Skip to main content

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 126))

  • 536 Accesses

Abstract

Our experience of the geometry of physical space at small scales is one that is flat obeying Euclidean laws, as simple measurements confirm. At cosmological scales, on the other hand, space appears also to be flat according to newly acquired evidence on the cosmic microwave background radiation, even if it gets considerably curved near the presence of massive bodies. This paper argues that the ‘geometry’ of the representational space of a thermal electronic noise process in fractional Brownian motion (fBm) is simply the reflection of the geometry of our universe; that is, flat with scattered local regions of curvature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. De Bernandis P et al, (2000) A flat Universe from high-resolution maps of the cosmic microwave background radiation. Nature 404, 955–959

    Article  ADS  Google Scholar 

  2. Hannany S et al, (2000) MAXIMA-1: A Measurement of the Cosmic Microwave Background Anisotropy on Angular Scales of 10 arcminutes to 5 degrees. Submitted to Astrophys. J. Lett.

    Google Scholar 

  3. Wittman DM, Tyson JA, Kirkman D, Dell’Antonio I, & Bernstein G (2000). Detection of weak gravitational lensing distortions of distant galaxies by cosmic dark matter at large scales. Nature 405, 143–148

    Article  ADS  Google Scholar 

  4. See for instance, Eddington AS (1920). Report on the Relativity Theory of Gravitation: Fleetway Press Ltd, London, and also Ciufolini I, Wheeler JA (1995). Gravitation and Inertia: University Press, Princeton.

    Google Scholar 

  5. Feynman RP: (1963) Lectures on Physics. Prepared for publication in 1997 by Leighton RB and Sands M, under the title: “Six Not So-Easy Pieces, Einstein’s Relativity, Symmetry and Spacetime”. Addison-Wesley, USA.

    Google Scholar 

  6. Mandelbrot, B. B. and Van Ness J. W. (1968) Fractional Brownian motions, fractional noises and applications. SIAM Rev., 10,4: 422–437.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  7. Mandelbrot, B.B. (1982). The Fractal Geometry of Nature. (W. H. Freeman, San Francisco).

    MATH  Google Scholar 

  8. Mandelbrot, B.B. (1999). Multifractals and 1/f Noise. Wild Self-Affinity in Physics. (Springer, New York).

    Google Scholar 

  9. Pallikari, F. (2000) A Study of the Fractal Character in Electronic Noise Processes. Chaos, Solitons & Fractals, 10(8), in press.

    Google Scholar 

  10. Hurst H. A. (1951) Long-term storage capacity of reservoirs. Trans. Am. Soc. Civ. Eng., 116: 770–808.

    Google Scholar 

  11. Feder J. (1988) Fractals. Plenum Press New York.

    MATH  Google Scholar 

  12. Mandelbrot, B.B. (1999). Multifractals and 1/f Noise. Wild Self-Affinity in Physics. (Springer, New York).

    Google Scholar 

  13. M. Schroeder (1991). Fractals, Chaos, Power Laws. Minutes from an Infinite Paradise: W. H. Freeman and Company, New York.

    Google Scholar 

  14. Gamow G (1993). Mr. Tompkins in Paperback: University Press, Cambridge

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this paper

Cite this paper

Pallikari, F. (2002). A Random Walk in A Flat Universe. In: Amoroso, R.L., Hunter, G., Kafatos, M., Vigier, JP. (eds) Gravitation and Cosmology: From the Hubble Radius to the Planck Scale. Fundamental Theories of Physics, vol 126. Springer, Dordrecht. https://doi.org/10.1007/0-306-48052-2_10

Download citation

  • DOI: https://doi.org/10.1007/0-306-48052-2_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0885-6

  • Online ISBN: 978-0-306-48052-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics