Advertisement

Irreversible Thermodynamics of Steady States

Part of the Fundamental Theories of Physics book series (FTPH, volume 124)

Keywords

Shock Wave Mach Number Adiabatic Approximation Slip Boundary Condition Irreversible Thermodynamic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Bird, R.B., Stewart, W.E. and Lightfoot, E.N. (1960) Transport Phenomena (Wiley: New York).Google Scholar
  2. [2]
    Barnes, H.A., Hutton, J.F. and Walters, K. (1989) Introduction to Rheology (Elsevier: Amsterdam).zbMATHGoogle Scholar
  3. [3]
    Batchelor, G.K. (1967) Fluid Dynamics (Cambridge: London).zbMATHGoogle Scholar
  4. [4]
    Meixner, J. (1941) Ann. Phys. (5), 39, 333; Meixner, J. and Reik, H.G. (1959) Thermodynamik der irreversiblen Prozesses, in Handbuch der Physik, Vol. III, Flügge, S., ed. (Springer, Berlin, 1959).zbMATHCrossRefGoogle Scholar
  5. [5]
    Prigogine, I. (1947) Étude Thermodynamiques des Phénomènes Irreversible (Desor: Liège); (1967) Thermodynamics of Irreversible Processes (Interscience: New York).Google Scholar
  6. [6]
    de Groot, S.R. and Mazur, P. (1962) Non-Equilibrium Thermodynamics (North-Holland: Amsterdam).Google Scholar
  7. [7]
    Haase, R. (1969) Thermodynamics of Irreversible Processes (Dover: New York).Google Scholar
  8. [8]
    Eu, B.C. (1992) Kinetic Theory and Irreversible Thermodynamics (Wiley: New York).Google Scholar
  9. [9]
    Eu, B.C. Non-Equilibrium Statistical Mechanics (Kluwer: Dordrecht).Google Scholar
  10. [10]
    Jaumann, G. (1911) Sitzungsber. Akad. Wiss. Wien (IIa), 120, 385.zbMATHGoogle Scholar
  11. [11]
    Prager, W. (1961) Introduction to Mechanics of Continua (Ginn: Boston).zbMATHGoogle Scholar
  12. [12]
    Eu, B.C. (1985) J. Chem. Phys., 82, 3773.MathSciNetADSCrossRefGoogle Scholar
  13. [13]
    Chapman, S. and Cowling, T.G. (1970) The Mathematical Theory of Non-Uniform Gases, third ed. (Cambridge: London).Google Scholar
  14. [14]
    Ferziger, J.H. and Kaper, H.G. (1972) Mathematical Theory of Transport Processes in Gases (North-Holland: Amsterdam).Google Scholar
  15. [15]
    Haken, H. (1977) Synergetics (Springer: Berlin).Google Scholar
  16. [16]
    Hassard, B.D., Kazarinoff, N.D., and Wan, Y.H. (1981) Theory and Applications of Hopf Bifurcation (Cambridge: London).zbMATHGoogle Scholar
  17. [17]
    Knobloch, E. and Wiesenfeld, K.A. (1983) J. Stat. Phys., 33, 611.CrossRefMathSciNetzbMATHADSGoogle Scholar
  18. [18]
    Eringen, A.C., ed. (1971) Continuum Physics, Vols. I–IV, (Academic: New York).Google Scholar
  19. [19]
    Eu, B.C. in: Casas-Vazquez, J., Jou, D. and Lebon, G., eds. (1984) Recent Developments in Non-Equilbrium Thermodynamics (Springer: Heidelberg).Google Scholar
  20. [20]
    Eu, B.C. (1980) J. Chem. Phys., 73, 2958; (1981) 74, 3006; (1981) 74, 6376.MathSciNetADSCrossRefGoogle Scholar
  21. [21]
    Eu, B.C. (1985) J. Chem. Phys., 82, 4283; (1986) Accts. Chem. Res., 19, 153.MathSciNetADSCrossRefGoogle Scholar
  22. [22]
    Eu, B.C. (1995) J. Chem. Phys., 102, 7169; (1995) 103, 10652; (1997) 107, 222; (1997) J. Non-Equil. Thermodyn., 22, 169.ADSCrossRefGoogle Scholar
  23. [23]
    Glasstone, S., Laidler, K.J., and Eyring, H. (1941) The Theory of Rate Processes (McGraw-Hill: New York)Google Scholar
  24. Ree, F.H., Ree, T., and Eyring, H. (1958) Ind. Eng. Chem., 50, 1036.CrossRefGoogle Scholar
  25. [24]
    Hoover, W.G. (1991) Computational Statistical Mechanics (Elsevier: Amsterdam).Google Scholar
  26. [25]
    Evans, D.J. and Morriss, G.P. (1990) Statistical Mechanics of nonequilibrium Liquids (Academic: London).zbMATHGoogle Scholar
  27. [26]
    Khayat, R.E. and Eu, B.C. (1988) Phys. Rev. A, 38, 2492; (1989) 39, 728; (1989) 40, 946.CrossRefADSGoogle Scholar
  28. [27]
    Eu, B.C. (1989) Phys. Rev. A, 40, 1497.ADSCrossRefGoogle Scholar
  29. [28]
    Eu, B.C. (1989) Phys. Rev. A, 40, 6395.ADSCrossRefGoogle Scholar
  30. [29]
    Eu, B.C. (1990) Am. J. Phys., 58, 83.CrossRefADSGoogle Scholar
  31. [30]
    Bird, R.B., Armstrong, R.C., and Hassager, O. (1977) Dynamics of Polymeric Liquids, Vol. I, (Wiley: New York).Google Scholar
  32. [31]
    Landau, L.D. and Lifshitz, E.M. (1959) Fluid Mechanics (Pergamon: London).Google Scholar
  33. [32]
    Schlichting, H. (1979) Boundary-Layer Theory, seventh ed. (McGraw-Hill: New York).zbMATHGoogle Scholar
  34. [33]
    Knudsen, M. (1909) Ann. Phys., 28, 75.zbMATHCrossRefGoogle Scholar
  35. [34]
    Kogan, M.N. (1967) Rarefied Gas Dynamics (Plenum: New York).Google Scholar
  36. [35]
    Mao, K. and Eu, B.C. (1993) Phys. Rev. A, 48, 2471.ADSCrossRefGoogle Scholar
  37. [36]
    Maxwell, J.C. (1927) Collected Works of J.C. Maxwell, Vol. II (Cambridge University Press: Cambridge), p. 682.Google Scholar
  38. [37]
    Maxwell, J.C. (1867) Phil. Trans. Roy. Soc. (London), 157, 49.ADSCrossRefGoogle Scholar
  39. [38]
    Kundt, A. and Warburg, E (1875). Ann. Phys. (Leipzig), 155, 337; (1875) 155, 525.ADSGoogle Scholar
  40. [39]
    Goodman, F.O. and Wachman, H.Y. (1976) Dynamics of Gas Surface Scattering (Academic: New York).Google Scholar
  41. [40]
    Dushman, S. (1962) Scientific Foundations of Vacuum Technique (Wiley: New York).Google Scholar
  42. [41]
    Langmuir, I. (1916) Phys. Rev., 8, 149.ADSCrossRefGoogle Scholar
  43. [42]
    Eu, B.C., Khayat, R.E., Billing, G.D., and Nyeland, C. (1987) Can. J. Phys., 65, 1090.ADSGoogle Scholar
  44. [43]
    Bhattacharya, D.K. and Eu, B.C. (1987) Phys. Rev. A 35, 821.ADSCrossRefGoogle Scholar
  45. [44]
    Teagan, W.P. and Springer, G.S. (1968) Phys. Fluids, 11, 497.CrossRefADSGoogle Scholar
  46. [45]
    Wang Chang, C.S. and Uhlenbeck, G.E. in: (1970) Studies in Statistical Mechanics, Vol. V, (North-Holland: Amsterdam), De Boer, J. and Uhlenbeck, G.E., eds..Google Scholar
  47. [46]
    Foch, Jr., J.D. and Ford, G.W. in: (1970) Studies in Statistical Mechanics, Vol. V, (North-Holland: Amsterdam), De Boer, J. and Uhlenbeck, G.E., eds..Google Scholar
  48. [47]
    Gilbarg, D. and Paolucci, D. (1953) J. Rat. Mech. Anal., 2, 617.MathSciNetGoogle Scholar
  49. [48]
    Bird, G.A. (1994) Molecular Gas Dynamics and Direct Simulation of Gas Flows (Clarendon: Oxford).Google Scholar
  50. [49]
    Nanbu, K. and Watanabe, Y. (1984) Rept. Inst. High Speed Mech., Vol. 48 (Tohoku University: Japan).Google Scholar
  51. [50]
    For a recent review of the DSMC method, see Oran, E. S., Oh, C.K., and Cybyk, B.Z. (1998) Ann. Rev. Fluid Mech., 30, 403.CrossRefMathSciNetADSGoogle Scholar
  52. [51]
    Al-Ghoul, M. and Eu, B.C. (1997) Phys. Rev. E, 56, 2981.CrossRefMathSciNetADSGoogle Scholar
  53. [52]
    Fiscko, K.A. and Chapman, D.R. (1989) Prog. Astronaut. Aeronaut., 118, 374.Google Scholar
  54. [53]
    Salomons, E. and Mareschal, M. (1992) Phys. Rev. Lett., 69, 269.CrossRefADSGoogle Scholar
  55. [54]
    Boyd, I.D., Chen, G., and Candler, G.V. (1995) Phys. Fluids, 7, 210.ADSzbMATHCrossRefGoogle Scholar
  56. [55]
    Grad, H. (1952) Comm. Pure Appl. Math., 5, 257.MathSciNetzbMATHCrossRefGoogle Scholar
  57. [56]
    Holway, L.H. (1964) Phys. Fluids, 7, 911.CrossRefzbMATHADSGoogle Scholar
  58. [57]
    Anile, A.M. and Majorana, A. (1982) Meccanica, 16, 149.ADSCrossRefGoogle Scholar
  59. [58]
    Weiss, W. (1995) Phys. Rev. E, 52, R5760.CrossRefADSGoogle Scholar
  60. [59]
    Ruggeri, T. (1993) Phys. Rev. E, 47, 4135.CrossRefMathSciNetADSGoogle Scholar
  61. [60]
    Eu, B.C. (1983) J. Chem. Phys., 79, 2315; (1983) Phys. Lett. A, 96, 29.MathSciNetADSCrossRefGoogle Scholar
  62. [61]
    Ohr, Y.G. and Eu, B.C. (1984) Phys. Lett. A, 101, 338.CrossRefADSGoogle Scholar
  63. [62]
    Eu, B.C. and Ohr, Y.G. (1984) J. Chem. Phys., 81, 2756.CrossRefADSGoogle Scholar
  64. [63]
    Bhattacharya, D.K. and Eu, B.C. (1986) Mol. Phys., 59, 1145.ADSCrossRefGoogle Scholar
  65. [64]
    Bhattacharya, D.K. and Eu, B.C. (1987) Phys. Rev. A, 35, 4850.ADSCrossRefGoogle Scholar
  66. [65]
    Eu, B.C. and Khayat, R.E. (1991) Rheol. Acta, 30, 204.CrossRefGoogle Scholar
  67. [66]
    Bhattacharya, D.K. and Eu, B.C. (1987) Phys. Rev. A, 35, 821.ADSCrossRefGoogle Scholar
  68. [67]
    Eu, B.C. and Khayat, R.E. (1989) Prog. Astronaut. Aeronaut., 118, 396.Google Scholar
  69. [68]
    Minorsky, N. (1962) Non-Linear Oscillations (Van Nostrand: Princeton).Google Scholar
  70. [69]
    Bird, G.A. (1983) Phys. Fluids, 26, 3222.CrossRefADSGoogle Scholar
  71. [70]
    Alsmyer, H. (1976) J. Fluid Mech., 74, 497.ADSCrossRefGoogle Scholar
  72. [71]
    Schmidt, B. (1969) J. Fluid Mech., 39, 361.ADSCrossRefGoogle Scholar
  73. [72]
    Garen, W., Synofzik, R., and Frohn, A. (1974) AIAA J., 12, 1132.CrossRefADSGoogle Scholar
  74. [73]
    Curtiss, C.F. (1981) J. Chem. Phys., 75, 376.MathSciNetADSCrossRefGoogle Scholar
  75. [74]
    Eu, B.C. and Ohr, Y.G. (2001) Phys. Fluids, 13, 744.CrossRefADSGoogle Scholar
  76. [75]
    Al-Ghoul, M. and Eu, B.C. (2001) Phys. Rev. E., 64, 046303.CrossRefADSGoogle Scholar
  77. [76]
    Al-Ghoul, M. and Eu, B.C. (2001) Phys. Rev. Lett., 86, 4294.CrossRefADSGoogle Scholar
  78. [77]
    Guckenheimer, J. and Holmes, P. (1983) Non-Linear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields (Springer: Berlin).Google Scholar
  79. [78]
    Greene, E.F. and Hornig, D.F. (1953) J. Chem. Phys., 21, 617.CrossRefADSGoogle Scholar
  80. [79]
    Linzer, M. and Hornig, D.F. (1963) Phys. Fluids, 6, 1661.CrossRefADSGoogle Scholar
  81. [80]
    Camac, M. (1965) Adv. Appl. Mech., 1, 240 [(1965) Proc. 4th Int. Symp. Rarefied Gas Dynamics, Vol. I, p. 240].Google Scholar
  82. [81]
    Robben, F. and Talbot, L. (1966) Phys. Fluids, 9, 633.ADSCrossRefGoogle Scholar
  83. [82]
    Myong, R.S. (1999) Phys. Fluids, 11, 2788.CrossRefADSzbMATHGoogle Scholar
  84. [83]
    Myong, R.S. (2001) J. Comp. Phys., 168, 47.zbMATHADSCrossRefGoogle Scholar
  85. [84]
    Myong, R.S. (2002) ‘Eu’s Generalized Hydrodynamics Computational Models for non-equilibrium Diatomic Gas Flows’, AIAA 2002-0649.Google Scholar
  86. [85]
    Eu, B.C. and Wagh, A. (1983) Phys. Rev. B, 27, 1037.CrossRefADSGoogle Scholar
  87. [86]
    Gad-el-Hak, M. (1999) J. Fluids Engin., 121, 5.CrossRefGoogle Scholar
  88. [87]
    Beskok, A. and Karniadakis, G.E. (1999) Micros. Thermophy. Engin., 3, 43.CrossRefGoogle Scholar
  89. [88]
    Kim, D.Y., Kim, C.S., and Eu, B.C. (2001) J. Korean Phys. Soc., 38, 712.ADSGoogle Scholar
  90. [89]
    Chapman, S. and Cowling, T.G. (1970) The Mathematical Theory of non-uniform Gases, third ed. (Cambridge: London).Google Scholar
  91. [90]
    Takao, K. in (1961) Rarefied Gas Dynamics, Talbot, L., ed. (Academic: New York), p. 465.Google Scholar
  92. [91]
    Cercignani, C. in (1963) Rarefied Gas Dynamics, Vol. II, Laurmann, J., ed. (Academic: New York), p. 92.Google Scholar
  93. [92]
    Simon, S. (1967) Proc. Roy. Soc. A, 301, 401.ADSCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2004

Personalised recommendations