Advertisement

Conversion and Storage of Electrochemical Energy

Keywords

Fuel Cell Proton Exchange Membrane Fuel Cell Porous Electrode Exchange Current Density Electrochemical Capacitor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Further Reading

Seminal

  1. 1.
    W. Grove, Phil. Mag. 14: 127 (1839). The first recognized paper on fuel cells.Google Scholar
  2. 2.
    L. L. Mond and D. Langer, Proc. Roy. Soc. London A46: 296 (1989). Practical development of Grove’s work.Google Scholar
  3. 3.
    F. W. Ostwald, J. Electrochem. 1: 122 (1894). Presidential address to Bunsen Gesellschaft; predicted pollution if heat engines are used for energy production. Recommended electrochemical pathway.Google Scholar
  4. 4.
    W. Jacques, Harper Mag. 94: 199 (Dec. 1896, 1897). Worked out in detail the reduction of fuel costs for a boat to cross the Atlantic using electrochemical or chemical engines.Google Scholar
  5. 5.
    E. Bauer, W. D. Treadwell, and G. Trumpler, Z.Elektrochem. 27: 199 (1921). First carbonate fuel cell.Google Scholar
  6. 6.
    E. C. Potter on F. T. Bacon, in Trends in Electrochemistry. J. O’M. Bockris, D. A. Rand, and B. J. Welch, eds., 7.1, Plenum, New York (1977). A summary of Bacon’s work.Google Scholar
  7. 7.
    E. Justi and J. Winsel, Cold Combustion, Verlag, Chemie, Wiesbaden, Germany (1962). A general account of fuel cells before the 1960s.Google Scholar
  8. 8.
    J. O’M. Bockris and S. Srinivasan, The Electrochemistry of Fuel Cells, McGraw-Hill, New York (1969). Electrochemistry and electrochemical engineering associated with practically all types of electrochemical energy conversion systems, as well as their applications. An advanced presentation still relevant in the 1990s.Google Scholar
  9. 9.
    F. T. Bacon, Fuel Cells, in Trends in Electrochemistry, J. O’M. Bockris, D. Rand, and B. Welch, eds., Plenum, New York (1976). An address to the meeting of the Ivth Australian Conference in Electrochemistry.Google Scholar
  10. 10.
    A. Damjanovic and V. Brusic, Electrochim. Acta 13: 615 (1967). The basic paper deducing O 2 + H+ + e → OHads + Oads as the rds for O 2 reduction in acid solution.Google Scholar
  11. 11.
    E. Yeager, J. D. E. McIntyre, and M. J. Weaver, Electrocatalysis, Proc. Electrochem. Soc. 84–12: 247 (1984).Google Scholar
  12. 12.
    A. Damjanovic and M. A. Genshaw, Electrochim. Acta 15: 1281 (1970). Experimental proof of Temkin behavior. O adsorption linear with potential.CrossRefGoogle Scholar
  13. 13.
    H. Wroblowa, M. L. B. Rao, A. Damjanovic, and J. O’M. Bockris, J. Electroanal. Chem. 15: 139 (1967). The stationary potential of Pt contact with O 2 in solution.CrossRefGoogle Scholar
  14. 14.
    A. J. Appleby, in Comprehensive Treatise of Electrochemistry, B. E. Conway, J. O’M. Bockris, S. U. M. Khan, and R. E. White, eds., Vol. 7, p. 173, Plenum, New York (1983). Electrocatalysis of O 2 reduction.Google Scholar
  15. 15.
    P. Zelenay, B. R. Scharifker, J. O’M. Bockris, and D. Gervasio, J. Electrochem. Soc. 133: 2262 (1986). The small adsorption of sulfonic acids on Pt.Google Scholar
  16. 16.
    M. A. Enayetullah, T. D. de Vilbiss, and J. O’M. Bockris, J. Electrochem. Soc. 136: 3369 (1989). The high solubility of O2 in trifluoromethane sulfonic acid.Google Scholar

Modern

  1. 1.
    A. Parthasarathy, S. Srinivasan, and A. J. Appleby, J. Electroanal. Chem. 339: 101 (1992). Reduction of O 2 at C-supported Pt microcrystal/Nafion interfaces.CrossRefGoogle Scholar
  2. 2.
    A. J. Appleby, Energy 21: 145 (1996). A review (640 refs).CrossRefGoogle Scholar
  3. 3.
    S. Chalk, Fuel Cells for Transportation, U.S. Department of Energy, Washington, DC (1997). A brief review, many figures.Google Scholar
  4. 4.
    E. A. Ticianelli, J. G. Berry, and S. Srinivasan, J. Appl. Electrochem. 21: 597 (1991). Attaining small particle size for Pt in fuel cells.CrossRefGoogle Scholar
  5. 5.
    J. B. Goodenough, A. Hamnet, B. J. Kennedy, and S. A. Weeks, Electrochim. Acta 32: 1233 (1987). XPS studies of platinized carbon.CrossRefGoogle Scholar
  6. 6.
    K. Machido and M. Enyo, Tungsten bronze electrodes doped with platinum (methanol oxidation), J. Electrochem. Soc. 135: 1955 (1988).Google Scholar
  7. 7.
    K. Wang, H. A. Gasteiger, N. M. Markovic, and P. V. Ross, Electrochim. Acta 16: (1996). Methanol oxidation on Pt-Sn and Pb-Rh.Google Scholar
  8. 8.
    A. V. Tripkovic and K. Popovic, Electrochim. Acta 41: 2385 (1996). Oxidation of methanol on Pt (110) single crystals.CrossRefGoogle Scholar
  9. 9.
    H. Gasteiger, N. Markovic, P. N. Ross, and E. J. Cairns, J. Electrochem. Soc. 141: 1296 (1994). Temperature-dependent methanol electro-oxidation on well-characterized Pt-Ru alloys.Google Scholar
  10. 10.
    A. K. Schukla, M. K. Ravikumar, A. S. Arico, C. Candiano, V. Antonucci, and N. Giordano, J. Appl. Electrochem. 25: 528 (1995). Methanol oxidation on Pt-WO3.Google Scholar
  11. 11.
    T. E. Springer, M. S. Wilson, and S. Gottesfeld, J. Electrochem. Soc. 140: 3513 (1993). Modeling in polymer electrolyte fuel cells.Google Scholar
  12. 12.
    S. Chalk, J. F. Miller, and S. R. Venkataswaren, paper presented at Fifth Grove Fuel Cell Symposium, London, 1997. A review of the fuel cell programs of the U.S. Dept. of Energy.Google Scholar
  13. 14.
    M. S. Wilson and S. Gottesfeld, J. Appl. Electrochem. 22: 1 (1992). Making fuel cell electrodes with small Pt loading.CrossRefGoogle Scholar
  14. 15.
    A. J. Appleby and F. R. Foulkes, Fuel Cell Handbook, Van Nostrand, New York (1989).Google Scholar
  15. 16.
    S. Srinivasan, O. A. Velev, A. Parthasasathy, and D. J. Manko, J. Power Sources 36: 299 (1991). O 2 reduction in PEM cells.CrossRefGoogle Scholar
  16. 17.
    A. John Appleby, J. O’M. Bockris, E. B. Yeager, T. Robert Selman and J. T. Brown, “Penner Report on Fuel Cells,” U.S. Department of Energy, Washington, DC (1986).Google Scholar
  17. 18.
    S. Srinivasan and C. Lamy, “The Direct Methanol Fueled Fuel Cell,” in Modern Aspects of Electrochemistry, B. E. Conway, R. E. White, and J. O’M. Bockris, eds., Vol. 34, p. 1, Kluwer Academic, Plenum, New York (1999).Google Scholar
  18. 19.
    J. M. Gür and R. A. Huggins, J. Electrochem. Soc. 139: 295 (1992). Carbon to electrical energy in a fuel cell.Google Scholar

Seminal

  1. 1.
    Plantè: Recherches sur l’electricite, Paris (1879). The invention of the lead-acid battery.Google Scholar
  2. 2.
    K. Kordesch in Comprehensive Treatise of Electrochemistry, J. O’M. Bockris, B. E. Conway, E. Yeager, and R. E White, eds., Vol. 3, p. 123, Plenum, New York (1981).Google Scholar
  3. 3.
    Encyclopaedia Brittanica, Vol. 7, p. 231, 1987. Leclanchè invented the Leclanche battery in 1866.Google Scholar
  4. 4.
    F. Gassner, German Patent 37,748,1888. This added paste to NH 4 Cl solution in the ZnOMnO 2 battery. Hence the phrase “dry cell.”Google Scholar
  5. 5.
    M. Barak, in Comprehensive Treatise of Electrochemistry, J. O’M. Bockris, B. E. Conway, E. Yeager, and R. E. White, eds., Vol. 3, p. 191, Plenum, New York (1981). Primary cells.Google Scholar
  6. 6.
    M. Kronenberg and G. Blomgren, in Comprehensive Treatise of Electrochemistry, J. O’M. Bockris, B. E. Conway, E. Yeager, and R. E. White, eds., Vol. 3, p. 247, Plenum, New York (1981). Primary cells for special purposes.Google Scholar
  7. 7.
    E. Kordesch, in Comprehensive Treatise of Electrochemistry, J. O’M. Bockris, B. E. Conway, E. Yeager, and R. E. White, eds., Vol. 3, p. 127, Plenum, New York (1981). Rechargeable batteries.Google Scholar
  8. 8.
    H. Andrè, Bull. Soc. Fr. Electr. 1(6): 132 (1941). Development of a Zn-Ag cell.Google Scholar
  9. 9.
    A. Kozewa, in Batteries, E. Kordesch, ed., Vol. 1, p. 385, Marcel Dekker, New York (1974). Mechanism of MnO 2 reduction.Google Scholar

Modern

  1. 1.
    Y. F. Yao, N. Gupta, and H. S. Wroblowa, J. Electroanal Soc. 223: 107 (1987). Studies on the effects of adding Bi and Pb to the two-electron rechargeability of Zn-MnO 2 cells.Google Scholar
  2. 2.
    M. A. Dzieciuch, N. Gupta, and H. S. Wroblowa,J. Electroanal. Chem. 138: 2416 (1988). Coupling of 2e rechargeable MnO2 with Zn.Google Scholar
  3. 3.
    P. A. Fiedler and J. S. Besenhard, Proc. Electrochem. Soc. 18: 893 (1977). Voltammetric characterization of MnO 2 as affected by metal ions.Google Scholar
  4. 4.
    M. Kloss, C. Gruhnwald, D. Rahmer, and W. Plieth, Proc. Electrochem. Soc. 18: 905 (1997). On the rechargeability of MnO 2.Google Scholar
  5. 5.
    K. Kordesch and C. Feistaner, Proc. Electrochem. Soc. 97: 923 (1997). Rechargeable alkaline MnO 2 cells in practice.Google Scholar
  6. 6.
    E. Strauss, D. Golodnitsky, Y. Lavi, E. Peled, L. Burstein, and L. Lateah, Proc. Electrochem. Soc. 18: 133 (1997). Rechargeable Li-FeS 2 cells for electric vehicles.Google Scholar
  7. 7.
    J. Barker, J. Swoyer, and M. Y. Caidi, Proc. Electrochem. Soc. 18: 241 (1997). Li-V 6 O 13 cells.Google Scholar
  8. 8.
    C. B. Appetechi, F. Croce, B. Scrosati, and M. Wahihera, Proc. Electrochem. Soc. 18: 488 (1997). Li-MnO 2 cells separated by plastic ionic membrane.Google Scholar
  9. 9.
    J. Flores, M. Urguidi-MacDonald, and D. D. MacDonald, Proc.Electrochem. Soc. 18: 528 (1997). Li coupled with Pt electrode makes a powerful cell in aqueous solutions.Google Scholar
  10. 10.
    S. R. Orshinski, S. K. Dhar, S. Venkatesen, D. A. Corrigan, A. Holland, M. A. Fetsenka, and P. R. Gifford, Proc. Electrochem. Soc. 18: 693 (1997). A review of metal hydride batteries stressing U.S. work.Google Scholar
  11. 11.
    S. Gamburzev, O. A. Velev, R. Danin, S. Srinivasan, and A. J. Appleby, Proc.Electrochem. Soc. 18: 726 (1997). Improved design of nickel-metal hydride batteries.Google Scholar
  12. 12.
    Y. Yang, J. M. Nan, J. Ki, and J. G. Lin, Proc. Electrochem. Soc. 18: 750 (1997). Surface properties of metal hydrides.Google Scholar
  13. 13.
    A. B. McEwan, J. L. Goldman, T. Blakey, W. F. Averil, and V. R. Koch, Proc. Electrochem. Soc. 18: 602 (1997). Nonaqueous electrochemical capacitors.Google Scholar
  14. 14.
    D. M. Wilde, T. J. Guther, R. Oesten, and J. Gorche, Proc. Electrochem. Soc. 18: 613 (1997). Perovskites as the basis of electrochemical supercapacitors.Google Scholar
  15. 15.
    L. Redey, Proc. Electrochem. Soc. 18: 623 (1997). Heat effects in electrochemical capacitors.Google Scholar
  16. 16.
    “Environmental Concerns, Public Policies, and Remediation Technologies,” in Proc. Third Ann. Conf. on Environmental Science, R. J. Gale, W. J. Catallo, R. C. Mohanty, and J. B. Johnston, eds., American Society for Environmental Science, Baton Rouge, LA (1993).Google Scholar
  17. 17.
    F. M. Delnick, D. Ingersol, X. Andrieu, and K. Naoi, eds., Electrochemical Capacitors, Proc. Electrochem. Soc. 96–25. A collection of papers.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Personalised recommendations