Skip to main content

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 126))

Abstract

The idea that a ‘magnetized’ charged particle in interaction with ‘resonant’ photons operates from an energy level to another higher one by a stochastic acceleration effect suggests that such effects may represent a phenomenological physical mechanism which explains how an electron jumps to higher atomic orbits when it absorbs resonant photons. If we increase the number of iterations of the corresponding nonlinear system of equations, we obtain a Bohr image of an atom. Such (quantum-transition) jumps, their duration and physical mechanism have never been explained by the quantum theory of atoms. We thus offer through such a cascade of chaotic kicked (stochastic acceleration) effects a physical explanation of the quantum model of absorption of energy by an atom. The proposed equations can model a circuit biased with a traveling electromagnetic wave. Such a circuit can also simulate a stochastic acceleration and a chaotic atom.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Steiner, F.: Quantum Chaos, Invited contribution to the Fetschrift Universität Hamburg 1994: Schlaglichter der Forschung zum 75. Jahrestag (Ed.R. Ansorge) published on the occasion of the 75th anniversary of the University of Hamburg, Dietrich Reimer Verlag, Hamburg 1994, pp. 542–564.

    Google Scholar 

  2. Manfredi, V. R. and Salasnich, L.: Different Facets of Chaos in Quantum Mechanics, Int. J. Mod. Phys. B, 13(18) (1999), 2343–2360.

    Article  ADS  Google Scholar 

  3. Aurich, R., Bolte, J. and Steiner, F.: Universal Signatures of Quantum Chaos, DESY Report 94-024, February 1994.

    Google Scholar 

  4. Berry, M. V.: in Dynamical Chaos, The Royal Society, London, 1987.

    Google Scholar 

  5. Haggerty, M. R.: Semiclassical quantization in a smooth potential using Bogomolny’s quantum surface of section, PhD Thesis, Massachusetts Institute of Technology, 1994.

    Google Scholar 

  6. Gutzwiller, M. C.: Energy Spectrum According to Classical Mechanics, J. Math. Phys. 11 1970, 1791–1806.

    Article  ADS  Google Scholar 

  7. Gutzwiller, M. C.: Periodic Orbits & Classical Quantization Conditions, J. Math. Phys. 12 (1971), 343–358.

    Article  ADS  Google Scholar 

  8. Gutzwiller, M. C.: Chaos in Classical and Quantum Mechanics, Springer, New York, 1990.

    MATH  Google Scholar 

  9. Feynman, R. P.: Space-Time Approach to Non-Relativistic Quantum Mechanics, Rev. Mod. Phys. 20 (1948), 367–387.

    Article  ADS  MathSciNet  Google Scholar 

  10. Feynman, R. P. and Hibbs, A. R. Quantum Mechanics and Path Integrals. McGraw-Hill, New York, 1965.

    MATH  Google Scholar 

  11. Cvitanović, P.: Classical and Quantum Chaos, version 6.0.2, Feb 2, 2000, printed April 7, 2000 (www.nbi.dk/ChaosBook/).

    Google Scholar 

  12. Argyris, J. Ciubotariu, C.: A new physical effect modelled by an Ikeda map depending on a monotonically time-varying parameter, Int. J. Bif. Chaos 9 (1999), 1111–1120.

    Article  Google Scholar 

  13. Butcher, J. C., The Numerical Solution of Ordinary Differential Equations. Wiley, Chichester, 1987.

    Google Scholar 

  14. Koonin, S. E., Computational Physics. Benjamin Cummings, Menlo Park, 1986, Chap. 4.

    Google Scholar 

  15. Press, W. H., Flannery, B. P., Teukolski, S. A. and Vetterling, W. T. Numerical Recipes. Cambridge University Press, Cambridge, 1986.

    Google Scholar 

  16. Pound, R. V. and Rebka, G. A.: Apparent weight of photons, Phys. Rev. Lett. 4 (1960), 337–341.

    Article  ADS  Google Scholar 

  17. Pound, R. V. and Snider, J. L.: Effect of gravity on nuclear resonance, Phys. Rev. Lett. 13 (1964), 539–540.

    Article  ADS  MATH  Google Scholar 

  18. Pound, R. V. and Snider, J. L.: Effect of gravity on gamma radiation, Phys. Rev. B 40 (1965), 783–803.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this paper

Cite this paper

Ciubotariu, C., Stancu, V., Ciubotariu, C. (2002). A Chaotic-Stochastic Model of an Atom. In: Amoroso, R.L., Hunter, G., Kafatos, M., Vigier, JP. (eds) Gravitation and Cosmology: From the Hubble Radius to the Planck Scale. Fundamental Theories of Physics, vol 126. Springer, Dordrecht. https://doi.org/10.1007/0-306-48052-2_35

Download citation

  • DOI: https://doi.org/10.1007/0-306-48052-2_35

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0885-6

  • Online ISBN: 978-0-306-48052-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics