Skip to main content

Biotechnological Applications and Potentials of Halophilic Microorganisms

  • Chapter
Halophilic Microorganisms and their Environments

Part of the book series: Cellular Origin, Life in Extreme Habitats and Astrobiology ((COLE,volume 5))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

11.5. References

  • Ackley, D.E., and Shieh, C.L. 1998. Thin film transistor bio/chemical sensor. Patent US5719033. 1998 February 17.

    Google Scholar 

  • Alberola, A., Meseguer, I., Torreblanca, M., Moya, A., Sancho, S., Polo, B., and Such, L. 1998. Halocin H7 decreases infarct size and ectopic beats after myocardial reperfusion in dogs. J. Physiol. London 509. P: 148P.

    Google Scholar 

  • Antón, J., Meseguer, I., and Rodríguez-Valera, F. 1988. Production of an extracellular polysaccharide by Haloferax mediterranei. Appl. Environ. Microbiol. 54: 2381–2386.

    PubMed  Google Scholar 

  • Asker, D., and Ohta, Y. 1999. Production of canthaxanthin by extremely halophilic bacteria. J. Biosci. Bioengin. 88: 617–621.

    Article  CAS  Google Scholar 

  • Azachi, M., Oren, A., Gurevich, P., Sarig, S., and Henis, Y. 1995. Transformation of formaldehyde by a Halomonas sp. Can. J. Microbiol. 41: 548–553.

    Article  Google Scholar 

  • Bagai, R., and Madamwar, D. 1997. Continuous production of halophilic α-amylase through whole-cell immobilization of Halobacterium salinarium. Appl. Biochem. Biotechol. 621: 213–218.

    Article  Google Scholar 

  • Bailey, D.G., and Birbir, M. 1996. The impact of halophilic organisms on the grain quality of brine cured hides. J. Am. Leather Chem. Assoc. 91: 47–51.

    CAS  Google Scholar 

  • Barth, S., Huhn, M., Matthey, B., Klimka, A., Galinski, E.A., and Englert, A. 2000. Compatible-solute supported periplasmic expression of functional recombinant proteins under stress conditions. Appl. Environ. Microbiol. 66: 1572–1579.

    Article  PubMed  CAS  Google Scholar 

  • Béjar, V., Llamas, I., Calco, C., and Quesada, E. 1998. Characterization of exopolysaccharides produced by 19 halophilic strains of the species Halomonas eurihalina. J. Biotechnol. 61: 135–141.

    Article  Google Scholar 

  • Ben-Amotz, A. 1980. Glycerol, β-carotene and dry algal meal production by commercial cultivation of Dunaliella, pp. 603–610 In: Shelef, G., and Soeder, C.J. (Eds.), Algae biomass. Elsevier, Amsterdam.

    Google Scholar 

  • Ben-Amotz, A. 1995. New mode of Dunaliella biotechnology: two-phase growth for β-carotene production. J. Appl. Phycol. 7: 65–68.

    Article  CAS  Google Scholar 

  • Ben-Amotz, A. 1999. Dunaliella β-carotene. From science to commerce, pp. 401–410 In: Seckbach, J. (Ed.), Enigmatic microorganisms and life in extreme environments. Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Ben-Amotz, A., and Avron, M. 1981. Glycerol and β-carotene metabolism in the halotolerant alga Dunaliella: a model system for biosolar energy conversion. Trends Biochem. Sci. 6: 297–299.

    Article  CAS  Google Scholar 

  • Ben-Amotz, A., and Avron, M. 1983. Accumulation of metabolites by halotolerant algae and its industrial potential. Ann. Rev. Microbiol. 37: 95–119.

    Article  CAS  Google Scholar 

  • Ben-Amotz, A., and Avron, M. 1989. The biotechnology of mass culturing Dunaliella for products of commercial interest, pp. 91–114 In: Cresswell, R.C., Rees, T.A.V., and Shah, N. (Eds.), Algal and cyanobacterial biotechnology. Longman Scientific and Technical Press, Harlow.

    Google Scholar 

  • Ben-Amotz, A., Mokady, S., and Avron, M. 1988. The β-carotene-rich alga Dunaliella bardawil as a source of retinol in a rat diet. Brit. J. Nutr. 59: 443–449.

    Article  PubMed  CAS  Google Scholar 

  • Ben-Mahrez, K., Thierry, D., Sorokine, I., Danna-Muller, A., and Kohiyama, M. 1988. Detection of circulating antibodies against c-myc protein in cancer patient sera. Brit. J. Cancer 57: 529–534.

    PubMed  CAS  Google Scholar 

  • Ben-Mahrez, K., Sorokine, I., Thierry, D., Kawasumi, T., Ishii, S., Salmon, R., and Kohiyama, M. 1991. An archaebacterial antigen used to study immunological human response to c-myc oncogen product, pp. 367–372 In: Rodriguez-Valera, F. (Ed.), General and applied aspects of halophilic microorganisms. Plenum Press, New York.

    Google Scholar 

  • Berendes, F., Gottschalk, G., Heine-Dobbernack, E., Moore, E.R.B., and Tindall, B.J. 1996. Halomonas desiderata sp. nov., a new alkaliphilic, halotolerant and denitrifying bacterium isolated from a municipal sewage works. Syst. Appl. Microbiol. 19: 158–167.

    CAS  Google Scholar 

  • Bertrand, J.C., Almallah, M., Aquaviva, M., and Mille, G. 1990. Biodegradation of hydrocarbons by an extremely halophilic archaebacterium. Lett. Appl. Microbiol. 11: 260—263.

    Article  CAS  Google Scholar 

  • Beyer, N., Driller, H., and Bünger, J. 2000. Ectoine—an innovative, ulti-functional active substance for the cosmetic industry. Seiden Ö-le Fette Wachse J. 126: 26–29.

    CAS  Google Scholar 

  • Bhupathiraju, V.K., McInerney, M.J., and Knapp, R.M. 1993. Pretest studies for a microbially enhanced oil recovery field pilot in a hypersaline oil reservoir. Geomicrobiol. J. 11: 19–34.

    Article  Google Scholar 

  • Birbir, M., and Bailey, D.G. 2000. Controlling the growth of extremely halophilic bacteria on brine cured cattle hides. J. Soc. Leather Technol. Chem. 84: 201–203.

    CAS  Google Scholar 

  • Birge, R.R. 1995. Protein-based computers. Sci. Am., March 1995: 66–71.

    Google Scholar 

  • Birge, R.R., Gillespie, N.B., Izaguire, E.W., Kusnetzow, A., Lawrence, A.F., Singh, D., Song, Q.W., Schmidt, E., Stuart, J.A., Seetharaman, S., and Wise, K.J. 1999. Biomolecular electronics: protein-based associative processors and volumetric memories. J. Phys. Chem. B 103: 10746–10766.

    Article  CAS  Google Scholar 

  • Boone, D.R., Johnson, R.L., Chen, D.C., Mathrani, I.M., and Mah, R.A. 1989. Methanogenesis and reductive dechlorination in an alkaline, hypersaline sediments and groundwater, pp. 205–215 In: Da Costa, M.S., Duarte, J.C., and Williams, R.A.D. (Eds.), Microbiology of extreme environments and its potential for biotechnology. Elsevier Applied Science, London.

    Google Scholar 

  • Borowitzka, M.A. 1986. Micro-algae as sources of fine chemicals. Microbiol. Sci. 3: 372–375.

    PubMed  CAS  Google Scholar 

  • Borowitzka, M.A. 1999. Commercial production of microalgae: ponds, tanks, tubes and fermenters. J. Biotechnol. 70: 313–321.

    Article  CAS  Google Scholar 

  • Borowitzka, L.I., Borowitzka, M.A., and Moulton, T.P. 1984. The mass culture of Dunaliella for fine chemicals: from laboratory to pilot plant. Hydrobiologia 116/117: 115–121.

    Article  Google Scholar 

  • Bouchotroch, S., Quesada, E., Izquirdo, I., Rodríguez, M., and Béjar, V. 2000. Bacterial expolysaccharides by newly discovered bacteria belonging to the genus Halomonas, isolated from hypersaline habitats in Morocco. J. Ind. Microbiol. Biotechnol. 24: 374–378.

    Article  CAS  Google Scholar 

  • Bünger, J., Axt, A., zur Lange, J., Fritz, A., Degwert, J., and Driller, H. 2000. The protection function of compatible solute ectoin on the skin, skin cells and its biomolecules with respect to UV-radiation, immunosuppression and membrane damage, pp. 359–365 In: Proceedings of the XXIth IFSCC international congress, Berlin.

    Google Scholar 

  • Calvo, C., Ferrer, M.R., Martínez-Chewca, F., Bejar, V., and Quesada, E. 1995. Some rheological properties of the extracellular polysaccharide produced by Volcaniella eurihalina F2-7. Appl. Biochem. Biotechnol. 55: 45–54.

    Article  CAS  Google Scholar 

  • Cánovas , D., Vargas, C., Iglesias-Guerra, F., Csonka, L.N., Rhodes, D., Ventosa, A., and Nieto, J.J. 1997. Isolation and characterization of salt-sensitive mutants of the moderate halophile Halomonas elongata and cloning of the ectoine synthesis genes. J. Biol. Chem. 272: 25794–25801.

    Article  PubMed  Google Scholar 

  • Castanier, S., Perthuisot, J.-P., Matrat, M., and Morvan, J.-Y. 1999. The salt ooids of Berre salt works (Bouches du Rhône, France): the role of bacteria in salt crystallization. Sed. Geol. 125: 9–21.

    Article  CAS  Google Scholar 

  • Chaga, G., Porath, J., and Illíni, T. 1993. Isolation and purification of amyloglucosidase from Halobacterium sodomense. Biomed. Chromatogr. 7: 256–261.

    Article  PubMed  CAS  Google Scholar 

  • Chen, Z., and Birge, R.R. 1993. Protein-based artificial retinas. Trends Biotechnol. 11: 292–300.

    Article  PubMed  CAS  Google Scholar 

  • Chen, B.J., and Chi, C.H. 1981. Process development and evaluation for algal glycerol production. Biotechnol. Bioengin. 23: 1267–1287.

    Article  CAS  Google Scholar 

  • Coronado, M.-J., Vargas, C., Mellado, E., Tegos, G., Drainas, C., Nieto, J.J., and Ventosa, A. 2000. The α-amylase gene amyH of the moderate halophilic Halomonas meridiana: cloning and molecular characterization. Microbiology UK 146: 861–868.

    CAS  Google Scholar 

  • da Costa, M.S., Santos, H., and Galinski, E.A. 1998. An overview of the role and diversity of compatible solutes in Bacteria and Archaea, pp. 117–153 In: Antranikian, G. (Ed.), Biotechnology of extremophiles. Springer-Verlag, Berlin.

    Chapter  Google Scholar 

  • DasSarma, S., Haladay, J., and Ng, W.I. 1999. Recombinant vector and process for cell flotation. Patent US6008051. 1999 December 28.

    Google Scholar 

  • Davis, J.S. 1974. Importance of microorganisms in solar salt production, pp. 369–372 In: Coogan, A.L. (Ed.), Proceedings of the 4th symposium on salt, vol. 1. Northern Ohio Geological Society, Cleveland.

    Google Scholar 

  • DeFrank, J.J., and Cheng, T.C. 1991. Purification and properties of an organophosphorus acid anhydrase from a halophilic bacterial isolate. J. Bacteriol. 173: 1938–1943.

    PubMed  CAS  Google Scholar 

  • DeFrank, J.J., Beaudry, W.T., Cheng, T.C., Harvey, S.P., Stroup, A.N., and Szafraniec, L.L. 1993. Screening of halophilic bacteria and Alteromonas species for organophosphorus hydrolyzing enzyme activity. Chem. Biol. Interact. 87: 141–148.

    Article  PubMed  CAS  Google Scholar 

  • De Philippis, R., Margheri, M.C., Materassi, R., and Vincenzini, M. 1998. Potential of unicellular cyanobacteria from saline environments as exopolysaccharide producers. Appl. Environ. Microbiol. 64: 1130–1132.

    PubMed  Google Scholar 

  • Dinçer, A.R., and Kargi, F. 1999. Salt inhibition of nitrification and denitrification in saline wastewater. Environ. Technol. 20: 1147–1153.

    Article  Google Scholar 

  • Dinçer, A.R., and Kargi, F. 2001. Performance of rotating biological disc system treating saline wastewater. Process Biochem. 36: 901–906.

    Article  Google Scholar 

  • D’Souza, M.P., Amini, A., Dojka, M.A., Pickering, I.J., Dawson, S.C., Pace, N.R., and Terry, N. 2001. Identification and characterization of bacteria in a selenium-contaminated hypersaline evaporation ponds. Appl. Environ. Microbiol. 67: 3785–3794.

    Article  Google Scholar 

  • Eichler, J. 2001. Biotechnological uses of archaeal exoenzymes. Biotechnol. Adv. 19: 261–278.

    Article  PubMed  CAS  Google Scholar 

  • Emerson, D., Chauhan, S., Oriel, P., and Breznak, J.A. 1994. Haloferax sp. D1227, a halophilic Archaeon capable of growth on aromatic compounds. Arch. Microbiol. 161: 445–452.

    Article  CAS  Google Scholar 

  • Fernandez-Castillo, R., Rodriguez-Valera, F., Gonzalez-Ramos, J., and Ruiz-Berraquero, F. 1986. Accumulation of poly by (β-hydroxybutyrate) halobacteria. Appl. Environ. Microbiol. 51: 214–216.

    PubMed  CAS  Google Scholar 

  • Forterre, P. 1989. DNA polymerases and topoisomerases in archaebacteria: potential applications, pp. 152–158 In: Da Costa, M.S., Duarte, J.C., and Williams, R.A.D. (Eds.), Microbiology of extreme environments and its potential for biotechnology. Elsevier Applied Science, London.

    Google Scholar 

  • Francis, A.J., Dodge, C.J., Gillow, J.H., and Papenguth, H.W. 2000. Biotransformation of uranium compounds in high ionic strength brine by a halophilic bacteria under denitrifying conditions. Environ. Sci. Technol. 34: 2311–2317.

    Article  CAS  Google Scholar 

  • Frillingos, S., Linden, A., Niehaus, F., Vargas, C., Nieto, J.J., Ventosa, A., Antranikian, G., and Drainas, C. 2000. Cloning and expression of α-amylase from the hyperthermophilic archaeon Pyrococcus woesei in the moderately halophilic bacterium Halomonas elongata. J. Appl. Microbiol. 88: 495–503.

    Article  PubMed  CAS  Google Scholar 

  • Frings, E., Sauer, T., and Galinski, E.A. 1995. Production of hydroxyectoine: high cell-density cultivation and osmotic downshock of Marinococcus strain M52. J. Biotechnol. 43: 53–61.

    Article  CAS  Google Scholar 

  • Fu, WJ., and Oriel., P. 1998. Gentisate 1,2-dioxygenase from Haloferax sp. D1227. Extremophiles 2: 439–446.

    Article  PubMed  CAS  Google Scholar 

  • Fu, W.J., and Oriel, P. 1999. Degradation of 3-phenylpropionic acid by Haloferax sp. D1227. Extremophiles 3: 45–53.

    Article  PubMed  CAS  Google Scholar 

  • Fujii, Y., Sakamoto, S., Ben-Amotz, A., and Nagasawa, H. 1993. Effects of beta-carotene-rich algae Dunaliella bardawil on the dynamic changes of normal and neoplastic mammary cells and general metabolism of mice. Anticancer Res. 13: 389–394.

    PubMed  CAS  Google Scholar 

  • Galinski, E.A. 1989. The potential use of halophilic bacteria for the production of organic chemicals and enzyme protective agents, pp. 375–379 In: Da Costa, M.S., Duarte, J.C., and Williams, R.A.D. (Eds.), Microbiology of extreme environments and its potential for biotechnology. Elsevier Applied Science, London.

    Google Scholar 

  • Galinski, E.A. 1993. Compatible solutes of halophilic eubacteria: molecular principles, water-solute interaction, stress protection. Experientia 49: 487–496.

    Article  CAS  Google Scholar 

  • Galinski, E.A. 1995. Osmoadaptation in bacteria. Adv. Microb. Physiol. 37: 273–328.

    Article  CAS  Google Scholar 

  • Galinski, E.A., and Lippert, K. 1991. Novel compatible solutes and their potential application as stabilizers in enzyme technology, pp. 351–358 In: Rodriguez-Valera, F. (Ed.), General and applied aspects of halophilic microorganisms. Plenum Press, New York.

    Google Scholar 

  • Galinski, E.A., and Louis, P. 1999. Compatible solutes: ectoine production and gene expression, pp. 187–202 In: Oren, A. (Ed.), Microbiology and biogeochemistry of hypersaline environments. CRC Press, Boca Raton.

    Google Scholar 

  • Galinski, E.A., and Sauer, T. 1998. Production and application of natural stabilizing compounds from halotolerant bacteria, pp. 201–203 In: LeGal, Y., and Halvorson, H.O. (Eds.), New developments in marine biotechnology. Plenum Press, New York.

    Google Scholar 

  • Galinski, E.A., and Tindall, B.J. 1992. Biotechnological prospects for halophiles and halotolerant microorganisms, pp. 76–114 In: Herbert, R.A., and Sharp, R.J. (Eds.), Molecular biology and biotechnology of extremophiles. Blackie, Glasgow (Chapman and Hall, New York).

    Google Scholar 

  • Galinski, E.A., Trüper, H.G., and Sauer, T. 1993. Eur. Pat. Appl. EP93/03687 (CI,C12P1/00).

    Google Scholar 

  • Gauthier, M.J., Lafay, B., Christen, R., Fernandez, L., Acquaviva, M., Bonin, P., and Bertrand, J.C. 1992. Marinobacter hydrocarbonoclasticus gen. nov., sp. nov., a new, extremely halotolerant, hydrocarbon-degrading marine bacterium. Int. J. Syst. Bacteriol. 42: 568–576.

    Article  PubMed  CAS  Google Scholar 

  • Ginzburg, B.Z. 1991. Liquid fuel (oil) from halophilic algae: a renewable source of non-polluting energy, pp. 389–395 In: Rodriguez-Valera, F. (Ed.), General and applied aspects of halophilic microorganisms. Plenum Press, New York.

    Google Scholar 

  • Goldman, Y., Garti, N., Sasson, Y., Ginzburg, B.-Z., and Bloch, M.R. 1981a. Conversion of halophilic algae into extractable oil. 1. Fuel 80: 59.

    Google Scholar 

  • Goldman, Y., Garti, N., Sasson, Y., Ginzburg, B.-Z., and Bloch, M.R. 1981b. Conversion of halophilic algae into extractable oil. 2. Pyrolysis of proteins. Fuel 80: 90–92.

    Google Scholar 

  • Göller, K., and Galinski, E.A. 1999. Protection of a model enzyme (lactate dehydrogenase) against heat, urea and freeze-thaw treatment by compatible solute additives. J. Mol. Catalysis B. Enz. 7: 37–45.

    Article  Google Scholar 

  • Hampp, N. 2000a. Bacteriorhodopsin as a photochromic retinal protein for optical memories. Chem. Res. 100: 1755–1776.

    CAS  Google Scholar 

  • Hampp, N. 2000b. Bacteriorhodopsin: mutating a biomaterial into an optoelectronic material. Appl. Microbiol. Biotechnol. 53: 633–639.

    Article  PubMed  CAS  Google Scholar 

  • Hayes, V.E.A., Ternan, N.G., and McMullan, G. 2000. Organophosphonate metabolism by a moderately halophilic bacterial isolate. FEMS Microbiol. Lett. 186: 171–175.

    Article  PubMed  CAS  Google Scholar 

  • Hennekens, C.H., Buring, J.E., Manson, J.E., Stampfer, M., Rosner, B., Cook, N.R., Belanger, C., LaMotte, F., Gaziano, J.M., Ridker, P.M., Willett, W., and Peto, R. 1996. Lack of effect of long-term supplementation with beta carotene on the incidence of malignant neoplasms and cardiovascular disease. New England J. Med. 334: 1145–1149.

    Article  CAS  Google Scholar 

  • Hezayen, F.F., Rehm, B.H.A., Eberhardt, R., and Steinbüchel, A. 2000. Polymer production by two newly isolated extremely halophilic archaea: application of a novel corrosion-resistant bioreactor. Appl. Microbiol. Biotechnol. 54:319–325.

    Article  PubMed  CAS  Google Scholar 

  • Hinrichsen, L.L., Montel, M.C., and Talon, R. 1994. Proteolytic and lipolytic activities of Micrococcus roseus, Halomonas elongata and Vibrio sp. isolated from Danish bacon curing brines. Int. J. Food Microbiol. 22: 115–126.

    Article  PubMed  CAS  Google Scholar 

  • Hinteregger, C., and Streichsbier, F, 1997. Halomonas sp., a moderately halophilic strain, for biotreatment of saline phenolic waste-water. Biotechnol. Lett. 19: 1099–1102.

    Article  CAS  Google Scholar 

  • Hong, F.T. 1986. The bacteriorhodopsin model membrane system as a prototype molecular computing element. Biosystems 19: 223–236.

    Article  PubMed  CAS  Google Scholar 

  • Iida, T., Furyiya, M., Suzuki, K., Iwabuchi, N., and Maruyama, T. 1997. Cyclophilin type PPI-ase gene originating from halophilic archaebacterium. Patent JP9313184. 1997 September 12.

    Google Scholar 

  • Javor, B. 1989. Hypersaline environments. Microbiology and biogeochemistry. Springer-Verlag, Berlin.

    Google Scholar 

  • Javor, B.J. 2002. Industrial microbiology of solar salt production. J. Ind. Microbiol. Biotechnol. 28: 42–47.

    PubMed  CAS  Google Scholar 

  • Jones, A.G., Ewing, C.M., and Melvin, M.V. 1981. Biotechnology of solar saltfields. Hydrobiologia 82: 391–406.

    Article  Google Scholar 

  • Joo, D.-S., Cho, M.-G., Lee, J.-S., Park, J.-H., Kwak, J.-K., Han, Y.-H., and Bucholz, R. 2001. New strategy for the cultivation of microalgae using microencapsulation. J. Microencapsulation 18: 567–576

    Article  PubMed  CAS  Google Scholar 

  • Kamekura M. 1986. Production and function of enzymes from eubacterial halophiles. FEMS Microbiol Rev 39: 145–150.

    Article  CAS  Google Scholar 

  • Kamekura, M., and Onishi, H. 1974. Halophilic nuclease from a moderately halophilic Micrococcus varians. J. Bacteriol. 119: 339–344.

    PubMed  CAS  Google Scholar 

  • Kamekura, M., and Onishi, H. 1976. Effect of magnesium and some nutrients on the growth and nuclease formation of a moderate halophile, Micrococcus varians var. halophilus. Can. J. Microbiol. 22: 1567–1576.

    Article  PubMed  CAS  Google Scholar 

  • Kamekura, M., and Onishi, H. 1978a. Flocculation and adsorption of enzymes during growth of a moderate halophile, Micrococcus varians var. halophilus. Can. J. Microbiol. 24: 703–709.

    Article  PubMed  CAS  Google Scholar 

  • Kamekura, M., and Onishi, H. 1978b. Properties of the halophilic nuclease of a moderate halophile, Micrococcus varians subsp. halophilus. J. Bacteriol. 133: 59–65.

    PubMed  CAS  Google Scholar 

  • Kamekura, M., Hamakawa, T., and Onishi, H. 1982. Application of halophilic nuclease H of Micrococcus varians subsp. halophilus to commercial production of flavoring agent 5′-GMP. Appl. Environ. Microbiol. 44: 994–995.

    PubMed  CAS  Google Scholar 

  • Kargi, F., and Dinçer, A.R. 2000. Use of halophilic bacteria in biological treatment of saline wastewater by fedbatch operation. Water Environ. Res. 72: 170–174.

    Article  CAS  Google Scholar 

  • Kargi, F., and Uygur, A. 1996. Biological treatment of saline wastewater in an aerated percolator unit utilizing halophilic bacteria. Environ. Technol. 17: 325–330.

    Article  CAS  Google Scholar 

  • Kargi, F., Dinçer, A.R., and Pala, A. 2000. Characterization and biological treatment of pickling industry wastewater. Bioprocess Engin. 23: 371–374.

    Article  CAS  Google Scholar 

  • Kirk, R.G., and Ginzburg, M. 1972. Ultrastructure of two species of Halobacterium. J. Ultrastr. Res. 41: 80–94.

    Article  CAS  Google Scholar 

  • Knapp, S., Ladenstein, R., and Galinski, E.A. 1999. Extrinsic protein stabilization by the naturally occurring osmolytes α-hydroxyectoine and betaine. Extremophiles 3: 191–198.

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi, T., Kamekura, M., Kanlayakrit, W., and Onishi, H. 1986. Production, purification, and characterization of an amylase from the moderate halophile, Micrococcus varians subspecies halophilus. Microbios 46: 165–177.

    CAS  Google Scholar 

  • Kobayashi, T., Okuzumi, M., and Fujii, T. 1995. Microflora of fermented puffer fish ovaries in rice-bran “fugunoko nakazuke”. Fisheries Sci. 61: 291–295.

    CAS  Google Scholar 

  • Kobayashi, T., Kimura, B., and Fujii, T. 2000. Differentiation of Tetragenococcus populations occurring in products and manufacturing processes of puffer fish ovaries fermented with rice-bran. Int. J. Food Microbiol. 56: 211–218.

    Article  PubMed  CAS  Google Scholar 

  • Koyama, K., Yamaguchi, N., and Miyasaka, N. 1994. Antibody-mediated bacteriorhodopsin orientation for molecular device architectures. Science 265: 762–764.

    Article  PubMed  CAS  Google Scholar 

  • Krahe, M., Antranikian, G., and Märkl, H. 1996. Fermentation of extremophilic microorganisms. FEMS Microbiol. Rev. 18: 271–285.

    Article  CAS  Google Scholar 

  • Kubo, M., Hiroe, J., Murakami, M., Fukami, H., and Tachiki, T. 2001. Treatment of hypersaline-containing wastewater with salt-tolerant microorganisms. J. Biosci. Bioengin. 91: 222–224.

    Article  CAS  Google Scholar 

  • Kuda, T., Miyamoto, H., Sakajiri, M., Ando, K., and Yano, T. 2001. Microflora of fish nukazuke made in Ishikawa, Japan. Nippon Suisan Gakkaishi 67: 296–301.

    CAS  Google Scholar 

  • Kulichevskaya, I.S., Milekhina, E.I., Borezinkov, I.A., Zvyagintseva, I.S., and Belyaev, S.S. 1991. Oxidation of petroleum hydrocarbons by extremely halophilic archaebacteria. Mikrobiologiya 60: 860–866 (Microbiology 60: 596–601).

    CAS  Google Scholar 

  • Kushner, D.J. 1966. Mass culture of red halophilic bacteria. Biotechnol. Bioengin. 8: 237–245.

    Article  Google Scholar 

  • Kuhsner, D.J., and Kamekura, M. 1988. Physiology of halophilic archaebacteria, pp. 109–138 In: Rodriguez-Valera, F. (Ed.), Halophilic bacteria, Volume I. CRC Press, Boca Raton.

    Google Scholar 

  • Lillo, J.G., and Rodriguez-Valera, F. 1990. Effects of culture conditions on poly(β-hydroxybutyric acid) production by Haloferax mediterranei. Appl. Environ. Microbiol. 56: 2517–2521.

    PubMed  Google Scholar 

  • Lippert, K., and Galinski, E.A. 1992. Enzyme stabilization by ectoine-type compatible solutes: protection against heating, freezing and drying. Appl. Microbiol. Biotechnol. 37: 61–65.

    Article  CAS  Google Scholar 

  • Lopetcharat, K., Cjoi, Y.J., Park, J.W., and Daeschel, M.A. 2001. Fish sauce products and manufacturing: a review. Food Rev. Int. 17: 65–88.

    Article  CAS  Google Scholar 

  • Louis, P., and Galinski, E.A. 1997. Characterization of genes for the biosynthesis of the compatible solute ectoine from Marinococcus halophilus and osmoregulated expression in Escherichia coli. Microbiology UK 143: 1141–1149.

    Article  CAS  Google Scholar 

  • Louis, P., Trüper, H.G., and Galinski, E.A. 1994. Survival of Escherichia coli during drying and storage in the presence of compatible solutes. Appl. Microbiol. Biotechnol. 41: 648–688.

    Article  Google Scholar 

  • Lowe, S.E., Jain, M.K., and Zeikus, J.G. 1993. Biology, ecology, and biotechnological applications of anaerobic bacteria adjusted to environmental stresses in temperature, pH, salinity, or substrates. Microbiol. Rev. 57: 451–509.

    PubMed  CAS  Google Scholar 

  • Maltseva, O., McGivan, C., Fulthorpe, R., and Oriel, P. 1996. Degradation of 2,4-dichlorophenoxyacetic acid by haloalkaliphilic bacteria. Microbiology UK 142: 1115–1122.

    Article  CAS  Google Scholar 

  • Ma’or, Z., Simon-Meshulam, G., Yehudah, S., and Gavrieli, J.A. 2000. Antiwrinkle and skin-moisturizing effects of a mineral-algal-botanical complex. J. Cosmet. Sci. 51: 27–36.

    Google Scholar 

  • Margesin, R., and Schinner, F. 2001. Potential of halotolerant and halophilic microorganisms for biotechnology. Extremophiles 5: 73–83.

    Article  PubMed  CAS  Google Scholar 

  • Masyuk, N.P. 1968. Mass culture of the carotene bearing alga Dunaliella salina. Ukr. Bot. Zh. 23: 12–18.

    Google Scholar 

  • McMeekin, T.A., Nichols, P.A., Nichols, S.D., Juhasz, A., and Franzmann, P.D. 1993. Biology and biotechnological potential of halotolerant bacteria from Antarctic saline lakes. Experientia 49: 1042–1046.

    Article  CAS  Google Scholar 

  • Min-Yu, L., Ono, H., and Takano, M. 1993. Gene cloning of ectoine synthase from Halomonas sp. Annu. Rep. Int. Cent. Coop. Res. Biotechnol. Japan 16: 193–200.

    Google Scholar 

  • Moitischke, L., Driller, H., and Galinski, E.A. 2000. Ectoin and ectoin derivatives as moisturizers in cosmetics. Patent US060071. 200 May 9.

    Google Scholar 

  • Montes, M.J., Abadia-Molina, A.C., Monteoliva-Sanchez, M., Ramos-Cormenzana, A., and Ruiz, C. 1999. Effect of Halococcus morrhuae and Halobacterium saccharovorum on the activation of human peripheral blood lymphocytes. Microbios 98: 141–147.

    PubMed  CAS  Google Scholar 

  • Moreno-Garrido, I., and Cañavate, J.P. 2001. Assessing chemical compounds for controlling predator ciliates in outdoor mass cultures of the green algae Dunaliella salina. Agricult. Engin. 24: 107–114.

    Google Scholar 

  • Morris, G.A., Li, P., Puaud, M., Mitchell, J.R., and Harding, S.E. 2001. Hydrodynamic characterisation of the exopolysaccharide from the halophilic cyanobacterium Aphanothece halophytica GR02: a comparison with xanthan. Carbohydr. Polymers 44: 261–268.

    Article  CAS  Google Scholar 

  • Nagasawa, H., Konishi, R., Sensui, N., Yamamoto, K., and Ben-Amotz, A. 1989. Inhibition by beta-carotene-rich algae, Dunaliella of spontaneous mammary tumourigenesis in mice. Anticancer Res. 9: 71–76.

    PubMed  CAS  Google Scholar 

  • Nagasawa, H., Fujii, Y., Kagewama, Y., Segawa, T., and Ben-Amotz, A. 1991. Suppression by beta-carotenerich algae Dunaliella bardawil of the progression, but not the development, of spontaneous mammary tumours in SHN virgin mice. Anticancer Res. 11: 713–718.

    PubMed  CAS  Google Scholar 

  • Nakayama, H., Yoshida, K., Ono, H., Murooka, Y., and Shinmyo, A. 2000. Ectoine, the compatible solute of Halomonas elongata, confers hyperosmotic tolerance in cultured tobacco cells. Plant Physiol. 122: 1239–1247.

    Article  PubMed  CAS  Google Scholar 

  • Nieto, J.J. 1991. The response of halophilic bacteria to heavy metals, pp. 173–179 In: Rodriguez-Valera, F. (Ed.), General and applied aspects of halophilic microorganisms. Plenum Press, New York.

    Google Scholar 

  • Nieto, J.J., Fernández-Castillo, R., Márquez, M.C., Ventosa, A., Quesada, E., and Ruiz-Berraquero, F. 1989. Survey of metal tolerance in moderately halophilic eubacteria. Appl. Environ. Microbiol. 55: 2385–2390.

    PubMed  CAS  Google Scholar 

  • Obayashi, A., Hiraoka, N., Kita, K., Nakajima, H., and Shuzo, T. 1988. US Patent 4: 724,209, US Cl. 435/199.

    Google Scholar 

  • O’Connor, E.M., and Shand, R.F. 2002. Halocins and sulfolobicins: The emerging story of archaeal protein and peptide antibiotics. J. Int. Microbiol. Biotechnol. 28: 23–31.

    Google Scholar 

  • Oesterhelt, D., Bräuchle, C., and Hampp, A. 1991. Bacteriorhodopsin: a biological material for information processing. Quart. Rev. Biophys. 24: 425–478.

    Article  CAS  Google Scholar 

  • Oesterhelt, D., Patzelt, H., and Kesler, B. 1998. Decomposition of halogenated hydrocarbons by halophilic bacteria. Patent DE19639894, 1998 April 9.

    Google Scholar 

  • Onishi, H. 1972a. Halophilic amylase from a moderately halophilic Micrococcus. J. Bacteriol. 109: 570–574.

    PubMed  CAS  Google Scholar 

  • Onishi, H. 1972b. Salt response of amylase produced in media of different NaCl or KCl concentrations by a moderately halophilic Micrococcus. Can. J. Microbiol. 18: 1617–1620.

    Article  PubMed  CAS  Google Scholar 

  • Onishi, H., and Hidaka, O. 1978. Purification and properties of amylase produced by a moderately halophilic Acinetobacter sp. Can. J. Microbiol. 24: 1017–1023.

    Article  PubMed  CAS  Google Scholar 

  • Onishi, H., and Sonoda, K. 1979. Purification and some properties of an extracellular amylase from a moderate halophile, Micrococcus halobius. Appl. Environ. Microbiol. 38: 616–620.

    PubMed  CAS  Google Scholar 

  • Onishi, H., Mori, T., Takeuchi, S., Tani, K., Kobayashi, T., and Kamekura, M. 1983. Halophilic nuclease of a moderately halophilic Bacillus sp.: production, purification and characteristics. Appl. Environ. Microbiol. 45: 24–30.

    PubMed  CAS  Google Scholar 

  • Onishi, H., Yokoi, H., and Kamekura, M. 1991. An application of a bioreactor with flocculated cells of halophilic Micrococcus varians subsp. halophilus which preferentially adsorbed halophilic nuclease H to 5′-nucleotide production, pp. 341–349 In: Rodriguez-Valera, F. (Ed.), General and applied aspects of halophilic microorganisms. Plenum Press, New York.

    Google Scholar 

  • Oren, A. 1990. Microbial formation of methane from pretreated lignite at high salt concentrations, pp. 449–463 In: Wise, D.L. (Ed.), Bioprocessing and biotreatment of coal. Marcel Dekker, New York.

    Google Scholar 

  • Oren, A. 2002. Diversity of halophilic microorganisms: environments, phylogeny, physiology, and applications. J. Ind. Microbiol. Biotechnol. 28: 56–63.

    PubMed  CAS  Google Scholar 

  • Oren, A., Gurevich, P., and Henis, Y. 1991. Reduction of nitrosubstituted aromatic compounds by the halophilic anaerobic eubacteria Haloanaerobium praevalens and Sporohalobacter marismortui. Appl. Environ. Microbiol. 57: 3367–3370.

    PubMed  CAS  Google Scholar 

  • Oren, A., Gurevich, P., Azachi, M., and Henis, Y. 1992. Microbial degradation of pollutants at high salt concentrations. Biodegradation 3: 387–398.

    Article  CAS  Google Scholar 

  • Oriel, P., Chauhan, S., Maltseva, O., and Fu, W. 1997. Degradation of aromatics and haloaromatics by halophilic bacteria, pp. 123–130 In: Horikoshi, K., Fukuda, M., and Kudo, T. (Eds.), Microbial diversity and genetics of biodegradation. Japan Scientific Societies Press, Tokyo / Karger, Basel.

    Google Scholar 

  • Orset, S., Leach, G.C., Morais, R., and Young, A.J. 1999. Spray-drying of the microalga Dunaliella salina: effects on β-carotene content and isomer composition. J. Agric. Food Chem. 47: 4782–4790.

    Article  PubMed  CAS  Google Scholar 

  • Paramonov, N.A., Parolis, L.A.S., Parolis, H., Boán, I.F., Antón, J., and Rodríguez-Valera, F. 1998. The structure of the exocellular polysaccharide produced by the archaeon Haloferax gibbonsii (ATCC 33959). Carbohydr. Res. 309: 89–94.

    Article  PubMed  CAS  Google Scholar 

  • Parolis, H., Parolis, L.A.S., Boán, I.F., Rodríguez-Valera, F., Widmalm, G., Manca, C., Jansson, P.-E., and Sutherland, I.W. 1996. The structure of the exopolysaccharide produced by the halophilic archaeon Haloferax mediterranei strain R4 (ATCC 33500). Carbohydr. Res. 295: 147–156.

    PubMed  CAS  Google Scholar 

  • Patel, G.B., and Sprott, G.D. 1999. Archaeobacterial ether lipid liposomes (archaeosomes) as novel vaccine and drug delivery systems. Crit Rev. Biotechnol. 19: 317–357.

    Article  PubMed  CAS  Google Scholar 

  • Pérez-Fernandez, M.E., Quesada, E., Galvez, J., and Ruiz, C. 2000. Effect of polysaccharide V2-7, isolated from Halomonas eurihalina, on the proliferation in vitro of human peripheral blood lymphocytes. Immunopharmacol. Immunotoxicol. 22: 131–141.

    Article  PubMed  Google Scholar 

  • Peyton, B.M., Mormile, M.R., and Peterson, J.N. 2001. Nitrate reduction with Halomonas campisalis: kinetics of denitrification at pH 9 and 12.5% NaCl. Water Res. 35: 4237–4242.

    Article  PubMed  CAS  Google Scholar 

  • Pfiffner, S.M., McInerney, M.J., Jenneman, G.E., and Knapp, R.M.. 1986. Isolation of halotolerant, thermotolerant, facultative polymer-producing bacteria and characterization of the exopolymer. Appl. Environ. Microbiol. 51: 1224–1229.

    PubMed  CAS  Google Scholar 

  • Post, F.J., and Al-Harjan, F.A. 1988. Surface activity of halobacteria and potential use in microbially enhanced oil recovery. Syst. Appl. Microbiol. 11: 97–101.

    CAS  Google Scholar 

  • Post, F.J., and Collins, N.F. 1982. A preliminary investigation of the membrane lipid of Halobacterium halobium as a food additive. J. Food Biochem. 6: 25–38.

    Article  CAS  Google Scholar 

  • Quesada, E., Bejar, V., and Calvo, C. 1993. Exopolysaccharide production by Volcaniella eurihalina. Experientia 49: 1037–1041.

    Article  CAS  Google Scholar 

  • Ramos-Cormenzana, A. 1989. Ecological distribution and biotechnological potential of halophilic microorganisms, pp. 289–309 In: Da Costa, M.C., Duarte, J.C., and Williams, R.A.D. (Eds.), Microbiology of extreme environments and its potential for biotechnology. Elsevier Applied Science, London.

    Google Scholar 

  • Rodriguez-Valera, F. 1992. Biotechnological potential of halobacteria, pp. 135–147 In: Danson, M.J., Hough, D.W., and Lund, G.G. (Eds.), The Archaebacteria: biochemistry and biotechnology. Biochemical Society Symposium no. 58. Biochemical Society, High Holburn, London.

    Google Scholar 

  • Rodriguez-Valera, F., and Lillo, J.A.G. 1992. Halobacteria as producers of polyhydroxyalkanoates. FEMS Microbiol. Rev. 103: 181–186.

    Article  CAS  Google Scholar 

  • Rodriguez-Valera, F., Lillo, J.A.G., Antón, J., and Meseguer, I. 1991. Biopolymer production by Haloferax mediterranei, pp. 373–380 In: Rodriguez-Valera, F. (Ed.), General and applied aspects of halophilic microorganisms. Plenum Press, New York.

    Google Scholar 

  • Rosenberg, A. 1983. Pseudomonas halodurans sp. nov., a halotolerant bacterium. Arch. Microbiol. 136: 117–123.

    Article  Google Scholar 

  • Saishithi, P. Kasemsarn, B., Liston, J., and Dollar, A.M. 1966. Microbiology and chemistry of fermented fish. J. Food Sci. 31: 105–110.

    Article  Google Scholar 

  • Santos, C.A., Vieira, A.M., Fernandes, H.L., Empis, J.A., and Novais, J.M. 2001. Optimisation of the biological treatment of hypersaline wastewater from Dunaliella salina carotenogenesis. J. Chem. Technol. Biotechnol. 76: 1147–1153.

    Article  CAS  Google Scholar 

  • Sauer, T., and Galinski, E.A. 1998. Bacterial milking: a novel bioprocess for production of compatible solutes. Biotechnol. Bioengin. 57: 306–313.

    Article  CAS  Google Scholar 

  • Schinzel, R., and Burger, K.J. 1986. A site-specific endonuclease activity in Halobacterium halobium. FEMS Microbiol. Lett. 37: 325–329.

    Article  CAS  Google Scholar 

  • Sediroglu, V., Eroglu, I., Yücel, M., Türker, L, and Gündüz, U. 1999. The biocatalytic effect of Halobacterium halobium on photoelectrochemical hydrogen production. J. Biotechnol. 70: 115–124.

    Article  CAS  Google Scholar 

  • Seki, A., Kubo, I., Sasabe, H., and Tomioka, H. 1994, A new union-sensitive biosensor using an ion-sensitive field effect transistor and a light-driven chloride pump, halorhodopsin. Appl. Biochem. Biotechnol. 48: 205–211.

    Article  CAS  Google Scholar 

  • Severina, L.O., Usenko, I.A., and Plakunov, V.K. 1989. Biosynthesis of an exopolysaccharide by the extreme halophilic archaebacterium Halobacterium mediterranei. Mikrobiologiya 58: 557–561 (Microbiology 58: 441–445).

    CAS  Google Scholar 

  • Severina, L.O., Usenko, I.A., and Plakunov, V.K. 1990. Biosynthesis of an exopolysaccharide by the extreme halophilic archaebacterium, Halobacterium volcanii. Mikrobiologiya 59: 437–442 (Microbiology 59: 292–296).

    CAS  Google Scholar 

  • Shand, R.F., and Perez, A.M. 1999. Haloarchaeal growth physiology, pp. 413–424 In: Seckbach, J. (Ed.), Enigmatic microorganisms and extreme environments. Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Shewan, J.M. 1971. The microbiology of fish and fishery products — a progress report. J. Appl. Bacteriol. 34: 299–315.

    PubMed  CAS  Google Scholar 

  • Sioud, M., Baldacci, G., Forterre, P., and de Recondo, A.-M. 1987. Antitumor drugs inhibit the growth of halophilic archaebacteria. Eur. J. Biochem. 169: 231–236.

    Article  PubMed  CAS  Google Scholar 

  • Sioud, M., Possat, O., Elie, C., Siebold, L., and Forterre, P. 1988. Coumarin and quinolone action in archaebacteria: evidence for the presence of a DNA gyrase-like enzyme. J. Bacteriol. 170: 946–953.

    PubMed  CAS  Google Scholar 

  • Söhlemann, P., Soppa, J., Oesterhelt, D., and Lohse, M.J. 1997. Expression of β2-adenoreceptors in halobacteria, Naunyn-Schmiedeberg’s Arch. Pharmacol. 355: 150–160.

    Google Scholar 

  • Stan-Lotter, H., Doppler, E., Jarosch, M., Radax, C., Gruber, C., and Inatomi, K. 1999. Isolation of a chymotrypsinogen B-like enzyme from the archaeon Natronomonas pharaonis and other halobacteria. Extremophiles 3: 153–161.

    Article  PubMed  CAS  Google Scholar 

  • Stuart, E.S., Morshed, F., Sremac, M., and DasSarma, S. 2001. Antigen presentation using novel particulate organelles from halophilic archaea. J. Biotechnol. 88: 119–128.

    Article  PubMed  CAS  Google Scholar 

  • Such, L., Chorro, F.J., Colom, F., Alba, I., Secadurus, A., Such, L.M., Meseguer, I., Soria, B, and Alberola, A. 1998. Effects of halocin H7 on A-V nodal conduction and heart rate in isolated rabbit heart. J. Physiol. London 509.P: 148P–149P.

    Google Scholar 

  • Sudo, H., Burgess, J.G., Takemasa, H., Nakamura, N., and Matsunaga, T. 1995. Sulfated exopolysaccharide production by the halophilic cyanobacterium Aphanocapsa halophytica. Curr. Microbiol. 30: 219–222.

    Article  CAS  Google Scholar 

  • Tasch, P., and Todd, B. 1973. Halophilic bacteria susceptibility to peracetic acid vapor and ethylene oxide. Appl. Microbiol. 25: 205–207.

    PubMed  CAS  Google Scholar 

  • Tasch, P., and Todd, B. 1974. Halophile bacteria: experimental control and its ecological significance, pp. 373–376 In: Coogan, A.L. (Ed.), 4th Symposium on salt, Vol. 1. Northern Ohio Geological Society, Cleveland.

    Google Scholar 

  • Tegos, G., Vargas, C., Perysinakis, A., Koukkou, A.I., Christogianni, A., Nieto, J.J., Ventosa, A., and Drainas, C. 2000. Release of cell-free ice nuclei from Halomonas elongata expressing the ice nucleation gene inaZ of Pseudomonas syringae. J. Appl. Microbiol. 89: 785–792.

    Article  PubMed  CAS  Google Scholar 

  • The Alpha-Tocopherol, Beta-Carotene Study Group. 1994. The effect of vitamin E and beta carotene on the incidence of lung cancer and other cancers in male smokers, New Engl. J. Med. 330: 1029–1035.

    Google Scholar 

  • Thomas, T., and Galinski, E.A. 1996. Anaerobic high-cell-density (HCD) fermentation and cyclic production of compatible solutes with halophilic, denitrifying bacteria. Abstracts of the first international congress on extremophiles, Estoril, Portugal, 2–6 June, 1996.

    Google Scholar 

  • Thongthai, C., and Siriwongpairat, M. 1990. The sequential quantitation of microorganisms in traditionally fermented fish sauce (nam pla), pp. 51–59 In: Reilly, P.J.A., Parry. R.W.A., and Barile, L.E. (Eds.), Postharvest technology, preservation and quality of fish in southeast Asia. International Foundation for Science, Stockholm.

    Google Scholar 

  • Thongthai, C., and Suntinanalert, P. 1991. Halophiles in Thai fish sauce (nam pla), pp. 381–388 In: Rodriguez-Valera, F. (Ed.), General and applied aspects of halophilic microorganisms. Plenum Press, New York.

    Google Scholar 

  • Thongthai, C., McGenity, T.J., Suntinanalert, P., and Grant, W.D. 1992. Isolation and characterization of an extremely halophilic archaeobacterium from traditionally fermented Thai fish sauce (nam pla). Lett. Appl. Microbiol. 14: 111–114.

    Article  Google Scholar 

  • Van Qua, D., Simidu, U., and Taga, N. 1981. Purification and some properties of halophilic protease produced by a moderately halophilic marine Pseudomonas sp. Can. J. Microbiol. 27: 505–510.

    Article  Google Scholar 

  • Ventosa, A., and Nieto, J.J. 1995. Biotechnological applications and potentialities of halophilic microorganisms. World J. Microbiol. Biotechnol. 11: 85–94.

    Article  CAS  Google Scholar 

  • Ventosa, A., Nieto, J.J., and Oren, A. 1998. Biology of aerobic moderately halophilic bacteria. Microbiol. Mol. Biol. Rev. 62: 504–544.

    PubMed  CAS  Google Scholar 

  • Vilhelmsson, O., Hafsteinsson, H., and Kristjánsson, J.K. 1996. Isolation and characterization of moderately halophilic bacteria from fully cured salted cod (bachalao). J. Appl. Bacteriol. 81: 95–103.

    Google Scholar 

  • Villar, M., de Ruiz Holgado, A.P., Sanchez, J.J., Trucco, R.E., and Oliver, G. 1985. Isolation and characterization of Pediococcus halophilus from salted anchovies (Engraulis anchoita). Appl. Environ. Microbiol. 49: 664–666.

    PubMed  CAS  Google Scholar 

  • Vreeland, R.H., Angelini, S., and Bailey, D.G. 1998. Anatomy of halophile induced damage to brine cured cattle hides. J. Am. Leather Curing Assoc. 93: 121–131.

    CAS  Google Scholar 

  • Vsevoldov, N.N., and Dyukova, T.V. 1994. Retinal-protein complexes as optoelectronic components. Trends Biotechnol. 12: 81–88.

    Article  Google Scholar 

  • Ward, D.M., and Brock, T.D. 1978. Hydrocarbon biodegradation in hypersaline environments. Appl. Environ. Microbiol. 35: 353–359.

    PubMed  CAS  Google Scholar 

  • Woolard, C.R., and Irvine, R.L. 1992. Biological treatment of hypersaline wastewater by a biofilm of halophilie bacteria. Abstracts of the annual water environmental federation conference. New Orleans.

    Google Scholar 

  • Woolard, C.R., and Irvine, R.L. 1994. Biological treatment of hypersaline waste-water by a biofilm of halophilie bacteria. Water Environ. Res. 66: 230–235.

    CAS  Google Scholar 

  • Woolard, C.R., and Irvine, R.L. 1995. Treatment of hypersaline waster-water in the sequencing hatch reactor. Water Res. 29: 1159–1168.

    Article  CAS  Google Scholar 

  • Yohoi, H., and Onishi, H. 1990. Ca-enzyme complex of halophilie nuclease-H of halophilic Micrococcus varians subsp. halophilus for 5′-nucleotide production by RNA degradation. Agr. Biol. Chem. Tokyo 54: 2573–130.

    Google Scholar 

  • Yoon, J.-H., Lu, K.-C., Kho, Y.H., Kang, K.H., Kim, C.-J., and Park, J.-H. 2002. Halomonas alimentaria sp. nov., isolated from jeotgal, a traditional Korean fermented seafood. Int. J. Syst. Evol. Microbiol. 52: 123–130.

    Article  PubMed  CAS  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Kluwer Academic Publishers

About this chapter

Cite this chapter

(2003). Biotechnological Applications and Potentials of Halophilic Microorganisms. In: Halophilic Microorganisms and their Environments. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol 5. Springer, Dordrecht. https://doi.org/10.1007/0-306-48053-0_12

Download citation

  • DOI: https://doi.org/10.1007/0-306-48053-0_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0829-0

  • Online ISBN: 978-0-306-48053-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics