Advertisement

Bioelectrochemistry

Keywords

Electron Transfer Fuel Cell Membrane Potential Arterial Wall Oxygen Reduction Reaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Further Reading

Seminal

  1. 1.
    W. Nernst, Z. Physikal Chemie 2: 613 (1888). The first application of liquid junction potential theory to explain membrane potentials.Google Scholar
  2. 2.
    J. Bernstein, Pflüg. Arch. 92: 521 (1902). First electrochemical theory involving Na +, K + and Cl ions in nerve conduction.Google Scholar
  3. 3.
    J. Bernstein and A. Tchermak, Pflug. Arch. Ges. Physiol. 112: 439 (1906). Differential permeability is the basis to membrane potentials.Google Scholar
  4. 4.
    F. G. Donnan, Chem. Rev. 1: 73 (1924). Selective permeability theory of membrane potentials.CrossRefGoogle Scholar
  5. 5.
    E. J. Lund, J. Zool. 51: 265 (1928). Seminal suggestion of electron transfer in biology.Google Scholar
  6. 6.
    Teorell, Proc. Exp. Biol. Med. 33: 282 (1935). Helmholtz layer potential difference contribute to membrane potentials.Google Scholar
  7. 7.
    A. Szent-Gyorgyi, Nature 148: 157 (1941). Seminal suggestion of semiconductivity in biological organisms.Google Scholar
  8. 8.
    K. S. Cole, Arch. Sci. Physiol. 3: 253 (1949). Technique for measuring the spike potential.Google Scholar
  9. 9.
    A. L. Hodges and B. Katz, J. Physiol. 108: 37 (1949). Establishment of importance ofNa + in outer solution in nerve conduction.Google Scholar
  10. 10.
    A. L. Hodgkin and A. F. Huxley, J. Physiol. 116: 497 (1952). The classical theory of the passage of electricity through the nervous system.Google Scholar
  11. 11.
    T. Teorell, J. Chem. Phys. 42: 831 (1959). Mechanism for the passage of current down nerves.Google Scholar
  12. 12.
    M. Kallman and M. Pope, J. Chem. Phys. 32: 300 (1960). Interfacial electron transfer involving insulators in contact with solutions.Google Scholar
  13. 13.
    W. Mehl, J. M. Hale, and F. Lohmann, J. Electrochem. Soc. 113: 1166 (1960). Electrode processes at interfaces involving insulators in contact with ionic solutions.Google Scholar
  14. 14.
    B. Rosenberg and E. Postow, Ann. N.Y. Acad. Sci. 158: 161 (1960). Electronic conductance in biological organisms distinguished from ionic.Google Scholar
  15. 15.
    E. Goldman, J. Gen. Physiol. 27: 37 (1963). Equation for membrane potentials based on application of the Nernst-Planck equation.Google Scholar
  16. 16.
    S. P. S. Digby, Proc. Roy. Soc. London 161: 504 (1965). Electronic conductivity in crustaceans.Google Scholar
  17. 17.
    F. Gutmann and L. Lyons, Organic Semiconductors, Wiley, New York, 1967. The first book to gather and discuss data on electronic conductance in biomolecules.Google Scholar
  18. 18.
    D. DeVault, J. H. Parker, and Britton Chance, Nature 215: 642 (1967). Evidence of tunneling in electronic conductance of bio-organisms.Google Scholar
  19. 19.
    J. V. Howarth, Phil. Trans. Roy. Soc., London, Ser. B 270: 425 (1975). First heat measurements in nerve conduction.CrossRefGoogle Scholar
  20. 20.
    T. L. Jahn, Bioelectrochem. Bioenerg. 1: 441 (1976). Tests of the classical theory of membrane potentials.Google Scholar
  21. 21.
    J. O’M. Bockris and M. Schuaib, Trans. Adv. Electrochem. Sci. Tech. 13: 4 (1978). Photostimulated electron transfer to and from photosystem 1 and photosystem 2 from ions in aqueous solutions. (First evidence for a photoelectrochemical mechanism in photosynthesis.)Google Scholar
  22. 22.
    I. Taniguichi, E. Toyosawa, H. Yamaguchi, and E. Yasu Roucki, J. Chem. Soc. 102: 915 (1982). Electron transfer through promoters to dissolved proteins.Google Scholar
  23. 23.
    B. Hille, Ionic Channels in Excitable Membranes, Sinauer Associates, Sunderland, MA (1984).Google Scholar
  24. 24.
    A. Rejou-Michel, M. A. Habib, and J. O’M. Bockris, J. Biol. Phys. 14: 31 (1986). Electron transfer from a BLM containing a polypeptide to redox ions in solution.CrossRefGoogle Scholar
  25. 25.
    L. J. Boguslavsky, in Modern Aspects of Electrochemistry, R. E. White, B. E. Conway, and J. O’M. Bockris, eds., Vol. 18, p. 117, Plenum, New York (1986). Charge transfer at membrane/solution interfaces.Google Scholar
  26. 26.
    M. Blank, Biochim. Biophys. Acta 906: 177 (1987). Excitability in nerve membranes: mechanism.Google Scholar
  27. 27.
    J. O’M. Bockris and F. B. Diniz, Electrochim. Acta 34: 567 (1989). An electrode formulation of the potential difference across an electronically conducting polymer membrane in contact with differing redox species on each side of the membrane.Google Scholar
  28. 28.
    R. Pethig, M. H. Capstick, P. R. C. Gascoyne, and F. E. Becker, Ann. Inst. Conf. I.E.E.E. Eng. Med. Biol. 12: 1 (1990). Protonic and electronic conductance in biological organisms.Google Scholar
  29. 29.
    H. T. Tien, Electronic Aspects of Membrane Chemistry, Kluwer, Amsterdam (1991).Google Scholar
  30. 30.
    P. D. Barker and A. D. Mank, J. Am.Chem. Soc. 114: 3619 (1992). Evaluation of dynamics of change in metalloproteins at interfaces.CrossRefGoogle Scholar
  31. 31.
    M. Blank, “Electrochemistry of Nerve Conduction,” in Modern Aspects of Electrochemistry, by R. White, B. E. Conway, and J. O’M. Bockris, eds., Vol. 24, p. 1, Plenum, New York (1993).Google Scholar
  32. 32.
    G. K. Rowe, M. T. Carter, J. Richardson, and R. W. Murray, Langmuir 11: 1797 (1995). Obtaining electrode kinetic parameters from cyclic voltamograms involving proteins.CrossRefGoogle Scholar
  33. 33.
    T. M. Nahir, R. A. Clark, and E. F. Bowden, Anal. Chem. 66: 2595 (1996). Linear sweep voltamograms with cytochrome c adsorbed on SAMs.Google Scholar
  34. 34.
    Z. Zhang, A. E. Nasar, Z. Lu, J. B. Schenkman, and J. E. Rusling, J. Chem. Soc. Faraday Trans. 93: 1769 (1997). Myoglobin in a BLM and the reduction of chloracetic acid.Google Scholar
  35. 35.
    A. C. Onuoha, X. Zu, and J. F. Rusting, J. Am. Chem. Soc. 119: 3979 (1997). Oxidation of styrene at an interface involving myoglobin in a BLM.CrossRefGoogle Scholar

Further Reading

  1. 1.
    R. J. P. Williams, The Enzymes, Vol. 1, p 391, Academic Press, New York (1959). A first statement of Williams’ theory of metabolism.Google Scholar
  2. 2.
    J. O’M. Bockris and S. Srinivasan, Nature 215: 397 (1967). Only possible to explain high efficiency of metabolism if energy conversion has fuel cell mechanism.Google Scholar
  3. 3.
    P. N. Sawyer and S. Srinivasan, J. Coll. Interface Sci. 32: 456 (1970). Coagulation of biomaterials in blood as a function of the surface charge.Google Scholar
  4. 4.
    S. Srinivasan and P. N. Sawyer, J. Coll. Interface Sci. 32: 456 (1970). The stability of prosthetic material as a function of its surface charge.Google Scholar
  5. 5.
    R. O. Becker, Nature 235: 109 (1972). The stimulation of cell growth under weak electric fields.CrossRefGoogle Scholar
  6. 6.
    R. N. Adams, Anal. Chem. 48: 1126A (1976). Investigation of the electrochemistry of the brain.CrossRefGoogle Scholar
  7. 7.
    A. Pilla, C. A. Basset, S. Mitchell, and L. Norton, Acta Orthopaedic Belg. 46: 700 (1978). Stimulation of bone growth.Google Scholar
  8. 8.
    J. S. Clegg, in Water Structure in Cell Associated Water, W. Drost-Hansen and J. Clegg, eds., p. 363, Academic Press, New York (1979).Google Scholar
  9. 9.
    J. O’M. Bockris and M. Tunulli, J. Electroanal. Chem. 100: 7 (1979). Bioelectrochemical energy storage mechanism.Google Scholar
  10. 10.
    M. V. Berry, FEBS Lett. 117: (Supplement) K106 (1980). Enzymes in cells are adsorbed on cell surfaces.CrossRefGoogle Scholar
  11. 11.
    J. O’M. Bockris, F. Gutmann, and M. A. Habib, J. Biol. Phys. 13: 31 (1985). A fuel cell mechanism in biological energy conversion.Google Scholar
  12. 12.
    R. Gerschmann, D. Gilbert, S. Nye, P. Dwyer, and W. Fenn, Science 119: 623 (1986). O 2 as a general cause of disease.Google Scholar
  13. 13.
    D. Sawyer, Chenteck. 18: 369 (1988). O2 is a pretoxin.Google Scholar
  14. 14.
    H. Berg, in Electromagnetic Fields and Biomembranes, M. Maikov and M. Blank, eds., Plenum; New York (1988).Google Scholar
  15. 15.
    K. Pikel, T. J. Schooeder, and R. M. Wightman, Anal. Chem. 60: 1268 (1988). Use of microelectrodes to investigate processes in the brain.Google Scholar
  16. 16.
    D. Van der Kuiji, P. A. Vingerling, P. S. Smitt, K. de Groot and J. de Graaf, Electric Stimulation of Bone Growth, Karger, New York (1993).Google Scholar
  17. 17.
    P.A. Garris and R. M. Wightman, J. Neurosci. 14: 462 (1994). Fast scan voltammetry and brain electrochemistry.Google Scholar
  18. 18.
    L. Huang and R. Kennedy, Trends Anal. Chem. 14: 158 (1995). Exploring single-cell dynamics: insulin at single cell level.CrossRefGoogle Scholar
  19. 19.
    R. M. Wightman, S. Hocksteter, B. Michael, and E. Travis, Interface 5: 23 (1996). Following dopamine in the brain.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Personalised recommendations