Skip to main content

Solar Salterns

  • Chapter
  • 664 Accesses

Part of the book series: Cellular Origin, Life in Extreme Habitats and Astrobiology ((COLE,volume 5))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

14.9. References

  • Antón, J., Llobet-Brossa, E., Rodríguez-Valera, F., and Amann, R. 1999. Fluorescence in situ hybridization analysis of the prokaryotic community inhabiting crystallizer ponds. Environ. Microbiol. 1: 517–523.

    Article  PubMed  Google Scholar 

  • Antón, J., Rosselló-Mora, R., Rodríguez-Valera, F., and Amann, R. 2000. Extremely halophilic Bacteria in crystallizer ponds from solar salterns. Appl Environ Microbiol. 66: 3052–3057.

    Article  PubMed  Google Scholar 

  • Antón, J., Oren, A., Benlloch, S., Rodríguez-Valera, F., Amann, R., and Rosselló-Mora, R. 2002. Salinibacter ruber gen. nov., sp. nov., a novel extreme halophilic Bacterium from saltern crystallizer ponds. Int. J. Syst. Evol. Microbiol. 52: 485–491.

    PubMed  Google Scholar 

  • Arahal, D.R., García, M.T., Vargas, C., Cánovas, D., Nieto, J.J., and Ventosa, A. 2001. Chromohalobacter salexigens sp. nov., a moderately halophilic species that includes Halomonas elongata DSM 3043 and ATCC 33174. Int. J. Syst. Evol. Microbiol. 51: 1457–1462.

    PubMed  CAS  Google Scholar 

  • Bauld, J. 1981. Occurrence of benthic microbial mats in saline lakes. Hydrobiologia 81: 87–111.

    Article  Google Scholar 

  • Benlloch, S., Martínez-Murcia, A.J., and Rodríguez-Valera, F. 1995. Sequencing of bacterial and archaeal 16S rRNA genes directly amplified from a hypersaline environment. Syst. Appl. Microbiol. 18: 574–581.

    Google Scholar 

  • Benlloch, S., Acinas, S.G., Martínez-Murcia, A.J., and Rodríguez-Valera, F. 1996. Description of prokaryotic biodiversity along the salinity gradient of a multipond saltern by direct PCR amplification of 16S rDNA. Hydrobiologia 329: 19–31.

    Article  CAS  Google Scholar 

  • Benlloch, S., Acinas, S.G., López-López, Luz, S.P., and Rodríguez-Valera, F. 2001. Archaeal biodiversity in crystallizer ponds from a solar saltern: culture versus PCR. Microb. Ecol. 41: 12–19.

    PubMed  CAS  Google Scholar 

  • Boone, D.R., Mathrani, I.M., Liu, Y., Menaia, J.A.G.F., Mah, R.A., and Boone, J.E. 1993. Isolation and characterization of Methanohalophilus portucalensis sp. nov. and DNA reassociation study of the genus Methanohalophilus. Int. J. Syst. Bacteriol. 43: 430–437.

    Article  Google Scholar 

  • Borowitzka, L.J. 1981. The microflora. Adaptations to life in extremely saline lakes. Hydrobiologia 81: 33–46.

    Article  Google Scholar 

  • Bouchotroch, S., Quesada, E., Del Moral, A., and Bejar, V. 1999. Taxonomic study of exopolysaccharideproducing, moderately halophilic bacteria isolated from hypersaline environments in Morocco. Syst. Appl. Microbiol. 22: 412–419.

    CAS  Google Scholar 

  • Campbell, E.E., and Davis, J.S. 2000. Diatoms as indicators of pond conditions in solar saltworks, pp. 855–860 In: Geertman, R.M. (Ed.), 8th World salt symposium, Vol. 2. Elsevier, Amsterdam.

    Google Scholar 

  • Casamayor, E.O., Calderón-Paz, J.I., and Pedrós-Alió, C. 2000. 5S rRNA fingerprints of marine bacteria, halophilic archaea and natural prokaryotic assemblages along a salinity gradient. FEMS Microbiol. Ecol. 34: 113–119.

    Article  PubMed  CAS  Google Scholar 

  • Castanier, S., Perthuisot, J.-P., Matrat, M., and Morvan, J.-Y. 1999. The salt ooids of Berre salt works (Bouches du Rhône, France): the role of bacteria in salt crystallization. Sed. Geol. 125: 9–23.

    Article  CAS  Google Scholar 

  • Caumette, P. 1993. Ecology and physiology of phototrophic bacteria and sulfate-reducing bacteria in marine salterns. Experientia 49: 473–486.

    Article  CAS  Google Scholar 

  • Caumette, P., Baulaigue, R., and Matheron, R. 1988. Characterization of Chromatium salexigens sp. nov., a halophilic Chromatiaceae isolated from Mediterranean salinas. Syst. Appl. Microbiol. 10: 284–292.

    Google Scholar 

  • Caumette, P., Baulaigue, R., and Matheron, R. 1991. Thiocapsa halophila sp. nov., a new halophilic phototrophic purple sulfur bacterium. Arch. Microbiol. 155: 170–176.

    Article  Google Scholar 

  • Caumette, P., Matheron, R., Raymond, N., and Relexans, J.-C. 1994. Microbial mats in the hypersaline ponds of Mediterranean salterns (Salins-de-Giraud, France). FEMS Microbiol. Ecol. 13: 273–286.

    Article  CAS  Google Scholar 

  • Cayol, J.-L., Ducerf, S., Patel, B.K.C., Garcia, J.-L., Thomas, P., and Ollivier, B. 2000. Thermohalobacter berrensis gen. nov., sp. nov., a thermophilic, strictly halophilic bacterium from a solar saltern. Int. J. Syst. Evol. Microbiol. 50: 559–564.

    PubMed  CAS  Google Scholar 

  • Chun, J., Bae, K.S., Moon, E.Y., Jung, S.-O., Lee, H.K., and Kim, S.-J. 2000. Nocardiopsis kunsanensis sp. nov., a moderately halophilic actinomycete isolated from a saltern. Int. J. Syst. Evol. Microbiol. 50: 1909–1913.

    PubMed  CAS  Google Scholar 

  • Clavero, E., Hernández-Mariné, M., Grimalt, J.O., and Garcia-Pichel, F. 2000. Salinity tolerance of diatoms from thalassic hypersaline environments. J. Phycol. 36: 1021–1034.

    Article  Google Scholar 

  • Coleman, M.U., and White, M.A. 1993. The role of biological disturbances in the production of solar salt, pp. 623–631 In: Seventh symposium on salt, Vol. 1. Elsevier, Amsterdam.

    Google Scholar 

  • Colwell, R.R., Litchfield, C.D., Vreeland, R.H., Kiefer, L.A., and Gibbons, N.E. 1979. Taxonomic studies of red halophilic bacteria. Int. J. Syst. Bacteriol. 29: 379–389.

    Article  Google Scholar 

  • Conrad, R., Frenzel, P., and Cohen, Y. 1995. Methane emission from hypersaline microbial mats: lack of aerobic methane oxidation activity. FEMS Microbiol. Lett. 16: 297–306.

    CAS  Google Scholar 

  • Cornée, A. 1982. Bactéries des saumures et des sédiments des marais salants de Salin-de-Giraud (Sud de la France). Géol. Médit. 9: 369–389.

    Google Scholar 

  • Cornée, A. 1984. Étude préliminaire des bactéries des saumures et des sédiments des salins de Santa Pola (Espagne). Comparison avec les marais salants de Salin-de-Giraud (Sud de la France). Rev. Inv. Geol. 38/39: 109–122.

    Google Scholar 

  • Darwin, C. 1839. Journal of researches into the geology and natural history of the various countries visited by H.M.S. Beagle, under the command of Captain Fitzroy, R.N. from 1832 to 1836. Henry Colburn, London.

    Google Scholar 

  • Davis, J.S. 1974. Importance of microorganisms in solar salt production, pp. 369–372 In: Coogan, A.L. (Ed.), 4th Symposium on salt, Vol. 1. Northern Ohio Geological Society, Cleveland.

    Google Scholar 

  • Davis, J.S. 1978. Biological communities of a nutrient enriched salina. Aquat. Bot. 4: 23–42.

    Article  Google Scholar 

  • Davis, J. 1994. Biological management for problem solving and biological concepts for a new generation of solar salt works, pp. 611–616 In: Seventh symposium on salt. Vol. 1. Elsevier, Amsterdam.

    Google Scholar 

  • Davis, J.S., and Giordano, M. 1996. Biological and physical events involved in the origin, effects, and control of organic matter in solar saltworks. Int. J. Salt Lake Res. 4: 335–347.

    Article  Google Scholar 

  • Del Moral, A., Prado, B., Quesada, E., García, T., Ferrer, R., and Ramos-Cormenzana, A. 1988. Numerical taxonomy of moderately halophilic Gram-negative rods from an inland saltern. J. Gen. Microbiol. 134: 733–741.

    Google Scholar 

  • De Medeiros Rocha, R., and Camara, M.R. 1993. Prediction, monitoring and management of detrimental algal blooms on solar salt production in north-east Brazil, pp. 657–660 In: Seventh symposium on salt, Vol. 1. Elsevier, Amsterdam.

    Google Scholar 

  • Denariaz, G., Payne, W.J., and Le Gall, J. 1989. A halophilic denitrifier, Bacillus denitrificans sp. nov. Int. J. Syst. Bacteriol. 39: 145–151.

    Article  CAS  Google Scholar 

  • Des Marais, D.J. 1995. The biogeochemistry of hypersaline microbial mats, pp. 251–274 In: Jones, J.G. (Ed.), Advances in microbial ecology, Vol. 14. Plenum Press, New York.

    Google Scholar 

  • Diez, B., Antón, J., Guixa-Boixereu, N., Pedrós-Alió, C. and Rodríguez-Valera, F. 2000. Pulsed-field gel electrophoresis analysis of virus assemblages present in a hypersaline environment. Int. Microbiol. 3: 159–164.

    PubMed  CAS  Google Scholar 

  • Dulau, N., and Trauth, N. 1982. Etude des dépôts superficiels des marais salants de Salin de Giraud. Relation avec le soubassement, minéralogie et dynamique sédmentaire. Géol. Médit. 9: 501–520.

    Google Scholar 

  • Elazari-Volcani, B. 1957. Genus XII. Halobacterium. pp. 207–212 In: Breed, R.S., Murray, E.G.D., and Smith, N.R. (Eds.), Bergey’s manual of determinative bacteriology, 7th. ed. Williams & Wilkins, Baltimore.

    Google Scholar 

  • Garabito, M.J., Arahal, D.R., Mellado, E., Márquez, M.C., and Ventosa, A. 1997. Bacillus salexigens sp. nov., a new moderately halophilic Bacillus species. Int. J. Syst. Bacteriol. 47: 735–741.

    Article  PubMed  CAS  Google Scholar 

  • Garabito, M.J., Márquez, M.C., and Ventosa, A. 1998. Halotolerant Bacillus diversity in hypersaline environments. Can. J. Microbiol. 44: 95–102.

    Article  CAS  Google Scholar 

  • Gazit-Yaari, N., Lazar, B., and Erez, J. 1999. Field evidence for 13C depletion due to atmospheric CO2 invasion in hypersaline microbial mats, pp. 109–118 In: Oren, A. (Ed.), Microbiology and biogeochemistry of hypersaline environments. CRC Press, Boca Raton.

    Google Scholar 

  • Geisler, D. 1982. De la mer au sel: les faciés superficiels des marais salants de Salin-de-Giraud (Sud de la France). Géol. Médit. 9: 521–549.

    CAS  Google Scholar 

  • Gerdes, G., Krumbein, W.E., and Reineck, H.-E. 1994. Microbial mats as architects of sedimentary surface tructures, pp. 165–182 In: Krumbein, W.E., Patterson, D.M., and Stal, L.J. (Eds.), Biostabilization of sediments. BIS, Oldenburg.

    Google Scholar 

  • Giani, D., Seeler, J., Giani, L., and Krumbein, W.E. 1989a. Microbial mats and physicochemistry in a saltern in the Bretagne (France) and in a laboratory scale saltern model. FEMS Microbiol. Ecol. 62: 151–162.

    Article  CAS  Google Scholar 

  • Giani, D., Jannsen, D., Schostak, V., and Krumbein, W.E. 1989b. Methanogenesis in a saltern in the Bretagne (France). FEMS Microbiol. Ecol. 62: 143–150.

    Article  CAS  Google Scholar 

  • Goel, U., Kauri, T., Ackermann, H.-W., and Kushner, D.J. 1996. A moderately halophilic Vibrio from a Spanish saltern and its lytic bacteriophage. Can. J. Microbiol. 42: 1015–1023.

    Article  CAS  Google Scholar 

  • Golubic, S. 1980. Halophily and halotolerance in cyanophytes. Origins of Life 10: 169–183.

    Article  CAS  Google Scholar 

  • Guixa-Boixareu, N., Caldéron-Paz, J.I., Heldal, M., Bratbak, G., and Pedrós-Alió, C. 1996. Viral lysis and bacterivory as prokaryotic loss factors along a salinity gradient. Aquat. Microb. Ecol. 11: 213–227.

    Article  Google Scholar 

  • Gunde-Cimerman, N., Zalar, P., de Hoog, S., and Plemenitas, A. 2000. Hypersaline waters in salterns — natural ecological niches for halophilic black yeasts. FEMS Microbiol. Ecol. 12: 235–240.

    Google Scholar 

  • Hao, M.V., Kocur, M., and Komagata, K. 1984. Marinococcus gen. nov., a new genus for motile cocci with meso-diaminopimelic acid in the cell walls; and Marinococcus albus sp. nov., and Marinococcus halophilus (Novitsky and Kushner) comb. nov. J. Gen. Appl. Microbiol. 30: 449–459.

    Article  Google Scholar 

  • Hezayen, F.F., Rehm, B.H.A., Tindall, B.J., and Steinbüchel, A. 2001. Transfer of Natrialba asiatica B1T to Natrialba taiwanensis sp. nov. and description of Natrialba aegyptiaca sp. nov., a novel extremely halophilic, aerobic, non-pigmented member of the Archaea from Egypt that produces extracellular poly(glutamic acid). Int. J. Syst. Evol. Microbiol. 51:1133–1142.

    PubMed  CAS  Google Scholar 

  • Javor, B.J. 1983a. Planktonic standing crop and nutrients in a saltern ecosystem. Limnol. Oceanogr. 28: 153–159.

    Article  CAS  Google Scholar 

  • Javor, B.J. 1983b. Nutrients and ecology of the Western Salt and Exportadora de Sal saltern brines, pp. 195–205 In: Schreiber, B.C., and Harner, H.L. (Eds.), 6th International symposium on salt, Vol. 1. The Salt Institute, Toronto.

    Google Scholar 

  • Javor, B.J. 1984. Growth potential of halophilic bacteria isolated from solar salt environments: carbon sources and salt requirements. Appl. Environ. Microbiol. 48: 352–360.

    PubMed  CAS  Google Scholar 

  • Javor, B. 1989. Hypersaline environments. Microbiology and biogeoehemistry. Springer-Verlag, Berlin.

    Google Scholar 

  • Javor, B.J. 2002. Industrial microbiology of solar salt production. J. Ind. Microbiol. Biotechnol. 28: 42–47.

    PubMed  CAS  Google Scholar 

  • Javor, B., Requadt, C., and Stoeckenius, W. 1982. Box-shaped halophilic bacteria. J. Bacteriol. 151: 1532–1542.

    PubMed  CAS  Google Scholar 

  • Jones, A.G., Ewing, C.M., and Melvin, M.V. 1981. Biotechnology of solar salt fields. Hydrobiologia 82: 391–406.

    Article  Google Scholar 

  • Juez, G., Rodriguez-Valera, F., Ventosa, A., and Kushner, D.J. 1986. Haloarcula hispanica spec. nov. and Haloferax gibbonsii spec. nov., two new species of extremely halophilic archaebacteria. Syst. Appl. Microbiol. 8: 75–79.

    Google Scholar 

  • Kamekura, M., and Dyall-Smith, M.L. 1995. Taxonomy of the family Halobacteriaceae and the description of two new genera Halorubrobacterium and Natrialba. J. Gen. Appl. Microbiol. 41: 333–350.

    Article  CAS  Google Scholar 

  • Kamekura, M., Oesterhelt, D., Wallace, R., Anderson, P., and Kushner, D.J. 1988. Lysis of halobacteria in Bacto-peptone by bile acids. Appl. Environ. Microbiol 54: 990–995.

    PubMed  CAS  Google Scholar 

  • Khire, J.M. 1994. Production of moderately halophilic amylase by newly isolated Micrococcus sp. 4 from a salt pan. Lett. Appl. Microbiol. 19: 210–212.

    Article  CAS  Google Scholar 

  • Kis-Papo, T., and Oren. A. 2000. Halocins: are they important in the competition between different types of halobacteria in saltern ponds? Extremophiles 4: 35–41.

    PubMed  CAS  Google Scholar 

  • Klug, M., Boston, P., François, R., Gyure, R., Javor, B., Tribble, G., and Vairavamurthy, A. 1985. Sulfur reduction in sediments of marine and evaporite environments, pp. 128–157 In: Sagan, D. (Ed.), The global sulfur cycle. NASA Technical Memoir 97570, Washington, D.C.

    Google Scholar 

  • Kushner, D.J. 1965, Simple method for killing halophilic bacteria in contaminated solar salt. Appl. Microbiol. 13: 288.

    PubMed  CAS  Google Scholar 

  • Lazar, B., and Erez, J. 1990. Extreme 13C depletions in seawater-derived brines and their implications for the past geochemical carbon cycle. Geology 18: 1191–1194.

    Article  CAS  Google Scholar 

  • Lazar, B., and Erez, J. 1992. Carbon geochemistry of marine derived brines: I. 13C depletions due to intense photosynthesis. Geochim. Cosmochim. Acta 56: 335–345.

    Article  CAS  Google Scholar 

  • Lewin, R.A., Krienitz, L., Goericke, R., Takeda, H., and Hepperle, D. 2000. Picocystis salinarum gen. et sp. nov. (Chlorophyta) — a new picoplanktonic green alga. Phycologia 39: 560–565.

    Article  Google Scholar 

  • Liaw, H.J., and Mah, R.A. 1992. Isolation and characterization of Haloanaerobacter chitinovorans gen. nov., sp. nov., a halophilic, anaerobic, chitinolytic bacterium from a solar saltern. Appl. Environ. Microbiol. 58: 260–266.

    PubMed  CAS  Google Scholar 

  • Litchfield, C.D., and Gillivet, P.M. 2002. Microbiological diversity and complexity in hypersaline environments: a preliminary assessment. J. Ind. Microbiol. Biotechnol. 28: 48–55.

    PubMed  CAS  Google Scholar 

  • Litchfield, C.D., and Oren, A. 2001. Polar lipids and pigments as biomarkers for the study of the microbial community structure of solar salterns. Hydrobiologia 466: 81–89.

    Article  CAS  Google Scholar 

  • Litchfield, C.D., Irby, A., and Vreeland, R.H. 1999. The microbial ecology of solar salt plants, pp. 39–52 In: Oren, A. (Ed.), Microbiology and biogeoehemistry of hypersaline environments. CRC Press, Boca Raton.

    Google Scholar 

  • Litchfield, C.D., Irby, A., Kis-Papo, T., and Oren, A. 2000. Comparisons of the polar lipid and pigment profiles of two salterns located in Newark, California, U.S.A., and Eilat. Israel. Extremophiles 4: 259–265.

    Article  CAS  Google Scholar 

  • Litchfield, C.D., Irby, A., Kis-Papo, T., and Oren, A. 2001. Comparative metabolic diversity in two solar salterns. Hydrobiologia 466: 73–80.

    Article  Google Scholar 

  • Lizama, C., Monteoliva-Sánchez, M., Prado, B., Ramos-Cormenzana, A., Weckesser, J., and Campos, V. 2001. Taxonomic study of extreme halophilic archaea isolated from the “Salar de Atacama”, Chile. Syst. Appl. Microbiol. 24: 464–474.

    Article  PubMed  CAS  Google Scholar 

  • López-Cortés, A., and Ochoa, J.L. 1998. The biological significance of halobacteria on nucleation and sodium chloride crystal growth, pp. 903–923 In: Dubrowski, A. (Ed.), Adsorption and its applications in industry and environmental protection. Studies in surface science and catalysis, Vol. 120. Elsevier, Amsterdam.

    Google Scholar 

  • Marquez, M.C., Ventosa, A., and Ruiz-Berraquero. F. 1987. A taxonomic study of heterotrophic halophilic and non-halophilic bacteria from a solar saltern. J. Gen. Microbiol. 133: 45–56.

    Google Scholar 

  • Marquez, M.C., Ventosa, A., and Ruiz-Berraquero, F. 1990. Marinococcus hispanicus, a new species of moderately halophilic Gram-positive cocci. Int. J. Syst. Bacteriol. 40: 165–169.

    Article  Google Scholar 

  • Márquez, M.C., Quesada, E., Bejar, V., and Ventosa, A. 1993. A chemotaxonomic study of some moderately halophilic Gram-positive isolates. J. Appl. Bacteriol. 75: 604–607.

    Google Scholar 

  • Martinez-Murcia, A.J., Acinas, S.G., and Rodriguez-Valera, F. 1995. Evaluation of prokaryotic diversity by restrictase digestion of 16S rDNA directly amplified from hypersaline environments. FEMS Microbiol. Ecol. 17: 247–255.

    CAS  Google Scholar 

  • Mathrani, I.M., and Boone, D.R. 1985. Isolation and characterization of a moderately halophilic methanogen from a solar saltern. Appl. Environ. Microbiol. 50: 140–143.

    PubMed  CAS  Google Scholar 

  • Méjanelle, L., López, J.F., Gunde-Cimerman, N., and Grimalt, J.O. 2000. Sterols of melanized fungi from hypersaline environments. Org. Geochem. 31: 1031–1040.

    Article  Google Scholar 

  • Montalvo-Rodríguez., R., Vreeland, R.H., Oren, A., Kessel, M., Betancourt. C., and López-Garriga, J. 1998. Halogeometricum borinquense gen. nov., sp. nov., a novel halophilic archaeon from Puerto Rico. Int. J. Syst. Bacteriol. 48: 1305–1312.

    Article  PubMed  Google Scholar 

  • Montalvo-Rodríguez, R., López-Garriga, J., Vreeland, R.H., Oren, A., Ventosa, A., and Kamekura, M. 2000. Haloterrigena thermotolerans sp. nov., a halophilic archaeon from Puerto Rico. Int. J. Syst. Evol. Microbiol. 50: 1065–1071.

    PubMed  Google Scholar 

  • Montero, C.G., Ventosa, A., Rodriguez-Valera. F., and Ruiz-Berraquero, F. 1988. Taxonomic study of nonalkaliphilic halococci. J. Gen. Microbiol. 134: 725–732.

    Google Scholar 

  • Montero, C.G., Ventosa, A., Rodriguez-Valera, F., Kates, M., Moldoveanu, N., and Ruiz-Berraquero, F. 1989. Halococcus saccharolyticus sp. nov., a new species of extremely halophilic non-alkaliphilic cocci. Syst. Appl. Microbiol. 12: 167–171.

    Google Scholar 

  • Mota, R.R., Márquez, C., Arahal, D.R., Mellado, E., and Ventosa, A. 1997. Polyphasic taxonomy of Nesterenkonia halobia. Int. J. Syst. Bacteriol. 47: 1231–1235.

    Article  PubMed  CAS  Google Scholar 

  • Mouné, S. 2000. Biodiversité bactérienne et son étude dans les sediments anoxyques de milieux hypersalés (marais salants de Salin-de-Giraud, France). Ph.D. thesis. Université de Pau, France.

    Google Scholar 

  • Mouné, S., Manac’h, M., Hirschler, A., Caumette, P., Willison, J.C., and Matheron, R. 1999. Haloanaerobacter salinarius sp. nov., a novel halophilic fermentative bacterium that reduces glycinebetaine to trimethylamine with hydrogen or serine as electron donors; emendation of the genus Haloanaerobacter. Int. J. Syst. Bacteriol. 49: 103–112.

    Article  PubMed  Google Scholar 

  • Mouné, S., Eatock, C., Matheron, R., Willison, J.C., Hirschler, A., Herbert, R., and Caumette, P. 2000. Orenia salinaria sp. nov., a fermentative bacterium isolated from anaerobic sediments of Mediterranean salterns. Int. J. Syst. Evol. Microbiol. 50: 721–729.

    PubMed  Google Scholar 

  • Nissen, H., and Dundas, I.D. 1984. Rhodospirillum salinarum sp. nov., a halophilic photosynthetic bacterium isolated from a Portugese saltern. Arch. Microbiol. 138: 251–256.

    Article  CAS  Google Scholar 

  • Noël, D. 1982. Les Diatomées des saumures des marais salants de Salin-de-Giraud (Sud de la France). Géol. Méditerr. 9: 413–446.

    Google Scholar 

  • Norton, C.F., and Grant, W.D. 1988. Survival of halobacteria within fluid inclusions in salt crystals. J. Gen. Microbiol. 134: 1365–1373.

    Google Scholar 

  • Nübel, U., Garcia-Pichel, F., Kühl, M., and Muyzer, G. 1999. Spatial scale and the diversity of benthic cyanobacteria and diatoms in a salina. Hydrobiologia 401: 199–206.

    Article  Google Scholar 

  • Nübel, U., Garcia-Pichel, F., Clavero, E., and Muyzer, G. 2000. Matching molecular diversity and ecophysiology of benthic cyanobacteria and diatoms in communities along a salinity gradient. Environ. Microbiol. 2: 217–226.

    Article  PubMed  Google Scholar 

  • Nübel, U., Bateson, M.M., Madigan, M.T., Kühl, M., and Ward, D.M 2001. Diversity and distribution in hypersaline microbial mats of bacteria related to Chloroflexus spp. Appl. Environ. Microbiol. 67: 4365–4371.

    Article  PubMed  Google Scholar 

  • Nuttall, S.D., and Dyall-Smith, M.L,. 1993. Ch2, a novel halophilic archaeon from an Australian solar saltern. Int. J. Syst. Bacteriol. 43: 729–734.

    Article  PubMed  CAS  Google Scholar 

  • Ollivier, B., Caumette, P., Garcia, J.-L., and Mah, R.A. 1994. Anaerobic bacteria from hypersaline environments. Microbiol. Rev. 58: 27–38.

    PubMed  CAS  Google Scholar 

  • Onishi, H., and Kamekura, M. 1972. Micrococcus halobius sp. n. Int. J. Syst. Bacteriol. 22: 233–236.

    Article  Google Scholar 

  • Oren, A. 1990a. Estimation of the contribution of halobacteria to the bacterial biomass and activity in a solar saltern by the use of bile salts. FEMS Microbiol. Ecol. 73: 41–48.

    Article  CAS  Google Scholar 

  • Oren, A. 1990b. The use of protein synthesis inhibitors in the estimation of the contribution of halophilic archaebacteria to bacterial activity in hypersaline environments. FEMS Microbiol. Ecol. 73: 187–192.

    Article  CAS  Google Scholar 

  • Oren, A. 1990c. Thymidine incorporation in saltern ponds of different salinities: estimation of in situ growth rates of halophilic archaeobacteria and eubacteria. Microb. Ecol. 19: 43–51.

    Article  Google Scholar 

  • Oren, A. 1991. Estimation of the contribution of archaebacteria and eubacteria to the bacterial biomass and activity in hypersaline ecosystems: novel approaches, pp. 25–31 In: Rodriguez-Valera, F. (Ed.), General and applied aspects of halophilic bacteria. Plenum Publishing Company, New York.

    Google Scholar 

  • Oren, A. 1993a. Ecology of extremely halophilic microorganisms, pp. 25–53 In: Vreeland, R.H., and Hochstein, L.I. (Eds.), The biology of halophilic bacteria. CRC Press, Boca Raton.

    Google Scholar 

  • Oren, A. 1993b. Availability, uptake, and turnover of glycerol in hypersaline environments. FEMS Microbiol. Ecol. 12: 15–23.

    Article  CAS  Google Scholar 

  • Oren, A. 1994a. Characterization of the halophilic archaeal community in saltern crystallizer ponds by means of polar lipid analysis. Int. J. Salt Lake Res. 3: 15–29.

    Article  Google Scholar 

  • Oren, A. 1994b. The ecology of the extremely halophilic archaea. FEMS Microbiol. Rev. 13: 415–440.

    Article  CAS  Google Scholar 

  • Oren, A. 1995. Uptake and turnover of acetate in hypersaline environments. FEMS Microbiol. Ecol. 18: 75–84.

    Article  CAS  Google Scholar 

  • Oren, A. 1997. Mycosporine-like amino acids as osmotic solutes in a community of halophilic cyanobacteria. Geomicrobiol. J. 14: 233–242.

    Article  Google Scholar 

  • Oren, A. 1999. The enigma of square and triangular bacteria, pp. 337–355 In: Seckbach, J. (Ed.), Enigmatic microorganisms and life in extreme environmental habitats. Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Oren, A. 2000a. Salts and brines, pp. 281–306 In: Whitton, B.A., and Potts, M. (Eds.), Ecology of cyanobacteria: their diversity in time and space. Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Oren, A. 2000b. Life at high salt concentrations, In: Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K.-H., and Stackebrandt, E. (Eds.), The Prokaryotes. A handbook on the biology of bacteria: ecophysiology, isolation, identification, applications. 3rd. Ed. Springer-Verlag, New York (electronic publication).

    Google Scholar 

  • Oren, A. 2001. The order Halobacteriales, In: Dworkin. M., Falkow, S., Rosenberg, E., Schleifer, K.-H., and Stackebrandt, E. (Eds.), The Prokaryotes. A handbook on the biology of bacteria: ecophysiology, isolation, identification, applications. 3rd. ed. Springer-Verlag, New York (electronic publication).

    Google Scholar 

  • Oren, A. 2002. Diversity of halophilic microorganisms: environments, phylogeny, physiology and applications. J. Ind. Microbiol. Biotechnol. 28: 56–63.

    PubMed  CAS  Google Scholar 

  • Oren, A., and Dubinsky, Z. 1994. On the red coloration of saltern crystallizer ponds. II. Additional evidence for the contribution of halobacterial pigments. Int. J. Salt Lake Res. 3: 9–13.

    Article  Google Scholar 

  • Oren, A., and Gurevich, P. 1993. Characterization of the dominant halophilic archaea in a bacterial bloom in the Dead Sea. FEMS Microbiol. Ecol. 12: 249–256.

    Article  CAS  Google Scholar 

  • Oren, A., and Gurevich, P. 1994. Production of D-lactate, acetate, and pyruvate from glycerol in communities of halophilic archaea in the Dead Sea and in saltern crystallizer ponds. FEMS Microbiol. Ecol. 14: 147–156.

    CAS  Google Scholar 

  • Oren, A., and Litchfield, C.D. 1999. A procedure for the enrichment and isolation of Halobacterium species. FEMS Microbiol. Lett. 173: 353–358.

    Article  CAS  Google Scholar 

  • Oren, A., and Rodríguez-Valera, F. 2001. The contribution of Salinibacter species to the red coloration of saltern crystallizer ponds. FEMS Microbiol. Ecol. 36: 123–130.

    PubMed  CAS  Google Scholar 

  • Oren, A., Stambler, N., and Dubinsky, Z. 1992. On the red coloration of saltern crystallizer ponds. Int. J. Salt Lake Res. 1:77–89.

    Article  Google Scholar 

  • Oren, A., Kühl, M., and Karsten, U. 1995. An endoevaporitic microbial mat within a gypsum crust: zonation of phototrophs, photopigments, and light penetration. Mar. Ecol. Prog. Ser. 128: 151–159.

    Article  Google Scholar 

  • Oren, A., Duker, S., and Ritter, S. 1996. The polar lipid composition of Walsby’s square bacterium. FEMS Microbiol. Lett. 138: 135–140.

    Article  CAS  Google Scholar 

  • Orti Cabo, F., Pueyo Mur, J.J., and True, G. 1984. Las salinas marítimas de Santa Pola (Alicante, España). Breve introducción al estudio de un medio natural controlado de sedimentación evaporitica somera. Rev. Inv. Geol. 38/39: 9–29.

    Google Scholar 

  • Pavlova, P., Markova, K., Tanev, S., and Davis, J.S. 1998. Observations on a solar saltworks near Burgas, Bulgaria. Int. J. Salt Lake Res. 7: 357–368.

    Google Scholar 

  • Pedrós-Alió, C., Calderón-Paz, J.I., MacLean, M.H., Medina, G., Marassé, C., Gasol, J.M., and Guixa-Boixereu, N. 2000a. The microbial food web along salinity gradients. FEMS Microbiol. Ecol. 32: 143–155.

    PubMed  Google Scholar 

  • Pedrós-Alió, C., Calderón-Paz, J.I., and Gasol, J.M. 2000b. Comparative analysis shows that bacterivory, not viral lysis, controls the abundance of heterotrophic prokaryotic plankton. FEMS Microbiol. Ecol. 32: 157–165.

    PubMed  Google Scholar 

  • Prez-Fillol, M., Rodríguez-Valera, F., and Ferry, J.G. 1985. Isolation of methanogenic bacteria able to grow in high salt concentration. Microbiología SEM 1: 29–33.

    Google Scholar 

  • Perthuisot, J.-P., and Castanier, S. 2000. The role of extreme halophilic bacteria in precipitation of salt, pp. 847–854 In: Geertman, R.M. (Ed.), 8th World salt symposium, Vol. 2. Elsevier, Amsterdam.

    Google Scholar 

  • Pierre, C. 1985. Isotopic evidence for the dynamic redox cycle of dissolved sulphur compouds between free and interstitial solutions in marine salt pans. Chem. Geol. 53: 191–196.

    Article  CAS  Google Scholar 

  • Pierre, C., Utrilla Casal, R., Orti Cabo, F., and Pueyo Mur, J.J. 1984. Preliminary stable isotope investigations in carbonates and gypsum from the coastal Salina of Bonmati (Santa Pola, Alicante, Spain). Rev. Inv. Geol. 38/39: 229–235.

    Google Scholar 

  • Prado, B., Del Moral, A., Quesada, E., Ríos, R., Monteoliva-Sanehez, M., Campos, V., and Ramos-Connenzana, A. 1991. Numerical taxonomy of moderately halophilic Gram-negative rods isolated from the Salar de Atacama, Chile. Syst. Appl. Microbiol. 14: 275–281.

    Google Scholar 

  • Quesada, E., Bejar, V., Valderrama, M.J., Ventosa, A., and Ramos-Comenzana, A. 1985. Isolation and characterization of moderately halophilic nonmotile rods from different saline habitats. Microbiología 1: 89–96.

    PubMed  CAS  Google Scholar 

  • Quesada, E., Valderrama, M.J., Bejar, V., Ventosa, A., Ruiz-Berraquero, F., and Ramos-Cormenzana, A. 1987. Numerical taxonomy of moderately halophilic Gram-negative nonmotile eubacteria. Syst. Appl. Microbiol. 9: 132–137.

    Google Scholar 

  • Quesada, E., Valderrama, M.J., Bejar, V., Ventosa, A., Gutierrez, M.C., Ruiz-Berraquero, F., and Ramos-Connenzana, A. 1990. Volcaniella eurihalina gen. nov., sp. nov., a moderately halophilic nonmotile gram-negative rod. Int. J. Syst. Bacteriol. 40: 261–267.

    Article  CAS  Google Scholar 

  • Rahaman, A.A., Ambikadevi, M., and Sosamma-Esso. 1993. Biological management of Indian solar saltworks, pp. 633–643 In: Seventh symposium on salt, Vol. 1. Elsevier, Amsterdam.

    Google Scholar 

  • Rodriguez-Valera, F., Ruiz-Berraquero, F., and Ramos-Connenzana, A. 1980a. Behaviour of mixed populations of halophilic bacteria in continuous culture. Can. J. Micrbiol. 26: 1259–1263.

    Article  CAS  Google Scholar 

  • Rodriguez-Valera, F., Ruiz-Berraquero, F., and Ramos-Cormenzana, A. 1980b. Isolation of extremely halophilic bacteria able to grow in defined inorganic media with single carbon sources. J. Gen. Microbiol. 119: 535–538.

    Google Scholar 

  • Rodriguez-Valera, F., Ruiz-Berraquero, F., and Ramos-Cormenzana, A. 1981. Characteristics of the heterotrophic bacterial populations in hypersaline environments of different salt concentrations. Microb. Ecol. 7: 235–243.

    Article  Google Scholar 

  • Rodriguez-Valera, F., Juez, G., and Kushner, D.J. 1983. Halobacterium mediterranei spec. nov., a new carbohydrate-utilizing extreme halophile. Syst. Appl. Microbiol. 4: 369–381.

    CAS  Google Scholar 

  • Rodriguez-Valera, F., Ventosa, A., Juez, G., and Imhoff, J.F, 1985. Variation of environmental features and microbial populations with salt concentrations in a multipond saltern. Microb. Ecol. 11: 107–115.

    Article  CAS  Google Scholar 

  • Rodríguez-Valera, F., Acinas, S.G., and Antón, J. 1999. Contribution of molecular techniques to the study of microbial diversity in hypersaline environments, pp. 27–38 In: Oren, A. (Ed.), Microbiology and biogeochemistry of hypersaline environments. CRC Press, Boca Raton.

    Google Scholar 

  • Rothschild, L.J. 1991. A model for diurnal patterns of carbon fixation in a Precambrian microbial mat based on a modern analog. BioSystems 25: 13–23.

    Article  PubMed  CAS  Google Scholar 

  • Rothschild, L.J., Giver, L.J., White, M.R., and Mancinelli, R.L. 1994. Metabolic activity of microorganisms in evaporites. J. Phycol. 30: 431–438.

    Article  PubMed  CAS  Google Scholar 

  • Roux, J.M. 1996. Production of polysaccharide slime by microbial mats in the hypersaline environment of a Western Australian solar saltfield. Int. J. Salt Lake Res. 8: 103–130.

    Article  Google Scholar 

  • Sadoul, N., and Walmsley, J.G. 2000. Salinas and nature conservation in the Mediterranean, pp. 915–920 In: Geertman, R.M. (Ed.), 8th World salt symposium, Vol. 2. Elsevier, Amsterdam.

    Google Scholar 

  • Sammy, N. 1983. Biological systems in north-western Australian solar salt fields, pp. 207–215 In: Schreiber, B.C., and Harner, H.L. (Eds.), Sixth symposium on salt, Vol. 1. The Salt Institute, Toronto.

    Google Scholar 

  • Seshadri, K., and Buch, S.D. 1958. Elimination of algae in Sambhar Lake brine by chlorination. J. Sci. Indust. Res. 17A: 455–457.

    CAS  Google Scholar 

  • Stoeckenius, W. 1981. Walsby’s square bacterium: line structure of an orthogonal procaryote. J. Bacteriol. 148: 352–360.

    PubMed  CAS  Google Scholar 

  • Taher, A.G., Abd el Wahab, S., Philip, G., Krumbein, W.E., and Wali, A.M. 1995. Evaporitic sedimentation and microbial mats in a salina system (Port Fouad, Egypt). Int. J. Salt Lake Res. 4: 95–116.

    Article  Google Scholar 

  • Takashina, T., Hamamoto, T., Otozai, K., Grant, W.D., and Horikoshi, K. 1990. Haloarcula japonica sp. nov., a new triangular halophilic archaebacterium. Syst. Appl. Microbiol. 13: 177–181.

    CAS  Google Scholar 

  • Tasch, P., and Todd, B. 1974. Halophilic bacteria: experimental control and its ecological significance, pp. 373–376 In: Coogan, A.L. (Ed.), 4th Symposium on salt, Vol. 1, Northern Ohio Geological Society, Cleveland.

    Google Scholar 

  • Teixidor, P., Pueyo, J.J., Rodriguez-Valera, F., and Grimalt, J.O. 1992, Alkylglycerol diethers in recent and ancient evaporites, pp. 563–565 In: Manning, D.A.C. (Ed.), Organic geochemistry. Advances and applications in the natural environment. Manchester University Press, Manchester.

    Google Scholar 

  • Teixidor, P., Grimalt, J.O., Pueyo, J.J., and Rodriguez-Valera, F. 1993. Isopranylglycerol diethers in nonalkaline evaporitic environments. Geochim. Cosmochim. Acta 57: 4479–4489.

    Article  CAS  Google Scholar 

  • Tepšič, K., Gunde-Cimerman, N., and Frisvad, J.C. 1997. Growth and mycotoxin production by Aspergillus fumigatus strains isolated from a saltern. FEMS Microbiol. Lett. 157: 9–12.

    Article  Google Scholar 

  • Thomas, J.-C. 1984. Formations benthiques á Cyanobactéries des salins de Santa Pola (Espagne): composition spécifique, morphologie et caractéristiques biologiques des principaux peuplements. Rev. Inv. Geol. 38/39: 139–158.

    Google Scholar 

  • Tomlinson, G.A., and Hochstein, L.I. 1972. Isolation of carbohydrate-metabolizing, extremely halophilic bacteria. Can. J. Microbiol. 18: 698–701.

    Article  PubMed  CAS  Google Scholar 

  • Tomlinson, G.A., and Hochstein, L.I. 1976. Halobacterium saccharovorum sp. nov., a carbohydratemetabolizing, extremely halophilic bacterium. Can. J. Microbiol. 22: 587–591.

    Article  PubMed  CAS  Google Scholar 

  • Tomlinson, G.A., Jahnke, L.L., and Hochstein, L.I. 1986. Halobacterium denitrificans sp. nov., an extremely halophilic denitrifying bacterium. Int. J. Syst. Bacteriol. 36: 66–70.

    Article  PubMed  CAS  Google Scholar 

  • Torreblanca, M., Rodriguez-Valera, F., Juez, G., Ventosa, A., Kamekura, M., and Kates, M. 1986. Classification of non-alkaliphilic halobacteria based on numerical taxonomy and polar lipid composition, and description of Haloarcula gen. nov. and Haloferax gen. nov. Syst. Appl. Microbiol. 8: 89–99.

    Google Scholar 

  • Torrella, F. 1986. Isolation and adaptive strategies of haloarculae to extreme hypersaline habitats, p. 59 In: Abstracts of the fourth international symposium on microbial ecology, Ljubljana.

    Google Scholar 

  • Tsu, I.-H., Huang, C.-Y., Garcia, J.-L., Patel, B.K.C., Cayol, J.-L., Baresi, L., and Mah, R.A. 1998. Isolation and characterization of Desulfovibrio senezii sp. nov., a halotolerant sulfate reducer from a solar saltern and phylogenetic confirmation of Desulfovibrio fructosovorans as a new species. Arch. Microbiol. 170: 313–317.

    Article  PubMed  CAS  Google Scholar 

  • Valderrama, M.J., Quesada, E., Bejar, V., Ventosa, A., Gutierrez, M.C., Ruiz-Berraquero, F., and Ramos-Cormenzana, A. 1991. Deleya salina sp. nov., a moderately halophilic Gram-negative bacterium. Int. J. Syst. Bacteriol. 41: 377–384.

    Article  Google Scholar 

  • Ventosa, A., Ramos-Cormenzana, A., and Kocur, M. 1983. Moderately halophilic Gram-positive cocci from hypersaline environments. Syst. Appl. Microbiol. 4: 564–570.

    Google Scholar 

  • Ventosa, A., Márquez, M.C., Garabito, M.J., and Arahal, D. 1998. Moderately halophilic gram-positive bacterial diversity in hypersaline environments. Extremophiles 2: 297–304.

    Article  PubMed  CAS  Google Scholar 

  • Ventosa, A., Marquez, M.C., Ruiz-Berraquero, F., and Kocur, M. 1990. Salinicoccus roseus, gen. nov., sp. nov., a new moderately halophilic Gram-positive coccus. Syst. Appl. Microbiol. 13: 29–33.

    Google Scholar 

  • Ventura, S., De Philippis, R., Materassi, R., and Balloni, W. 1988. Two halophilic Ectothiorhodospira strains with unusual morphological, physiological and biochemical characters. Arch. Microbiol. 149: 273–279.

    Article  CAS  Google Scholar 

  • Vreeland, R.H., Litchfield, C.D., Martin, E.L., and Elliot, E. 1980. Halomonas elongata, a new genus and species of extremely salt-tolerant bacteria. Int. J. Syst. Bacteriol. 30: 485–495.

    Article  CAS  Google Scholar 

  • Wais, A.C. 1988. Recovery of halophilic archaebacteria from natural environments. FEMS Microbiol. Ecol. 53: 211–216.

    Article  Google Scholar 

  • Walsby, A.E. 1980. A square bacterium. Nature 283: 69–71.

    Article  Google Scholar 

  • Yu, I.K., and Kawamura, F. 1987. Halomethanococcus doii gen. nov., sp. nov.: an obligately halophilic methanogenic bacterium from solar salt ponds. J. Gen. Appl. Microbiol. 33: 303–310.

    Article  CAS  Google Scholar 

  • Zalar, P., de Hoog, G.S., and Gunde-Cimerman, N. 1999a Ecology of halotolerant dothideaceous black yeasts. Studies in Mycology 43: 38–48.

    Google Scholar 

  • Zalar, P., de Hoog, G.S., and Gunde-Cimerman, N. 1999b. Trimmatostroma salinum, a new species from hypersaline water. Studies in Mycology 43: 57–62.

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Kluwer Academic Publishers

About this chapter

Cite this chapter

(2003). Solar Salterns. In: Halophilic Microorganisms and their Environments. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol 5. Springer, Dordrecht. https://doi.org/10.1007/0-306-48053-0_16

Download citation

  • DOI: https://doi.org/10.1007/0-306-48053-0_16

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0829-0

  • Online ISBN: 978-0-306-48053-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics