Advertisement

Environmentally Oriented Electrochemistry

Keywords

Fuel Cell Chemical Oxygen Demand Reversible Potential Anodic Reaction Solar Light 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Further Reading

  1. 1.
    J. Tyndall, Phil. Mag. 22: 169, 273 (1861). First publication on the greenhouse effect.Google Scholar
  2. 2.
    F. Fischer and O. Prziza, Ber. Deutsch Chem. Ges. 47: 256 (1914). First electrochemical reduction of CO2.CrossRefGoogle Scholar
  3. 3.
    G. Plass, Quart. Roy. Meteorolog. Soc. 82: 310 (1956). First calculation on the greenhouse effect.CrossRefGoogle Scholar
  4. 4.
    Rachel Carson, Silent Spring, Houghton-Mifflin, Boston (1962). Some see this book as triggering environmental consciousness.Google Scholar
  5. 5.
    E. Justi, Conduction Mechanism and Energy Conversion in Solids, Udo Pfriemer Verlag Gottingen (1965). See particularly, Fig. 23, a schematic of a solar-hydrogen scheme.Google Scholar
  6. 6.
    J. O’M. Bockris, Environment 13: 31 (1971). The first published paper proposing a general use of hydrogen as an energy medium.Google Scholar
  7. 7.
    J. O’M. Bockris, ed., The Electrochemistry of Cleaner Environments, Plenum, New York (1972). The first collection of papers dealing with a specific environmental problem in an electrochemical way.Google Scholar
  8. 8.
    K. A. Ehricke, The Power Relay Satellite, North American Aerospace Group, Rockwell International (December 1973). The concept that solar energy should be collected in highly insolated areas of the world and beamed in microwave radiation to a satellite, which would in turn beam it to distant continents.Google Scholar
  9. 9.
    M. Fleischmann and A. K. O. Chu, J. Appl. Electrochem. 4: 323 (1974). Theory of electrochemical extraction in a packed bed.CrossRefGoogle Scholar
  10. 10.
    J. O’M. Bockris, Energy: The Solar-Hydrogen Alternative, Australia and New Zealand Book Company, Sydney (1975). The first book in which the use of solar energy to provide societal needs is presented at a technical level.Google Scholar
  11. 11.
    R. L. Clarke, A. T. Kühn, and E. Okoh, Electrochemistry in Britain (1975). Destruction of wastes via the mediator approach.Google Scholar
  12. 12.
    G. Stoner, U.S. Patent, 3,725,326, 1975. Electrochemical sterilization.Google Scholar
  13. 13.
    J. O’M. Bockris and K. Uosaki, J. Electrochem. Soc. 124: 98 (1977). Stability of the electrodes in photoelectrolysis.CrossRefGoogle Scholar
  14. 14.
    A. Szent-Gyorgyi, in Submolecular Biology and Cancer, p. 1, Excerpta Medica, New York (1978). Ideas on photons and solar energy storage in biomass.Google Scholar
  15. 15.
    V. Guruswamy and J. O’M. Bockris, in Solar Energy Materials, Vol. 1, p. 441, 1979. Hydrogen and electricity from water and light.CrossRefGoogle Scholar
  16. 16.
    B. G. Pound, D. J. M. Bevan, and J. O’M. Bockris, Int. J. Hydrogen Energy 6: 473 (1980). The electrolysis of steam to 1650 °C to form hydrogen.CrossRefGoogle Scholar
  17. 17.
    V. Guruswamy, O. J. Murphy, V. Young, G. Hildreth, and J. O’M. Bockris, in Solar Energy Materials, Vol. 6, p. 43, 1981. Photon electrochemical production of C12 from sea water.CrossRefGoogle Scholar
  18. 18.
    H. P. Dhar and J. O’M. Bockris, J. Electrochem. Soc. 128: 229 (1981). Elimination of bacterial coatings by electrochemical reduction of O 2 to H 2 O 2.CrossRefGoogle Scholar
  19. 19.
    O. Murphy and F. Gutmann, “The Electrochemical Splitting of Water,” in Modern Aspects of Electrochemistry, R. White, J. O’M. Bockris, and B. E. Conway, eds., Vol. 15, p. 1, Plenum, New York (1983). Review.Google Scholar
  20. 20.
    J. Ghorogchian and J. O’M. Bockris, Int. J. Hydrogen Energy 10: 101 (1985). Homopolar generator in the electrolysis of water.CrossRefGoogle Scholar
  21. 21.
    Y. Hori, K. Kikucki, A. Murah, and S. Suzuki, Chem. Lett. 34: 897 (1986). Reduction of CO 2 to MeOH on Cu electrodes at 0 °C.CrossRefGoogle Scholar
  22. 22.
    R. C. Kainthla and J. O’M. Bockris, Int.J. Hydrogen Energy 12: 23 (1987). Photoelectrochemical decomposition of H 2 S.CrossRefGoogle Scholar
  23. 23.
    K. Chandresekaran and J. O’M. Bockris, Surface Sci. 185: 495 (1987). FTIR evidence of CO 2 ion as an intermediate in the reduction of CO 2.CrossRefGoogle Scholar
  24. 24.
    I. Taniguchi, in Modern Aspects of Electrochemistry, J. O’M. Bockris, R. E. White, and B. E. Conway, eds., Vol. 20, p. 127, Plenum, New York (1989). Photoelectrocatalysis in the reduction of CO 2 Google Scholar
  25. 25.
    J. O’M. Bockris and J. Wass, J.Electrochem. Soc. 136: 2523 (1989). Photoelectrocatalytic mechanism in CO 2 reduction using macrocycles.Google Scholar
  26. 26.
    M. Oppenheimer and B. Boyle, “Dead Heat,” New Republic, New York (1990). A description of the consequences of the present trend in global warming.Google Scholar
  27. 27.
    D. F. Steele, Platinum Met. Rev. 34: 10 (1990). Treatment of mixed wastes by Ag+ and the mediator technique.Google Scholar
  28. 28.
    L. Kaba, G. D. Hitchens, and J. O’M. Bockris, J.Electrochem. Soc. 137: 1341 (1990). Electrochemical destruction of sewage.CrossRefGoogle Scholar
  29. 29.
    C. L. K. Tennakoon, R. C. Bhardwaj, and J. O’M. Bockris, J.Appl. Electrochem. 26: 15 (1990). Packed bed use in electrochemical destruction of sewage.Google Scholar
  30. 30.
    M. Halleman, in Proc. Int. Symp. on Chemical and Electrochemical Fixing of Carbon Dioxide, paper A19, Chemical Society of Japan (1991). Reduction of CO 2 Google Scholar
  31. 31.
    M. Enyo, T. Atoguchi, and Akiko Aromata, Proc. Int. Symp. on Chemical and Electrochemical Fixing of Carbon Dioxide, p. 333, Chemical Society of Japan (1991). Macrocycles in CO 2 reduction.Google Scholar
  32. 32.
    G. D. Hitchens, O. J. Murphy, L. Kaba and C. E. Verotsko, 20th Int. Conference, Environmental Systems (1991). Electrochemical purification of waste water.Google Scholar
  33. 33.
    R. Kotz, S. Stucki, and B. Carcer, J. Appl. Electrochem. 21: 14 (1991). Doped tin oxide anodes and their use in organic oxidation.CrossRefGoogle Scholar
  34. 34.
    D. H. Meadows, D. L. Meadows, and J. Randers, Beyond the Limits, Chelsea Green, Post Mills, VT (1992). A 1992 update on the concept that there are limits in world resources and these will be reached in the twenty-first century.Google Scholar
  35. 35.
    K. Uosaki and S. Nakabayashi, Chem. Lett. 40: 1474 (1992). Upgrade of chemicals by photoelectrochemical reactions with CO2.Google Scholar
  36. 36.
    D. T. Hobbs, Technical Report on the Electrochemical Treatment of Alkaline Nuclear Wastes. DOE Report WSRC-TR 94-0287 (1994). Review.Google Scholar
  37. 37.
    R. Gale, in Environmentally Oriented Electrochemistry, C. A. C. Sequeira, eds., Elsevier, Amsterdam (1994). Electrochemical destruction of hazardous wastes.Google Scholar
  38. 38.
    S. Stucki, A. Schuler, and M. Constantinescu, Int. J. Hydrogen Energy 20: 653 (1995). Extraction of CO2 from the air by an electrochemical method.CrossRefGoogle Scholar
  39. 39.
    Y. B. Acar, R. J. Gale, A. N. Alshawabkeh, R. E. Marks, S. Puppala, M. Bricka, and C. Parker, J. Hazardous Mat. 40: 117 (1995). Basics and technological status of electrochemical soil remediation.CrossRefGoogle Scholar
  40. 40.
    K. Petrov and S. Srinivasan, Int.J.Hydrogen Energy 21:163 (1996). Chemical engineering of the electrolysis of H2Sto hydrogen and sulfur.CrossRefGoogle Scholar
  41. 41.
    Y. B. Acar, F. Ozsu, A. N. Alshawabkeh, M. Rabbi, and R. J. Gale, Chem. Tech., April 1996, p. 40. Biodegradation under electric fields.Google Scholar
  42. 42.
    Y. B. Acar and A. N. Alshawabkeh, J. Geotech. Eng. March, 1996, p. 173 and p. 186. Pilot-scale tests of lead removal from kaolinite.Google Scholar
  43. 43.
    J. O’M. Bockris and J. Kim, J. Appl. Electrochem. 27: 623 (1997). Electrochemical treatment of low-level nuclear wastes.CrossRefGoogle Scholar
  44. 44.
    J. O’M. Bockris and J. Kim, J. Appl. Electrochem. 27: 890 (1997). Effect of significant contact resistance between particles in a packed bed on the distribution of current.CrossRefGoogle Scholar
  45. 45.
    A. Namen, Int. J. Hydrogen Energy 22: 783 (1997). Compares straight photoelectrolysis with photoirradiation of colloids.CrossRefGoogle Scholar
  46. 46.
    D. Nagel, J. Radiation Phys. Chem. 1998. A review of low-energy nuclear reactions by a division chief of the U.S. Naval Research Laboratory.Google Scholar
  47. 47.
    F. DiMascio, J. Wood, and K. Fenton, Interface 7: 27 (1998).Google Scholar
  48. 48.
    C. Platt, Wired, Nov. 1998, p. 172. Cold fusion is real.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Personalised recommendations