Skip to main content

Bioelectrochemistry

  • Chapter
Modern Electrochemistry 2B
  • 1099 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Further Reading

Seminal

  1. W. Nernst, Z. Physikal Chemie 2: 613 (1888). The first application of liquid junction potential theory to explain membrane potentials.

    Google Scholar 

  2. J. Bernstein, Pflüg. Arch. 92: 521 (1902). First electrochemical theory involving Na +, K + and Cl ions in nerve conduction.

    CAS  Google Scholar 

  3. J. Bernstein and A. Tchermak, Pflug. Arch. Ges. Physiol. 112: 439 (1906). Differential permeability is the basis to membrane potentials.

    Google Scholar 

  4. F. G. Donnan, Chem. Rev. 1: 73 (1924). Selective permeability theory of membrane potentials.

    Article  CAS  Google Scholar 

  5. E. J. Lund, J. Zool. 51: 265 (1928). Seminal suggestion of electron transfer in biology.

    CAS  Google Scholar 

  6. Teorell, Proc. Exp. Biol. Med. 33: 282 (1935). Helmholtz layer potential difference contribute to membrane potentials.

    CAS  Google Scholar 

  7. A. Szent-Gyorgyi, Nature 148: 157 (1941). Seminal suggestion of semiconductivity in biological organisms.

    Google Scholar 

  8. K. S. Cole, Arch. Sci. Physiol. 3: 253 (1949). Technique for measuring the spike potential.

    Google Scholar 

  9. A. L. Hodges and B. Katz, J. Physiol. 108: 37 (1949). Establishment of importance ofNa + in outer solution in nerve conduction.

    Google Scholar 

  10. A. L. Hodgkin and A. F. Huxley, J. Physiol. 116: 497 (1952). The classical theory of the passage of electricity through the nervous system.

    CAS  Google Scholar 

  11. T. Teorell, J. Chem. Phys. 42: 831 (1959). Mechanism for the passage of current down nerves.

    CAS  Google Scholar 

  12. M. Kallman and M. Pope, J. Chem. Phys. 32: 300 (1960). Interfacial electron transfer involving insulators in contact with solutions.

    Google Scholar 

  13. W. Mehl, J. M. Hale, and F. Lohmann, J. Electrochem. Soc. 113: 1166 (1960). Electrode processes at interfaces involving insulators in contact with ionic solutions.

    Google Scholar 

  14. B. Rosenberg and E. Postow, Ann. N.Y. Acad. Sci. 158: 161 (1960). Electronic conductance in biological organisms distinguished from ionic.

    Google Scholar 

  15. E. Goldman, J. Gen. Physiol. 27: 37 (1963). Equation for membrane potentials based on application of the Nernst-Planck equation.

    Google Scholar 

  16. S. P. S. Digby, Proc. Roy. Soc. London 161: 504 (1965). Electronic conductivity in crustaceans.

    CAS  Google Scholar 

  17. F. Gutmann and L. Lyons, Organic Semiconductors, Wiley, New York, 1967. The first book to gather and discuss data on electronic conductance in biomolecules.

    Google Scholar 

  18. D. DeVault, J. H. Parker, and Britton Chance, Nature 215: 642 (1967). Evidence of tunneling in electronic conductance of bio-organisms.

    Google Scholar 

  19. J. V. Howarth, Phil. Trans. Roy. Soc., London, Ser. B 270: 425 (1975). First heat measurements in nerve conduction.

    Article  CAS  Google Scholar 

  20. T. L. Jahn, Bioelectrochem. Bioenerg. 1: 441 (1976). Tests of the classical theory of membrane potentials.

    Google Scholar 

  21. J. O’M. Bockris and M. Schuaib, Trans. Adv. Electrochem. Sci. Tech. 13: 4 (1978). Photostimulated electron transfer to and from photosystem 1 and photosystem 2 from ions in aqueous solutions. (First evidence for a photoelectrochemical mechanism in photosynthesis.)

    Google Scholar 

  22. I. Taniguichi, E. Toyosawa, H. Yamaguchi, and E. Yasu Roucki, J. Chem. Soc. 102: 915 (1982). Electron transfer through promoters to dissolved proteins.

    Google Scholar 

  23. B. Hille, Ionic Channels in Excitable Membranes, Sinauer Associates, Sunderland, MA (1984).

    Google Scholar 

  24. A. Rejou-Michel, M. A. Habib, and J. O’M. Bockris, J. Biol. Phys. 14: 31 (1986). Electron transfer from a BLM containing a polypeptide to redox ions in solution.

    Article  CAS  Google Scholar 

  25. L. J. Boguslavsky, in Modern Aspects of Electrochemistry, R. E. White, B. E. Conway, and J. O’M. Bockris, eds., Vol. 18, p. 117, Plenum, New York (1986). Charge transfer at membrane/solution interfaces.

    Google Scholar 

  26. M. Blank, Biochim. Biophys. Acta 906: 177 (1987). Excitability in nerve membranes: mechanism.

    Google Scholar 

  27. J. O’M. Bockris and F. B. Diniz, Electrochim. Acta 34: 567 (1989). An electrode formulation of the potential difference across an electronically conducting polymer membrane in contact with differing redox species on each side of the membrane.

    Google Scholar 

  28. R. Pethig, M. H. Capstick, P. R. C. Gascoyne, and F. E. Becker, Ann. Inst. Conf. I.E.E.E. Eng. Med. Biol. 12: 1 (1990). Protonic and electronic conductance in biological organisms.

    Google Scholar 

  29. H. T. Tien, Electronic Aspects of Membrane Chemistry, Kluwer, Amsterdam (1991).

    Google Scholar 

  30. P. D. Barker and A. D. Mank, J. Am.Chem. Soc. 114: 3619 (1992). Evaluation of dynamics of change in metalloproteins at interfaces.

    Article  CAS  Google Scholar 

  31. M. Blank, “Electrochemistry of Nerve Conduction,” in Modern Aspects of Electrochemistry, by R. White, B. E. Conway, and J. O’M. Bockris, eds., Vol. 24, p. 1, Plenum, New York (1993).

    Google Scholar 

  32. G. K. Rowe, M. T. Carter, J. Richardson, and R. W. Murray, Langmuir 11: 1797 (1995). Obtaining electrode kinetic parameters from cyclic voltamograms involving proteins.

    Article  CAS  Google Scholar 

  33. T. M. Nahir, R. A. Clark, and E. F. Bowden, Anal. Chem. 66: 2595 (1996). Linear sweep voltamograms with cytochrome c adsorbed on SAMs.

    Google Scholar 

  34. Z. Zhang, A. E. Nasar, Z. Lu, J. B. Schenkman, and J. E. Rusling, J. Chem. Soc. Faraday Trans. 93: 1769 (1997). Myoglobin in a BLM and the reduction of chloracetic acid.

    CAS  Google Scholar 

  35. A. C. Onuoha, X. Zu, and J. F. Rusting, J. Am. Chem. Soc. 119: 3979 (1997). Oxidation of styrene at an interface involving myoglobin in a BLM.

    Article  CAS  Google Scholar 

Further Reading

  1. R. J. P. Williams, The Enzymes, Vol. 1, p 391, Academic Press, New York (1959). A first statement of Williams’ theory of metabolism.

    Google Scholar 

  2. J. O’M. Bockris and S. Srinivasan, Nature 215: 397 (1967). Only possible to explain high efficiency of metabolism if energy conversion has fuel cell mechanism.

    Google Scholar 

  3. P. N. Sawyer and S. Srinivasan, J. Coll. Interface Sci. 32: 456 (1970). Coagulation of biomaterials in blood as a function of the surface charge.

    Google Scholar 

  4. S. Srinivasan and P. N. Sawyer, J. Coll. Interface Sci. 32: 456 (1970). The stability of prosthetic material as a function of its surface charge.

    CAS  Google Scholar 

  5. R. O. Becker, Nature 235: 109 (1972). The stimulation of cell growth under weak electric fields.

    Article  CAS  Google Scholar 

  6. R. N. Adams, Anal. Chem. 48: 1126A (1976). Investigation of the electrochemistry of the brain.

    Article  CAS  Google Scholar 

  7. A. Pilla, C. A. Basset, S. Mitchell, and L. Norton, Acta Orthopaedic Belg. 46: 700 (1978). Stimulation of bone growth.

    Google Scholar 

  8. J. S. Clegg, in Water Structure in Cell Associated Water, W. Drost-Hansen and J. Clegg, eds., p. 363, Academic Press, New York (1979).

    Google Scholar 

  9. J. O’M. Bockris and M. Tunulli, J. Electroanal. Chem. 100: 7 (1979). Bioelectrochemical energy storage mechanism.

    Google Scholar 

  10. M. V. Berry, FEBS Lett. 117: (Supplement) K106 (1980). Enzymes in cells are adsorbed on cell surfaces.

    Article  Google Scholar 

  11. J. O’M. Bockris, F. Gutmann, and M. A. Habib, J. Biol. Phys. 13: 31 (1985). A fuel cell mechanism in biological energy conversion.

    Google Scholar 

  12. R. Gerschmann, D. Gilbert, S. Nye, P. Dwyer, and W. Fenn, Science 119: 623 (1986). O 2 as a general cause of disease.

    Google Scholar 

  13. D. Sawyer, Chenteck. 18: 369 (1988). O 2 is a pretoxin.

    CAS  Google Scholar 

  14. H. Berg, in Electromagnetic Fields and Biomembranes, M. Maikov and M. Blank, eds., Plenum; New York (1988).

    Google Scholar 

  15. K. Pikel, T. J. Schooeder, and R. M. Wightman, Anal. Chem. 60: 1268 (1988). Use of microelectrodes to investigate processes in the brain.

    Google Scholar 

  16. D. Van der Kuiji, P. A. Vingerling, P. S. Smitt, K. de Groot and J. de Graaf, Electric Stimulation of Bone Growth, Karger, New York (1993).

    Google Scholar 

  17. P.A. Garris and R. M. Wightman, J. Neurosci. 14: 462 (1994). Fast scan voltammetry and brain electrochemistry.

    Google Scholar 

  18. L. Huang and R. Kennedy, Trends Anal. Chem. 14: 158 (1995). Exploring single-cell dynamics: insulin at single cell level.

    Article  CAS  Google Scholar 

  19. R. M. Wightman, S. Hocksteter, B. Michael, and E. Travis, Interface 5: 23 (1996). Following dopamine in the brain.

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this chapter

Cite this chapter

(2004). Bioelectrochemistry. In: Modern Electrochemistry 2B. Springer, Boston, MA. https://doi.org/10.1007/0-306-48036-0_5

Download citation

  • DOI: https://doi.org/10.1007/0-306-48036-0_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-46324-2

  • Online ISBN: 978-0-306-48036-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics