Skip to main content

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 126))

Abstract

Bohm and Vigier introduced the notion of random fluctuations occurring from interaction with a subquantum medium. Fényes-Nelson’s stochastic mechanics generalises these ideas in terms of a Markov process and tries to reconcile the individual particle trajectory notion with the quantum (Schrödinger) theory. Bohm-Vigier deterministic trajectories are in fact the mean displacement paths of the underlying Nelson’s diffusion process. However, random paths of stochastic mechanics are quite akin to Feynman paths which are non-differentiable and thus have fractal properties in the Mandelbrot sense. How a random field makes particles to propagate? This is the question. Can we speak about a stochastic acceleration property of (vacuum) spacetime which has stochastic (and chaotic) features? Can this offer an explanation of the inertial properties of matter? What is the source of randomness? The present paper tries to find an answer to these questions in the framework of the universality of a fractal structure of spacetime and of stochastic acceleration. Some arguments in favour of a fractal structure of spacetime at small and large scales areas follows. (i) Fractal trajectories in space with Hausdorff dimension 2 (e.g. a Peano-Moore curve) exhibit both an uncertainty principle and a de Broglie relation. Quantum mechanical particles move statistically on such fractal (Feynman) paths. Thus, Schrödinger equation may be interpreted as a fractal signature of spacetime. (ii) The formal analytic continuation (t → it or D → iD) iD) which relates the Schrödinger and diffusion equations has a physical alternative: there exists a (classical or quantum) stochastic fluid which can be either a fluid of probability for a unique element or a real fluid composed of elements undergoing quasi-Brownian motion. A particle (corpuscule) may be one or a small cluster of stochastic elements. There is a sort of democracy (statistical self-similarity) between the stochastic elements constituting the particle. As regards the cause of the randomness, the parton model involves a fragmentation of the partons. (iii) Nature does not “fractalize” (and quantize); it is intrinsically fractal (and quantum). Wave function of the universe is a solution of the Wheeler-DeWitt equation of quantum cosmology and corresponds to a Schrödinger equation. This can be related to the fact that observations of galaxy-galaxy and clustercluster correlations as well as other large-scale structure can be fit with a fractal with D ≈ 1.2 which may have grown from two-dimensional sheetlike objects such as domain walls or string wakes. The fractal dimension D can serve as a constraint on the properties of the stochastic motion responsible for limiting the fractal structure. (iV) The nonlinear (soliton) equation corresponds to a (linear) Schrödinger equation coupled to a medium with a specific nonlocal response. Physically, this model is similar to a simple case of linear propagation of thin beams in a wave guide. Thus, a free photon in (fractal) space represents in fact a “bouncing ball” in a wave guide. In other words, spacetime is structured as a (fractal) web of optical fibers (channels) which represents the skeleton of spacetime. (V) The proper wave functions describing a hydrogen-like atom (ψ1, ψ2, ψ3, ...) describing a hydrogen-like atom are similar to the electromagnetic modes (TEM 0 , TEM 1 , TEM 2 , ...) in optical resonating cavities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Vigier, J. P.: Real physical path in quantum mechanics. Equivalence of Einstein-de Broglie and Feynman points of view on quantum particle behaviour, in Proc. 3rd Int. Symp. on Foundations of quantum mechanics, Tokyo, 1989.

    Google Scholar 

  2. Bohm, D., Phys. Rev 85 (1952), 166; 85 (1952), 180.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  3. Bohm, D. and Vigier, J. P., Phys. Rev 96 (1954), 208; 103 (1958), 1822.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Vigier, J. P., Physica B 151 (1988), 386.

    Article  Google Scholar 

  5. Vigier, J. P., Ann. der Physik 7 (1988), 61.

    Article  ADS  Google Scholar 

  6. Bohm, D. and Hiley, B., Physics Rep. 172 (1989), 94.

    Article  ADS  MathSciNet  Google Scholar 

  7. Fénies, I.: Eine wahrscheinlichkeitsteoretische Begründung und Interpretation der Quantenmechanik, Zeitschrift fürPhysik 132 (1952), 81–106.

    Article  Google Scholar 

  8. Nelson, E.: Derivation of the Schrödinger equation from Newtonian mechanics, Phys. Rev 150 (1966), 1079–1085.

    Article  ADS  Google Scholar 

  9. Nelson, E.: Quantum Fluctuations, Princeton University Press, Princeton, 1985.

    Google Scholar 

  10. Guerra, F. and Loredo, M. I.: Stochastic equations for the Maxwell field, Lettere al Nuovo Cimento 27 (1980), 41–45.

    Article  Google Scholar 

  11. Guerra, F.: Physics Rep. 77 (1981), 263.

    Article  ADS  MathSciNet  Google Scholar 

  12. Feynman, R. P.: Space-Time Approach to Non-Relativistic Quantum Mechanics, Rev. Mod. Phys. 20 (1948), 367–387.

    Article  ADS  MathSciNet  Google Scholar 

  13. Feynman, R. P. and Hibbs, A. R. Quantum Mechanics and Path Integrals, McGraw-Hill, New York, 1965.

    MATH  Google Scholar 

  14. Garbaczewski, P.: On the concepts of stochastic mechanics: Random versus deterministic paths, Physics Letters A 143 (1990), 85; Accelerated stochastic diffusion processes, Physics Letters A 147 (4) (1990), 168–174; Randomness in the quantum description of neutral spin 1/2 particles, Fortschr. Phys. 38 (1990) (6), 447–475.

    Article  ADS  MathSciNet  Google Scholar 

  15. Garbaczewski, P.: Nelson’s stochastic mechanics as the problem of random ights and rotations, Lecture delivered at the XXVII Winter School of Theoretical Physics in Karpacz, 18 Feb.-1 March 1991.

    Google Scholar 

  16. Abbott, L. F. and Wise, M. B., Dimension of a Quantum-Mechanical Path, Am. J. Phys. 49 1981, 37–39.

    Article  ADS  MathSciNet  Google Scholar 

  17. Campesino-Romeo, E., D’Olivo, J. C. and Socolovsky, M., Hausdorff Dimension for the Quantum Harmonic Oscillator, Phys. Lett. 89A(7) (1982), 321–324.

    MathSciNet  Google Scholar 

  18. Aron, J. C.: A stochastic basis for microphysics, Foundations of Physics 9(3/4) (1979), 163–191.

    Article  ADS  MathSciNet  Google Scholar 

  19. Aron, J. C.: Stochastic foundation for microphysics. A critical analysis, Foundations of Physics 11(9/10) (1981), 699–720.

    Article  MathSciNet  ADS  Google Scholar 

  20. Aron, J. C.: A Model for the Schrödinger zitterbewegung and the plane monochromatic wave, Foundations of Physics 11(11/12) (1981), 863–872.

    Article  MathSciNet  ADS  Google Scholar 

  21. Aron, J. C.: The foundations of relativity, Foundations of Physics 11(1/2) (1981), 77–101.

    Article  MathSciNet  ADS  Google Scholar 

  22. Cufaro Petroni, N. and Vigier, J. P.: Stochastic derivation of Proca’s equation in terms of a fluid of Weyssenho tops endowed with random fluctuations at the velocity of light, Phys. Lett. 73A(4) (1979), 289–291.

    MathSciNet  Google Scholar 

  23. River, R. J., Path Integral Methods in Quantum Field Theory, Cambridge University Press, Cambridge, 1987.

    Google Scholar 

  24. El Naschie, M. S.: Chaos and Fractals in Nano and Quantum Technology. Chaos, Solitons & Fractals, 1999, 9(10), 1793–1802.

    Google Scholar 

  25. Ord, G. N. and McKeon, D. G. C.: On the Dirac Equation in 3+1 Dimensions, Annals of Physics 222(2) (1993), 244–253.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Ord, G. N.: Fractal space-time: a geometric analogue of relativistic quantum mechanics, J. Phys. A: math. Gen. 16 (1983), 1869–1884.

    Article  ADS  MathSciNet  Google Scholar 

  27. Argyris, J., Ciubotariu Carmen I. and Weingaertner, W. E.: Fractal Space Signatures in Quantum Physics and Cosmology. I. Space, Time, Matter, Fields and Gravitation, Chaos, Solitons and Fractals, in course of publication.

    Google Scholar 

  28. de Broglie, L., The Current Interpretation of Wave Mechanics, Elsevier, Amsterdam, 1964.

    MATH  Google Scholar 

  29. Hardy, L., On the existence of empty waves in quantum theory, Phys. Lett., 1992, A 167, 11–13.

    ADS  MathSciNet  Google Scholar 

  30. Bohm, D. and Hiley, B. J., The Undivided Universe. Routledge, London, 1993.

    Google Scholar 

  31. Folman, R. and Vager, Z.: Empty wave detecting experiments: a comment on auxiliary “hidden” assumption. Found. Phys. Lett., 1995, 8(1), 55–61.

    Article  MathSciNet  Google Scholar 

  32. Mac Gregor, M. H.: Model basis states for photons and “empty waves”, Found. Phys. Lett., 1995, 8 (2), 135–160.

    Article  MathSciNet  Google Scholar 

  33. Vigier, J. P., Lett. Nuovo Cimento 24 (1979), 258, 265; 25 (1979), 151.

    Article  MathSciNet  ADS  Google Scholar 

  34. Uozumi, J. and Asakura, T.: Demonstration of diffraction by fractals, Am. J. Phys. 62(3) (1994), 283–285.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this paper

Cite this paper

Ciubotariu, C., Stancu, V., Ciubotariu, C. (2002). Bohm & Vigier: Ideas as A Basis for A Fractal Universe. In: Amoroso, R.L., Hunter, G., Kafatos, M., Vigier, JP. (eds) Gravitation and Cosmology: From the Hubble Radius to the Planck Scale. Fundamental Theories of Physics, vol 126. Springer, Dordrecht. https://doi.org/10.1007/0-306-48052-2_9

Download citation

  • DOI: https://doi.org/10.1007/0-306-48052-2_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0885-6

  • Online ISBN: 978-0-306-48052-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics