nov., sp. nov., isolated from an oil-producing well. Int. J. Syst. Bacteriol. 48:821–828.

    Article  PubMed  Google Scholar 

  • Onishi, H., McCance, M.E., and Gibbons, N.E. 1965. A synthetic medium for extremely halophilic bacteria. Can. J. Microbiol. 11: 365–373.

    Article  PubMed  CAS  Google Scholar 

  • Oremland, R.S., and King, G.M. 1989. Methanogenesis in hypersaline environments, pp. 180–190 In: Cohen, Y., and Rosenberg, E. (Eds.), Microbial mats. Physiological ecology of benthic microbial communities. American Society for Microbiology, Washington, DC.

    Google Scholar 

  • Oremland, R.S., and Miller, L.G. 1993. Biogeochemistry of natural gases in three alkaline, permanently stratified (meromictic) lakes, pp. 439–452 In: Harwell, D. (Ed.), United States Geological Service professional paper 1570.

    Google Scholar 

  • Oren, A. 1983a. Bacteriorhodopsin-mediated CO 2 photoassimilation in the Dead Sea. Limnol. Oceanogr. 28: 33–41.

    Article  CAS  Google Scholar 

  • Oren, A. 1983b. Clostridium lortetii sp. nov., a halophilic obligatory anaerobic bacterium producing endospores with attached gas vacuoles. Arch. Microbiol. 136: 42–48.

    Article  Google Scholar 

  • Oren, A. 1986. Intracellular salt concentration of the anaerobic halophilic eubacteria Haloanaerobium praevalens and Halobacteroides halobius. Can. J. Microbiol. 32: 4–9.

    CAS  Google Scholar 

  • Oren, A. 1988. Anaerobic degradation of organic compounds at high salt concentrations. Antonie van Leeuwenhoek 54: 267–277.

    Article  PubMed  CAS  Google Scholar 

  • Oren, A. 1990, Anaerobic degradation of organic compounds in hypersaline environments: possibilities and limitations, pp. 155–175 In: Wise, D.L. (Ed.), Bioprocessing and biotreatment of coal. Marcel Dekker, New York.

    Google Scholar 

  • Oren, A. 1991. Anaerobic growth of halophilic archaeobacteria by reduction of fumarate. J. Gen. Microbiol. 137: 1387–1390.

    CAS  Google Scholar 

  • Oren, A. 1993. Availability, uptake, and turnover of glycerol in hypersaline environments. FEMS Microbiol. Ecol. 12: 15–23.

    Article  CAS  Google Scholar 

  • Oren, A. 1994a. The ecology of the extremely halophilic archaca. FEMS Microbiol. Rev. 13: 415–440.

    Article  CAS  Google Scholar 

  • Oren, A. 1994b. Enzyme diversity in halophilic archaea. Microbiología SEM 10: 217–228.

    CAS  Google Scholar 

  • Oren, A. 1995a. The role of glycerol in the nutrition of halophilic archaeal communities: a study of respirator, electron transport. FEMS Microbiol. Ecol. 16: 281–290.

    Article  CAS  Google Scholar 

  • Oren, A. 1995b. Uptake and turnover of acetate in hypersaline environments. FEMS Microbiol. Ecol. 18: 75–84.

    Article  CAS  Google Scholar 

  • Oren, A. 1996. Sensitivity of selected members of the Halobacteriaceae to quinolone antimicrobial compounds. Arch. Microbiol. 165: 354–358.

    Article  PubMed  CAS  Google Scholar 

  • Oren, A. 1999. Bioenergetic aspects of halophilism. Microbiol. Mol. Biol. Rev. 63: 334–348.

    PubMed  CAS  Google Scholar 

  • Oren, A. 2001. The bioenergetic basis for the decrease in metabolic diversity at increasing salt concentrations: implications for the functioning of salt lake ecosystem. Hydrobiologia 466: 61–72.

    Article  CAS  Google Scholar 

  • Oren, A. 2002. Diversity of halophilic microorganisms: environments, phylogeny, physiology, and applications. J. Ind. Microbiol. Bioteclmol. 28: 56–63.

    CAS  Google Scholar 

  • Oren, A., and Gurevich, P. 1994a. Distribution of glycerol dehydrogenase and glycerol kinase activity in halophilic archaea. FEMS Microbiol. Lett. 118: 311–316.

    Article  CAS  Google Scholar 

  • Oren, A., and Gurevich, P. 1994b. Production of D-lactate, acetate, and pyruvate from glycerol in communities of halophilic archaea in the Dead Sea and in saltern crystallizer ponds. FEMS Microbiol. Ecol. 14: 147–156.

    CAS  Google Scholar 

  • Oren, A., and Gurevich, P. 1995a. Occurrence of the methylglyoxal bypass in halophilic Archaea. FEMS Microbiol. Lett. 125: 83–88.

    Article  CAS  Google Scholar 

  • Oren, A., and Gurevich, P. 1995b. Isocitrate lyase activity in halophilic archaea. FEMS Microbiol. Lett. 130: 91–95.

    CAS  Google Scholar 

  • Oren, A., and Litchfield, C.D. 1999. A procedure for the enrichment and isolation of Halobacterium. FEMS Microbiol. Lett. 173: 353–358.

    Article  CAS  Google Scholar 

  • Oren, A., and Shilo, M. 1985. Factors determining the development of algal and bacterial blooms in the Dead Sea: a study of simulation experiments in outdoor ponds. FEMS Microbiol. Ecol. 31: 229–237.

    Article  CAS  Google Scholar 

  • Oren, A., and Trüper, H.G. 1990. Anaerobic growth of halophilic archaeobacteria by reduction of dimethylsulfoxide and trimethylamine N-oxide. FEMS Microbiol. Lett. 70: 33–36.

    Article  CAS  Google Scholar 

  • Oren, A., Pohla, H., and Stackebrandt, E. 1987. Transfer of Clostridium lortetii to a new genus Sporohalobacter gen. nov. as Sporohalobacter lortetii comb, nov., and description of Sporohalobacter marismortui sp. nov. Syst. Appl. Microbiol. 9: 239–246.

    CAS  Google Scholar 

  • Oren, A., Gurevich, P., and Henis, Y. 1991. Reduction of nitrosubstituted aromatic compounds by the halophilic eubacteria Haloanaerobium praevalens and Sporohalobacter marismortui. Appl. Environ. Microbiol. 57: 3367–3370.

    PubMed  CAS  Google Scholar 

  • Oren, A., Gurevich, P., Azachi, M., and Henis, Y. 1992. Microbial degradation of pollutants at high salt concentrations. Biodegradation 3: 387–398.

    Article  CAS  Google Scholar 

  • Oren, A., Heldal, M., and Norland, S. 1997. X-ray microanalysis of intracellular ions in the anaerobic halophilic eubacterium Haloanaerobium praevalens. Can. J. Microbiol. 43: 588–592.

    Article  CAS  Google Scholar 

  • Oriel, P., Chauhan, S., Maltseva, O., and Fu, W. 1997. Degradation of aromatics and haloaromalics by halophilic bacteria, pp. 123–130 In: Horikoshi, K., Fukuda, M., and Kudo, T. (Eds.), Microbial diversity and genetics of biodegradation. Japan Scientific Societies Press, Tokyo/Karger, Basel.

    Google Scholar 

  • Pecher, T., and Böck, A. 1981. In vivo susceptibility of halophilic and methanogenic organisms to protein synthesis inhibitors. FEMS Microbiol. Lett. 10: 295–297.

    Article  CAS  Google Scholar 

  • Pérez-Fillol, M., Rodríguez-Valera, F., and Ferry, J.G. 1985. Isolation of methanogenic bacteria able to grow in high salt concentration. Microbiología SEM 1: 29–33.

    Google Scholar 

  • Pfeifer, F. 1988. Genetics of halobacteria, pp. 105–133 In: Rodriguez-Valera, F. (Ed.), Halophilic bacteria, Vol. II. CRC Press, Boca Raton.

    Google Scholar 

  • Piatibratov, M., Hou, S., Broom, A., Yang, A., Yang, J., Chen, H., and Alam, M. 2000. Expression and fastflow purification of a polyhistidine-tagged myoglobin-like aerotaxis transducer. Biochim. Biophys. Ada 1524: 149–154.

    CAS  Google Scholar 

  • Post, F.J. 1977. The microbial ecology of the Great Salt Lake. Microb. Ecol. 3: 143–165.

    Article  CAS  Google Scholar 

  • Post, F.J., and Stube, J.C. 1988. A microcosm study of nitrogen utilization in the Great Salt Lake, Utah. Hydrobiologia 158: 89–100.

    Article  CAS  Google Scholar 

  • Pusheva, M.A., and Detkova, E.N. 1996. Bioenergetic aspects of acetogenesis on various substrates by the extremely halophilic acetogenic bacterium Acetohalobium arabaticum. Mikrobiologiya 65: 589–593 (Microbiology 65: 516–520).

    CAS  Google Scholar 

  • Pusheva, M.A., Detkova, E.N., Bolotina, N.P., and Zhilina, T.N. 1992. Properties of periplasmatic hydrogenase of Acetohalobium arabaticum, an extremely halophilic homoacetogenic bacterium. Mikrobiologiya 61: 933–938 (Microbiology 61: 653–657).

    CAS  Google Scholar 

  • Pusheva, M.A., Pitryuk, A.V., Detkova, E.N., and Zavarzin, G.A. 1999a. Bioenergetics of acetogenesis in the extremely alkaliphilic homoacetogenic bacteria Natroniella acetigena and Natronoincola histidinivorans. Mikrobiologiya 68: 651–656 (Microbiology 68: 568–573).

    Google Scholar 

  • Pusheva, M.A., Pitryuk, A.V., and Netrusov, A.I. 1999b. Inhibitory analysis of the energy metabolism of the extremely haloalkaliphilic homoacetogenic bacterium Natroniella acetigena. Mikrobiologiya 68: 647–650 (Microbiology 68: 565–567).

    Google Scholar 

  • Rajagopalan, R., and Altekar, W. 1991. Products of non-reductive CO 2 assimilation in the halophilic archaebacterium Haloferax volcanii. Indian J. Biochem. Biophys. 28: 65–67.

    PubMed  CAS  Google Scholar 

  • Rajagopalan, R., and Altekar, W. 1994. Characterisation and purification of ribulose-bisphosphate carboxylase from heterotrophically grown halophilic archaebacterium, Haloferax mediterranei. Eur. J. Biochem. 221:863–869.

    Article  PubMed  CAS  Google Scholar 

  • Ravot, G., Magot, M., Ollivier, B., Patel, B.K.C., Ageron, E., Grimont, P.A.D., Thomas, P., and Garcia, J.-L. 1997. Haloanaerobium congolense sp. nov., an anaerobic, moderately halophilic, thiosulfate-and sulfurreducing bacterium from an African oil field. FEMS Microbiol. Lett. 147: 81–88.

    Article  PubMed  CAS  Google Scholar 

  • Rawal, N., Kelkar, S.M., and Altekar, W. 1988a. Alternative routes of carbohydrate metabolism in halophilic archaebacteria. Indian J. Biochem. Biophys. 25: 674–686.

    PubMed  CAS  Google Scholar 

  • Rawal, N., Kelkar, S.M., and Altekar, W. 1988b. Ribulose 1,5-bisphosphate dependent CO 2 fixation in the halophilic archaebacterium, Halobacterium mediterranei. Biochem. Biophys. Res. Commun. 156: 451–456.

    Article  PubMed  CAS  Google Scholar 

  • Rengpipat, S., Lowe, S.E., and Zeikus, J.G. 1988. Effect of extreme salt concentrations on the physiology and biochemistry of Halobacteroides acetoethylicus. J. Bacteriol. 170: 3065–3071.

    PubMed  CAS  Google Scholar 

  • Rivadeneyra, M.A., Delgado, R., Quesada, E., and Ramos-Cormenzana, A. 1989. Does the high Mg 2+ content inhibit the CaCO 3 precipitation by Deleya halophila?, p. 418 In: Da Costa, M.S., Duarte, J.C., and Williams, R.A.D. (Eds.), Microbiology of extreme environments and its potential for biotechnology. Elsevier Applied Science, London.

    Google Scholar 

  • Rivadeneyra, M.A., Delgado, R., Quesada, E., and Ramos-Cormenzana, A. 1991. Precipitation of calcium carbonate by Deleya halophila in media containing NaCl as sole salt. Curr. Microbiol. 22: 185–190.

    Article  CAS  Google Scholar 

  • Rivadeneyra, M.A., Delgado, R., del Moral, A., Ferrer, M.R., and Ramos-Cormenzana, A. 1994. Precipitation of calcium carbonate by Vibrio spp. from an inland saltern. FEMS Microbiol. Ecol. 13: 197–204.

    Article  CAS  Google Scholar 

  • Rivadeneyra, M.A., Ramos-Cormenzana, A., Delgado, G., and Delgado, R. 1996. Process of carbonate precipitation by Deleya halophila. Curr. Microbiol. 32: 308–313.

    Article  PubMed  CAS  Google Scholar 

  • Rivaneneyra, M.A., Delgado, G., Ramos-Cormenzana, A., and Delgado, R. 1998. Biomineralization of carbonates by Halomonas eurihalina in solid and liquid media with different salinities: crystal formation sequence. Res. Microbiol. 149: 277–287.

    Article  Google Scholar 

  • Rivadeneyra, M.A., Delgado, G., Soriano, M., Ramos-Cormenzana, A., and Delgado, R. 1999. Biomineralization of carbonates by Marinococcus albus and Marinococcus halophilus isolated from the Salar de Atacama (Chile). Curr. Microbiol. 39: 53–57.

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Valera, F., Ruiz-Berraquero, F., and Ramos-Cormenzana, A. 1980. Isolation of extremely halophilic bacteria able to grow in defined inorganic media with single carbon sources. J. Gen. Microbiol. 119:535–538.

    Google Scholar 

  • Rodriguez-Valera, F., Juez, G., and Kushner, D.J. 1983. Halobacterium mediterranei spec, nov., a new carbohydrate-utilizing extreme halophile. Syst. Appl. Microbiol. 4: 369–381.

    CAS  Google Scholar 

  • Roeßler, M.,. and Müller, V. 1998. Quantitative and physiological analyses of chloride dependence of growth in Halobacillus halophilus. Appl. Environ. Microbiol. 64: 3813–3817.

    PubMed  Google Scholar 

  • Rubentschik, L. 1929. Zur Nitrifikation bei hohen Salzkonzentrationen. Zentralbl. Bakteriol. II Abt. 77: 1–18.

    Google Scholar 

  • Rudolph, J., Nordmann, B., Storch, K.F., Gruenberg, H., Rodewald, K., and Oesterhelt, D. 1996. A family of halobacterial transducer proteins. FEMS Microbiol. Lett. 139: 161–168.

    PubMed  CAS  Google Scholar 

  • Ruepp, A., and Soppa, J. 1996. Fermentative arginine degradation in Halobacterium salinarium (formerly Halobacterium halobium): genes, gene products, and transcripts of the arcRACB gene cluster. J. Bacteriol. 178: 4942–4947.

    PubMed  CAS  Google Scholar 

  • Ruepp, A., Müller, H.N., Lottspeich, F., and Soppa, J. 1995. Catabolic ornithine transcarbamylase of Halobacterium halobium (salinarium): purification, characterization, sequence determination and evolution. J. Bacteriol. 177: 1129–1136.

    PubMed  CAS  Google Scholar 

  • Salin, ML., and Brown-Peterson, N.J. 1993. Dealing with active oxygen intermediates: a halophilic perspective. Experientia 49: 523–529.

    Article  CAS  Google Scholar 

  • Schäfer, G., Engelhard, M., and Müller, V. 1999. Bioenergetics of the archaea. Microbiol. Mol. Biol. Rev. 63: 570–620.

    PubMed  Google Scholar 

  • Scharf, B., and Engelhard, M. 1993. Halocyanin, an archaebacterial blue copper protein (type I) from Natronobacterium pharaonis. Biochemistry 32: 12894–12900.

    Article  PubMed  CAS  Google Scholar 

  • Scharf, B., Wittenberg, R., and Engelhard, M. 1997. Electron transfer proteins from the haloalkaliphilic archaeon Natronobacterium pharaonis: possible components of the respiratory chain include cytochrome bc and a terminal oxidase cytochrome ba 3. Biochemistry 36: 4471–4479.

    Article  PubMed  CAS  Google Scholar 

  • Schinzel, R., and Burger, K.J. 1984. Sensitivity of halobacteria to aphidicolin, an inhibitor of eukaryotic α-type DNA polymerases. FEMS Microbiol. Lett. 25: 187–190.

    CAS  Google Scholar 

  • Schobert, B. 1991. F1-like properties of an ATPase from the archaebacterium Halobacterium saccharovorum. J. Biol. Chem. 266: 8008–8014.

    PubMed  CAS  Google Scholar 

  • Schobert, B. 1992. The binding of a second divalent metal ion is necessary for the activation of ATP hydrolysis and its inhibition by tightly bound ADP in the ATPase from Halobacterium saccharovorum. J. Biol. Chem. 267: 10252–10257.

    PubMed  CAS  Google Scholar 

  • Schobert, B., and Lanyi, J.K. 1989. Hysteretic behavior of an ATPase from the archaebacterium Halobacterium saccharovorum. J. Biol. Chem. 264: 12805–12812.

    PubMed  CAS  Google Scholar 

  • Senyushkin, A.A., Severina, L.O., and Zhilina, T.N. 1992. Influence of the environmental conditions on glucose transport in cells of halophilic anaerobic eubacteria of the genus Halobacteroides. Mikrobiologiya 60: 796–800 (Microbiology 60: 545–549).

    Google Scholar 

  • Serrano, J.A., Camacho, M., and Bonete. M.J. 1998. Operation of glyoxylate cycle in halophilic archaea: presence of malate synthase and isocitrate lyase in Haloferax volcanii. FEBS Lett. 434: 13–16.

    Article  PubMed  CAS  Google Scholar 

  • Serrano, J.A., and Bonete, M.J. 2001. Sequencing, phylogenetic and transcriptional analysis of the glyoxylate bypass operon (ace) in the halophilic archaeon Haloferax volcanii. Biochim. Biophys. Acta 1520: 154–162.

    PubMed  CAS  Google Scholar 

  • Severina, L.O., Senyushkin, A.A., and Zhilina, T.N. 1992. Glucose transport systems in halophilic anaerobic eubacteria of the genus Halobacteroides. Mikrobiologiya 61: 353–358 (Microbiology 61: 237–242).

    CAS  Google Scholar 

  • Shand, R.F., and Perez, A.M. 1999. Haloarchaeal growth physiology, pp. 414–424 In: Seckbach, J. (Ed.), Enigmatic microorganisms and life in extreme environments. Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Simankova, M.V., Chernych, N.A., Osipov, G.A., and Zavarzin, G.A. 1993. Halocella cellulolytica gen. nov., sp. nov., a new obligately anaerobic, halophilic, cellulolytic bacterium. Syst. Appl. Microbiol. 16: 385–389.

    CAS  Google Scholar 

  • Sioud, M., Baldacci, G., Forterre, P., and de Recondo, A.-M. 1987. Antitumor drugs inhibit the growth of halophilic archaebacteria. Eur. J. Biochem. 169: 231–236.

    Article  PubMed  CAS  Google Scholar 

  • Sioud, M., Possat, O., Elie, C., Siebold, L, and Forterre, P. 1988. Coumarin and quinolone action in archaebacteria: evidence for the presence of a DNA gyrase-like enzyme. J. Bacteriol. 170: 946–953

    PubMed  CAS  Google Scholar 

  • Skyring, G.W. 1988. Acetate as the main energy substrate for the sulfate-reducing bacteria in Lake Eliza (South Australia) hypersaline sediments. FEMS Microbiol. Lett. 53: 87–94.

    Article  CAS  Google Scholar 

  • Slobodkin, A.I., and Zavarzin, G.A. 1992. Methane production in halophilic cyanobacterial mats in lagoons of Sivash Lake. Mikrobiologiya 61: 294–298 (Microbiology 61: 198–201).

    CAS  Google Scholar 

  • Sokolov, A.P., and Trotsenko, Y.A. 1995. Methane consumption in (hyper)saline habitats of Crimea (Ukraine). FEMS Microbiol. Ecol. 18: 299–304.

    Article  CAS  Google Scholar 

  • Sorokin, D., Tourova, T., Schmid, M.C., Wagner, M., Koops, H.-P., Kuenen, J.G., and Jetten, M. 2001. Isolation and properties of obligately chemolithoautotrophic and extremely alkali-tolerant ammoniaoxidizing bacteria from Mongolian soda lakes. Arch. Microbiol. 176: 170–177.

    Article  PubMed  CAS  Google Scholar 

  • Sonawat, H.M., Srivasta, R., Swaminathan, S., and Govil, G. 1990. Glycolysis and Entner-Doudoroff pathways in Halobacterium halobium: Some new observations based on 13 C NMR spectroscopy. Biochem. Biophys. Res. Commun. 173: 358–362.

    Article  PubMed  CAS  Google Scholar 

  • Sowers, K.R., Robertson, D.E., Noll, D., Gunsalus, R.P., and Roberts, M.F. 1990. NE-acctyl-β-lysine: an osmolyte synthesized by methanogenic archaebacteria. Proc. Natl. Acad. Sci. USA 87: 9083–9087.

    Article  PubMed  CAS  Google Scholar 

  • Sreeramulu, K., Schmidt, C.L., Schäfer, G., and Anemüller, S. 1998. Studies on the electron transport chain of the euryarchaeon Halobacterium salinarum: indications for a type II NADH dehydrogenase and a complex III analog. J. Bioenerg. Biomembr. 30: 443–453.

    Article  PubMed  CAS  Google Scholar 

  • Stan-Lotter, H., and Hochstein, L.I. 1989. A comparison of an ATPase from the archaebacterium Halobacterium saccharovorum with the F 1 moiety from the Escherichia coli ATP synthase. Eur. J. Biochem. 179: 155–160.

    Article  PubMed  CAS  Google Scholar 

  • Stan-Lotter, H., Sulzner, M., Egelseer, E., Norton, C.F., and Hochstein, L.I. 1993. Comparison of membrane ATPases from extreme halophiles isolated from ancient salt deposits. Origins of Life and Evolution of the Biosphere 23: 53–64.

    Article  PubMed  CAS  Google Scholar 

  • Steinert, K., and Bickel-Sandkötter, S. 1996, Isolation, characterization, and substrate specificity of the plasma membrane ATPase of the halophilic archaeon Haloferax volcanii. Z. Naturforsch. 51c: 29–39.

    Google Scholar 

  • Steinert, K., Kroth-Pancic, P.G., and Bickel-Sandkötter, S. 1995. Nucleotide sequence of the ATPase A and B subunits of the halophilic archaebacterium Haloferax volcanii and characterization of the enzyme. Biochitn. Biophys. Acta 149: 137–144.

    Article  Google Scholar 

  • Steinert, K., Wagner, V., Kroth-Pancic, G., and Bickel-Sandkötter, S. 1997. Characterization and subunit structure of the ATP synthase of the halophilic archaeon Haloferax volcanii and organization of the ATP synthase genes. J. Biol. Chem. 272: 6261–6269.

    Article  PubMed  CAS  Google Scholar 

  • Stephens, D.W., and D.M. Gillespie. 1976. Phytoplankton production in the Great Salt Lake, Utah, and a laboratory study of algal response to enrichment. Limnol. Oceanogr. 21: 74–87.

    Article  CAS  Google Scholar 

  • Stevenson, J. 1966. The specific requirement for sodium chloride for the active uptake of L-glutamate by Halobacterium salinarium. Biochem. J. 99: 257–260.

    PubMed  CAS  Google Scholar 

  • Storch, K.-F., Rudolph, J., and Oesterhelt, D. 1999. Car: a cytoptasmic sensor responsible for argininc chemotaxis in the archaeon Halobacterium salinarum. EMBO J. 18: 1146–1158.

    Article  PubMed  CAS  Google Scholar 

  • Sulzner, M., Stan-Lotter, H., and Hochstein, L.I. 1992. Nucleotide protectable labeling of sulfhydryl groups in subunit I of the ATPase from Halobacterium saccharovorum. Arch. Biochem. Biophys. 296: 347–349.

    Article  PubMed  CAS  Google Scholar 

  • Sundquist, A.R., and Fahey, R.C. 1988. The novel disulfide reductase bis-γ-glutamylcystine reductase and dihydrolipoamide dehydrogenase from Halobacterium halobium: purification by immobilized metal-ion affinity chromatography and properties of the enzymes. J. Bacteriol. 170: 3459–3467.

    PubMed  CAS  Google Scholar 

  • Sundquist, A.R., and Fahey, R.C. 1989. The function of γ-glutamylcysteine and bis-γ-glutamylcysteine reductase in Halobacterium halobium. J. Biol. Chem. 264: 719–725.

    PubMed  CAS  Google Scholar 

  • Switzer Blum, J., Stolz, J.F., Oren, A., and Oremland, R.S. 2001. Selenihalanaerobacter shriftii gen. nov., sp. nov., a halophilic anaerobe from Dead Sea sediments that respires selenate. Arch. Microbiol. 175: 208–219.

    Article  Google Scholar 

  • Sydow, U, Wohland, P., Wolke, I., and Cypionka, H. 2002. Bioenergetics of the alkaliphilic sulfate-redticing bacterium Desulfonatronovibrio hydrogenovorans. Microbiology UK 148: 853–860.

    CAS  Google Scholar 

  • Takano, J., Kaidoh, K., and Kamo, N. 1995. Fructose transport by Haloferax volcanii. Can. J. Microbiol. 41: 241–246.

    Article  CAS  Google Scholar 

  • Takao, M., Kobayashi, T., Oikawa, A., and Yasui, A. 1989. Tandem arrangement of photolyase and superoxide dismutase genes in Halobacterium halobium. J. Bacteriol. 171: 6323–6329.

    PubMed  CAS  Google Scholar 

  • Tanaka, T., Burgess, J.G., and Wright, P.C. 2001. High-pressure adaptation by salt stress in a moderately halophilic bacterium obtained from open seawater. Appl. Microbiol. Biotechnol. 57: 200–204.

    Article  PubMed  CAS  Google Scholar 

  • Tanaka, M., Ogawa, N., Ihara, K., Sugiyama, Y., and Mukohata, Y. 2002. Cytochrome aa 3 in Haloferax volcanii. J. Bacteriol. 184: 840–855.

    Article  PubMed  CAS  Google Scholar 

  • Tawara, E., and Kamo, N. 1991. Glucose transport of Haloferax volcanii requires the Na + -electrochemical potential gradient and inhibitors for the mammalian glucose transporter inhibit the transport. Biochim. Biophys. Acta 1070: 293–299.

    Article  PubMed  CAS  Google Scholar 

  • Ternan, N.G., and McMullan, G. 2002. Utilisation of aminomethane sulfonate by Chromohalobacter marismortui VH1. FEMS Microbiol. Lett. 207: 49–53.

    Article  PubMed  CAS  Google Scholar 

  • Then, J., and Trüper, H.G. 1983. Sulfide oxidation in Ectothiorhodospira abdelmalekii. Evidence for the catalytic role of cytoclirome c-551. Arch. Microbiol. 135: 254–258.

    Article  CAS  Google Scholar 

  • Tindall, B.J. 1992. The family Halobacteriaceae, pp. 768–808. In: Balows, A., Trüper, H.G., Dworkin, M., Harder, W., and Schleifer, K.-H. (Eds.), The Prokaryotes. A handbook on the biology of bacteria: ecophysiology, isolation, identification, applications. Vol. I. Springer-Verlag, New York.

    Google Scholar 

  • Tindall, B.J., and Trüper, H.G. 1986. Ecophysiology of the aerobic halophilic archaebacteria. Syst. Appl. Microbiol. 7: 202–212.

    CAS  Google Scholar 

  • Tomlinson, G.A., and Hochstein, L.I. 1972a. Isolation of carbohydrate metabolizing, extremely halophilic bacteria. Can. J. Microbiol. 18: 698–701.

    Article  PubMed  CAS  Google Scholar 

  • Tomlinson, G.A., and Hochstein, L.I. 1972b. Studies on acid production during carbohydrate metabolism by extremely halophilic bacteria. Can. J. Microbiol. 18: 1973–1976.

    Article  PubMed  CAS  Google Scholar 

  • Tomlinson, G.A., and Hochstein, L.I. 1976. Halobacterium saccharovorum sp. nov., a carbohydratemetabolizing, extremely halophilic bacterium. Can. J. Microbiol. 22: 587–591.

    Article  PubMed  CAS  Google Scholar 

  • Tomlinson, G.A., Koch, T.K., and Hochstein, L.I. 1974. The metabolism of carbohydrates by extremely halophilic bacteria: glucose metabolism via a modified Entner-Doudoroff pathway. Can. J. Microbiol. 20: 1085–1091.

    Article  CAS  Google Scholar 

  • Tomlinson, O.A., Strohm, M.P., and Hochstein, L.I. 1978. The metabolism of carbohydrates by extremely halophilic bacteria: the identification of lactobionic acid as a product of lactose metabolism by Halobacterium saccharovorum. Can. J. Microbiol. 24: 898–903.

    Article  PubMed  CAS  Google Scholar 

  • Tomlinson, G.A., Jahnke, L.L., and Hochstein, L.I. 1986. Halobacterium denitrificans sp. nov., an extremely halophilic denitrifying bacterium. Int. J. Syst. Bacteriol. 36: 66–70.

    Article  PubMed  CAS  Google Scholar 

  • Trotsenko, Y.A., and Khmelenina, V.N. 2002a. Biology of extremophilic and extremotolerant methanotrophs. Arch. Microbiol. 177: 123–131.

    Article  PubMed  CAS  Google Scholar 

  • Trotsenko, Y.A., and Khmelenina, V.N. 2002b. The biology and osmoadaptation of haloalkaliphilic methanotrophs. Mikrobiologiya 71: 149–159 (Microbiology 71: 123–132).

    Google Scholar 

  • Tsai, C.-R., Garcia, J.-L., Patel, B.K.C., Cayol, J.-L., Baresi, L, and Mah, R.A. 1995. Haloanaerobium alcaliphilum sp. nov., an anaerobic moderate halophile from the sediments of Great Salt Lake, Utah. Int. J. Syst. Bacteriol. 45: 301–307.

    Article  CAS  Google Scholar 

  • Ventosa, A, Nieto, J.J., and Oren, A. 1998. Biology of moderately halophilic aerobic bacteria. Microbiol. Mol. Biol. Rev. 62: 504–544.

    PubMed  CAS  Google Scholar 

  • Wais, A.C. 1988. Recovery of halophilic archaebacteria from natural environments. FEMS Microbiol. Ecol. 53: 211–216.

    Article  Google Scholar 

  • Wanner, C., and Soppa, J. 1999. Genetic identification of three ABC transporters as essential elements for nitrate respiration in Haloferax volcanii. Genetics 152: 1417–1428.

    PubMed  CAS  Google Scholar 

  • Welsh, D.T., Lindsay, Y.E., Caumette, P., Herbert, R.A., and Hannan, J. 1996. Identification of trehalose and glycine betaine as compatible solutes in the moderately halophilic sulfate reducing bacterium Desulfovibrio halophilus. FEMS Microbiol. Lett. 140: 203–207.

    Article  CAS  Google Scholar 

  • Wieland, F., Dompert, W., Bernhardt, G., and Sumper, M. 1980. Halobacterial glycoprotein saccharides contain covalently linked sulphate. FEBS Lett. 120: 110–114.

    Article  PubMed  CAS  Google Scholar 

  • Wieland, F., Lechner, J., and Sumper, M. 1982. The cell wall glycoprotein of Halobacterium: structural, functional and biosynthetic aspects. Zbl. Bakt. Hyg. I Abt. Orig. C 3: 161–170.

    CAS  Google Scholar 

  • Wood, A.P., and Kelly, D.P. 1991. Isolation and characterisation of Thiobacillus halophilus sp. nov., a sulphur-oxidising autotrophic eubacterium from a Western Australian hypersaline lake. Arch. Microbiol. 156: 277–280.

    Article  CAS  Google Scholar 

  • Zavarzin, G.A., Zhilina, T.N., and Pusheva, M.A. 1994. Halophilic acetogenic bacteria, pp. 432–444 In: Drake, H.L. (Ed.), Acetogenesis. Chapman & Hall, New York.

    Google Scholar 

  • Zhang, W., Brooun, A., McCandless J., Banda, P., and Alam, M. 1996. Signal transduction in the Archaeon Halobacterium salinarium is processed through three subfamilies of 13 soluble and membrane-bound transducer proteins. Proc. Natl. Acad. Sci. USA 93: 4649–4654.

    Article  PubMed  CAS  Google Scholar 

  • Zhilina, T.N., and Zavarzin, G.A. 1987. Methanohalobium evestigatus, gen. nov. sp. nov., the extremely halophilic methanogenic archaebacterium. Dokl. Akad. Nauk. SSSR 293: 464–468 (in Russian).

    CAS  Google Scholar 

  • Zhilina, T.N., and Zavarzin, G.A. 1990a. A new extremely halophilic homoacetogenic bacterium Acetohalobium arabaticum gen. nov., sp. nov. Dokl. Akad. Nauk. SSSR 311: 745–747 (in Russian).

    CAS  Google Scholar 

  • Zhilina, T.N., and Zavarzin, G.A. 1990b. Extremely halophilic, methylotrophic, anaerobic bacteria. FEMS Microbiol. Rev. 87: 315–322.

    Article  CAS  Google Scholar 

  • Zhilina, T.N., Miroshnikova, L.V., Osipov, G.A., and Zavarzin, G.A. 1992a. Halobacteroides lacunaris sp. nov., new saccharolytic, anaerobic, extremely halophilic organism from the lagoon-like hypersaline lake Chokrak. Mikrobiologiya 60: 714–724 (Microbiology 60: 495–503).

    Google Scholar 

  • Zhilina, T.N., Zavarzin, G.A., Bulygina, E.S., Kevbrin, V.V., Osipov, G.A, and Chumakov, K.M. 1992b. Ecology, physiology and taxonomy studies on a new taxon of Haloanaerobiaceae, Haloincola saccharolytica gen. nov., sp. nov. Syst. Appl. Microbiol. 15: 275–284.

    Google Scholar 

  • Zhilina, T.N., Zavarzin, G.A., Detkova, E.N., and Rainey, F.A. 1996. Natroniella acetigena gen. nov. sp. nov., an extremely haloalkaliphilic, homoacetic bacterium, a new member of Haloanaerobiales. Curr. Microbiol. 32: 320–326.

    Article  PubMed  CAS  Google Scholar 

  • Zhilina, T.N., Tourova, T.P., Lysenko, A.M., and Kevbrin, V.V. 1997. Reclassification of Halobacteroides halobius Z-7287 on the basis of phylogenetic analysis as a new species Halobacteroides elegans sp. nov. Mikrobiologiya 66: 114–121 (Microbiology 66: 97–103).

    Google Scholar 

  • Zoratti, M., and Lanyi, J.K. 1987. Phosphate transport in Halobacterium halobium depends on cellular ATP levels. J. Bacteriol. 169: 5755–5760.

    PubMed  CAS  Google Scholar 

  • Zvyagintseva, I.S., Belyaev, S.S., Borzenkov, I.A., Kostrikina, N.A., Mileklhina, E.I., and Ivanov, M.V. 1995a. Halophilic archaebacteria from the Kalamkass oil field. Mikrobiologiya 64: 83–87 (Microbiology 64: 67–71).

    Google Scholar 

  • Zvyagintseva, I.S., Gerasimenko, L.M., Kostrikina, N.A., Bulygina, E.S., and Zavarzin, G.A. 1995b. Interaction of halobacteria and cyanobacteria in a halophilic cyanobacterial community. Mikrobiologiya 64: 252–258 (Microbiology 64: 209–214).

    CAS  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Kluwer Academic Publishers

About this chapter

Cite this chapter

(2003). Cellular Metabolism and Physiology of Hhalophilic Microorganisms. In: Halophilic Microorganisms and their Environments. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol 5. Springer, Dordrecht. https://doi.org/10.1007/0-306-48053-0_5

Download citation

  • DOI: https://doi.org/10.1007/0-306-48053-0_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0829-0

  • Online ISBN: 978-0-306-48053-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics