Advertisement

Electrochemistry in Materials Science

Keywords

Corrosion Rate Hydrogen Evolution Corrosion Potential Passive Film Corrosion Inhibitor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Further Reading

Seminal

  1. 1.
    A. De La Rive, Ann. Chem. Phys. 43: 423 (1830). First suggestion that corrosion had an electrochemical mechanism.Google Scholar
  2. 2.
    L. Cailletet, Compt. Rend. 58: 327 (1864). First report of H embrittlement of metals.Google Scholar
  3. 3.
    A. Finkelstein, Z. Physikal. Chem. 39: 91 (1902). Impedance of passive iron.Google Scholar
  4. 4.
    U. R. Evans, J. Inst. Metals 30: 263 (1923). Evidence in favor of an electrochemical mechanism of corrosion.Google Scholar
  5. 5.
    G. Freenkel and H. Heinz, Z. Anorg. Chem. 133: 167 (1924). The introduction of the term “mixed potential” (a potential determined by two or more individual reactions).Google Scholar
  6. 6.
    C. Wagner and W. Traud, Z. Elektrochem. 44: 391 (1938). The original formulation of the mixed potential concept and the basic theory of corrosion of a pure metal.Google Scholar
  7. 7.
    H. Tomachov, Dokl. Akad. Nauk. URSS 30: 621 (1941). Graphical methods for mixed potentials with many components.Google Scholar
  8. 8.
    M. Pourbaix, “Graphic representation of the relation of pH and Potential in Corrosion” thesis, Delft, University of Technology, the Netherlands, 1945. The original publication of Pourbaix diagrams.Google Scholar
  9. 9.
    B. Kabanov, R. Burshstein, and A. Frumkin, Disc. Faraday Soc. 1: 259 (1947). First suggestion of a mechanism of Fe in alkaline solution that was compatible with modern ideas.Google Scholar
  10. 10.
    M. Pourbaix, in Proc. of the 2 nd Meeting of C.I.T.C.E. (forerunner of Acta Electrochim.), Tambarini, Milan (1950). Two fundamental measurements on corrosion.Google Scholar
  11. 11.
    J. O’M. Bockris, in Modern Aspects of Electrochemistry, J. O’M. Bockris, ed., Vol. 1,Ch. 4, Butterworths, London (1954). First formulation of equations for the corrosion potential and rate of corrosion in terms of exchange-current densities of the constituent reactions.Google Scholar
  12. 12.
    J. M. Kolatyrkin, Z. Elektrochem. 62: 664 (1958). Alloy corrosion and its mechanism.Google Scholar
  13. 13.
    H. F. Finley and N. Hackerman, J. Electrochem. Soc. 107: 259 (1960). Inhibitors have specific chemical effects.Google Scholar
  14. 14.
    J. O’M. Bockris, D. Drazic, and A. Despic, Electrochim Acta 4: 325 (1961). First determination of the cathodic Fe 2+ deposition current by significantly accurate measurements of the co-evolved H 2 mechanism of the corrosion of iron in acid solution.Google Scholar
  15. 15.
    T. P. Hoar, in Modern Aspects of Electrochemistry, J. O’M. Bockris and B. G. Conway, eds., Vol. 3, p. 1, Plenum, New York (1963). On the anodic reactions of metals.Google Scholar
  16. 16.
    E. McCafferty and N. Hackerman, J. Electrochem. Soc. 119: 999 (1972). Mechanism of iron dissolution in the presence of Cl Google Scholar

Modern

  1. 1.
    J. Van Muylder, “Thermodynamics of Corrosion,” in Comprehensive Treatise of Electrochemistry, J. O’M. Bockris, B. E. Conway, E. Yeager, and R. E. White, eds., Vol. 4,Ch. 1, Plenum, New York (1984).Google Scholar
  2. 2.
    W. H. Smyrl, “Electrochemistry of Corrosion,” in Comprehensive Treatise of Electrochemistry, J. O’M. Bockris, B. E. Conway, E. Yeager, and R. E. White, eds., Vol. 4,Ch. 2, Plenum, New York (1984).Google Scholar
  3. 3.
    D. Drazic and V. Vassic, J. Electroanal. Chem. 155: 229 (1985). Theoretical analysis of the electrochemical corrosion rate measurement.Google Scholar
  4. 4.
    D. Drazic, in Modern Aspects of Electrochemistry, R. E. White, B. E. Conway, and J. O’M. Bockris, eds., Vol. 19,Ch. 4, Plenum, New York (1990). The mechanism of dissolution of iron.Google Scholar
  5. 5.
    A. R. Despic, D. M. Drazic, J. Balaksina, and L. Gejic, Elektrochim Acta 35: 1947 (1990). Mechanism of the dissolution of aluminum.Google Scholar
  6. 6.
    Z. Nagy and R. F. Hawkins, J. Electrochem. Soc. 138: 1047 (1991). Analysis of the correction of the corrosion measurement kinetics for double-layer effects.Google Scholar
  7. 7.
    H. W. Pickering, Mat. Sci. Eng. A198: 213 (1995). The effect of ohmic drop on corrosion measurements.Google Scholar
  8. 8.
    I. H. Plonski, in Modern Aspects of Electrochemistry, J. O’M. Bockris, B. E. Conway, and R. E. White, eds., Vol. 29,Ch. 3, Plenum, New York (1996). Effect of adsorbed H on Fe dissolution rate.Google Scholar
  9. 9.
    J. O. Park, C. H. Park, and R. C. Alkire, J. Electrochem. Soc. 145: L174 (1996). Measurements of corrosion in small species.Google Scholar
  10. 10.
    C. Wang, S. Chen, and X. Yu, J. Electrochem. Soc. 143: L283 (1996). Anodic dissolution of iron on a magnetic field with holographic microphotography.Google Scholar
  11. 11.
    R. Wagner, J. Electrochem. Soc. 193: L139 (1996). Copper corrosion in thin films of acid.Google Scholar
  12. 12.
    C. C. Chen and F. Mansfeld, Corros. Sci. 39: 409 (1997). Potential profile under drop of solution on steel.Google Scholar
  13. 13.
    J. O’M. Bockris and Y. Kang, “The Mechanism of the Corrosion of Al Alloys,” J. Solid State Electrochem. 1: 17 (1997).Google Scholar

Seminal

  1. 1.
    Sir Humphrey Davy, Phil. Trans. Roy Soc. London 115: 158 (1825). The first paper on cathodic protection (of British Navy ships).Google Scholar
  2. 2.
    J. O’M. Bockris and B. E. Conway, J. Phys. Colloid. Chem. 53: 527 (1949). First established relation between hydrogen overpotential and corrosion inhibition.Google Scholar
  3. 3.
    E. L. Cook and N. Hackermann, J. Phys. Colloid. Chem. 55:549 (1951). Adsorption as a prerequisite of inhibition.Google Scholar
  4. 4.
    A. C. MacKrides and N. Hackerman, Ind. Eng. Chem. 47: 1773 (1955). How adsorption relates to inhibition.Google Scholar
  5. 5.
    I. N. Pictilova, S. A. Balezin, and V. P. Baranek, Metallic Corrosion Inhibitors, Pergamon Press, New York (1960). Details first patent for an inhibitor, issued to S. Baldwin, British Patent 2327 (advised use of molasses).Google Scholar
  6. 6.
    E. Blomgren, J. O’M. Bockris, and C. Jesch, J.Phys. Chem. 65: 2000 (1961). The relation of the structure of the organic to adsorption and corrosion inhibition.Google Scholar
  7. 7.
    J. O’M. Bockris and P. K. Subramaniam, Corros. Sci. 10: 435 (1970). The electrochemical basis for the stability of metals.Google Scholar

Review

  1. 1.
    N. Hackerman, Langmuir 3: 922 (1981).Google Scholar

Modern

  1. 1.
    D. Rolle and J. W. Schultze, J.Electroanal. Chem. 229: 141 (1987).CrossRefGoogle Scholar
  2. 2.
    I. Macek, N. Hackerman, and Z. Haulas, Proc. 7 th European Symposium on Corrosion Inhibition, p. 12 (1990).Google Scholar
  3. 3.
    J. O’M. Bockris and B. Yang, J.Electrochem. Soc. 138: 8 (1991).Google Scholar
  4. 4.
    C. Vitozzi and G. D. Angellis, Aquatic Toxicology 19: 167 (1991).Google Scholar
  5. 5.
    M. Chesallis, Chemosphere 22:1175 (1991).Google Scholar
  6. 6.
    J. O’M. Bockris and K. T. Jeng, J.Electroanal. Chem. 330: 541 (1992).Google Scholar
  7. 7.
    S. N. Raicheva, B. V. Aleksiev, and F. I. Soholava, Corros. Sci. 34: 343 (1993).Google Scholar
  8. 8.
    H. S. Rosenkranz, E. J. Matthews, and G. Klopman, Ecotoxicology Env. Safety 25: 296 (1993).Google Scholar
  9. 9.
    P. Kutej, J. Vosta, J. Macak, and N. Hackerman, J.Electrochem. Soc. 142: 829 (1995).Google Scholar
  10. 10.
    P. Kutej, J. Vosta, J. Pancir, and N. Hackerman, J. Electrochem. Soc. 142: 1847 (1995).Google Scholar
  11. 11.
    B. Yang, H. Zheng, and D. A. Johnson, The Inhibition of H Permeation in Corrosion, Paper 271, National Association of Corrosion Engineers, Houston, TX (1997).Google Scholar
  12. 12.
    P. Mutumbo and N. Hackerman, J. Solid State Electrochem. 1: 194 (1997).Google Scholar

Seminal

  1. 1.
    M. Faraday, in Experimental Researches in Electricity, Vol. 2, London, 1844; Reprinted by Dover, New York (1965). First suggestion of passivity as due to thin film.Google Scholar
  2. 2.
    N. Cabrera and N. F. Mott, Rep. Prog. Phys. 12: 163 (1943). Theory of the state of growth of oxide films.Google Scholar
  3. 3.
    U. R. Evans, Trans. Electrochem. Soc. 91: 547 (1947). Isolation of a film from a passive metal by dissolving away the metal.Google Scholar
  4. 4.
    C. Wagner, J. Electrochem. Soc. 99: 369 (1952). Alloying with noble metals to protect corroding metals.Google Scholar
  5. 5.
    T. P. Hoar and J. G. Hynes, J. Iron Steel Inst. 182: 124 (1956). Time to failure in alloys.Google Scholar
  6. 6.
    M. J. Pryor, J. Electrochem. Soc. 106: 557 (1959). First statement of Cl penetration theory of depassivation.Google Scholar
  7. 7.
    C. Edeleaunu, Chem. Ind. 301: 50 (1961). Why passive films remain constant in thickness during variation in potential.Google Scholar
  8. 8.
    A. K. Reddy and J. O’M. Bockris, J. Bur. Standards, p.229 (1964). First ellipsometric observation of passive films on electrodes in solution under potential control.Google Scholar
  9. 9.
    H. Pickering and C. Wagner, J. Electrochem. Soc. 114: 698 (1967). Paired vacancy diffusion in alloy dissolution.Google Scholar
  10. 10.
    H. H. Uhlig, Corros. Sci. 7: 235 (1967). First statement of idea that passivity is due to a monolayer of oxide.Google Scholar
  11. 11.
    B. F. Brown, J. Electrochem. Soc. 116:218 (1969). First measurement of pH inside pits.Google Scholar
  12. 12.
    J. O’M. Bockris, M. Genshaw and V. Brusic, Symp. Faraday Soc. 6: 177 (1970). Comprehensive application of ellipsometry to Fe passivation.Google Scholar
  13. 13.
    W. E. O’Grady and J. O’M. Bockris, Chem. Phys. Lett. 5: 116 (1970); Surf. Sci. 66: 581 (1977). First application of Mössbauer spectroscopy in electrochemistry; the properties of passive films are due to their amorphous character.Google Scholar
  14. 14.
    J. O’M. Bockris, B. T. Rubin, A. Despic, and B. Lovrecech, Electrochim. Acta 17: 97 (1972). Cu-Ni alloy dissolution; the dissolution rate of each alloying component is independent of its composition in the alloys.Google Scholar
  15. 15.
    J. Gniewich, J. Pezy, B. G. Baker, and J. O’M. Bockris, J. Electrochem. Soc. 125: 17 (1978). First Auger study of the surface of a dissolving alloy (attempt to show that small concentrations of gold would protect less noble metals).Google Scholar

Reviews

  1. 1.
    J. W. Schultze and S. Kudeka, “Investigation of Passivity,” Interface 6: 28 (1997).Google Scholar
  2. 2.
    P. Schmuki and S. Virtanen, “Modeling of Passivity,” Interface 6: 38 (1997).Google Scholar
  3. 3.
    R. G. Kelly, “Small-Scale Corrosion,”Interface 6: 18 (1997).Google Scholar

Modern

  1. 1.
    R. W. Revie, B. G. Baker, and J. O’M. Bockris, Surf. Sci. 52: 664 (1975). First published paper on uhv in electrochemistry; the degraded passive film by Auger spectroscopy.CrossRefGoogle Scholar
  2. 2.
    O. J. Murphy, T. E. Pou, J. O’M. Bockris, L. L. Tongsen, and M. D. Monkowski, J. Electrochem. Soc. 130: 1792 (1983). Water in the passive layer; SIMS and ISS evidence.Google Scholar
  3. 3.
    P. M. Natashan, E. McCafferty, and G. K. Hubler, J.Electrochem. Soc. 133: 1061 (1986). pH, pzc, and the corrosion of Al alloys.Google Scholar
  4. 4.
    R. Alkire and K. P. Wong, Corr. Sci. 28:411 (1988). Microelectrodes in pitting corrosion.CrossRefGoogle Scholar
  5. 5.
    B. F. Shew, G. D. Davis, T. L. Fritz, B. J. Rees, and W. C. Moshier, J.Electrochem. Soc. 138:3288 (1991). Enrichment in the surface of Al alloys.Google Scholar
  6. 6.
    Z. Szarkloska-Schmialowska, Corros. Sci. 33: 1193 (1992). A solution in pits has a pH that allows dissolution of metal oxides.Google Scholar
  7. 7.
    J. O’M. Bockris and L. Minevski, J. Electroanal. Chem. 349: 375 (1993). Protection of aluminum by means of transition metal alloys.Google Scholar
  8. 8.
    N. Casillas, S. J. Charlebois, W. H. Smyrl, and H. S. White, J. Electrochem. Soc. 140:L142 (1993). Confocal laser scanning microscopy used on electrodes.Google Scholar
  9. 9.
    R. Raiceff, I. Betova, M. Bohnov, and E. Lazarova, in Modeling Corrosion, K. Trethoway and P. Roberge, eds., Kluwer Academic, Dordrecht (1994). Modeling of corrosion reactions.Google Scholar
  10. 10.
    G. Salamat, G. Juhl, and R. G. Kelly, Corrosion 51: 826 (1995). Local concentrations are significantly different from bulk ones.CrossRefGoogle Scholar
  11. 11.
    H. S. Isaacs, S. M. Huang, and V. Jovancicevic, J.Electrochem. Soc. 143: 1178 (1996). Impedance measurements in pits.Google Scholar
  12. 12.
    A. Michaelis and J. W. Schultze, Thin Solid Films 274: 82 (1996). Photoelectrochemical examination of passive layers.CrossRefGoogle Scholar
  13. 13.
    J. O. Park, C. H. Park, and R. C. Alkire, J. Electrochem. Soc. 143: L174 (1996). Microelectrodes in corrosion research.Google Scholar
  14. 14.
    J. O’M. Bockris and Y. Kang, J. Solid State Electrochem. 1: 17 (1997). Potential of zero charge and the protection of aluminum from Cl attack by transition metal additives.Google Scholar
  15. 15.
    F. Mansfeld, G. Zhong, and C. Chen, Plating Surf. Finishing (Dec.) 72 (1997). Impedance measurements on aluminum.Google Scholar
  16. 16.
    J. Proost, J. Baklanov, M. Verbeeck, and K. Mrex, J. Solid State Electrochem. 2: 150 (1998). Looking inside pits.CrossRefGoogle Scholar

Historical and Seminal

  1. 1.
    T. Grahame, Phil. Trans. Roy. Soc. London 156: 415 (1860). Possibly prior to Cailleset’s discovery (1864), Grahame discovered that metal absorbs H (which he called hydrogenium).Google Scholar
  2. 2.
    L. Caslletet, Compt. Rend. 56: 327 (1864). Reported disappearance of H inside iron during pickling.Google Scholar
  3. 3.
    A. Sieverts, Z. Physikal. Chem. 60: 169 (1907). Establishment of the law pertaining to the amount of dissolved H and the H 2 external pressure.Google Scholar
  4. 4.
    A. Griffith, Phil. Trans. A221: 102 (1920). The lenslike shape of voids in metals.Google Scholar
  5. 5.
    C. A. Zappfe and C. E. Sims, Trans. ASME 255: 145 (1941). The first suggestion of high pressure in voids in metals as a mechanism of embrittlement.Google Scholar
  6. 6.
    A. N. Frumkin and N. Aladjalowa, Acta Physicochem. USSR 19: 1 (1944). First measurements on anodic H on positive side of bielectrode.Google Scholar
  7. 7.
    N. J. Petch, Phil. Mag. 3: 1089 (1958). Decay of properties due to H adsorption at grain boundaries reduces surface bonding between grains.Google Scholar
  8. 8.
    Z. Szarklarska-Schmiolowski and M. Smialowski, Bull. Acad. Pol. Sci. Ser. Chim. 6: 247 (1958). H solubility in iron.Google Scholar
  9. 9.
    A. R. Troiano, Trans. ASM 54: 52 (1960). First suggestion of the congregation of H at points of triaxial (i.e., high) stress points.Google Scholar
  10. 10.
    M. A. V. Devanathan and Z. Stachurski, Proc. Roy. Soc. London 270A: 96 (1962). Theory of the cell for the electrochemical determination of H damage in metals.Google Scholar
  11. 11.
    A. S. Tetelmann and W. D. Robertson, Acta Met. 11: 415 (1963). Pressure theory, quantitative.Google Scholar
  12. 12.
    W. Beck, J. O’M. Bockris, J. McBreen, and L. Nanis, Proc.Roy. Soc. London A290: 220 (1966). Partial molar volume ofH in iron. Relation of solubility to local stress. Permeation as an arbiter of damage.Google Scholar
  13. 13.
    R. G. Raicheff, A. Damjanovic, and J. O’M. Bockris, J.Chem. Phys. 49: 926 (1968). The effect of stressing metals upon the rate of appearance of slip planes of different indices.Google Scholar
  14. 14.
    A. R. Despic, R. C. Raicheff, and J. O’M. Bockris, J. Chem. Phys. 49: 926 (1968). Effect of stress and yielding in metals upon the anodic current density.CrossRefGoogle Scholar
  15. 15.
    J. O’M. Bockris and P. K. Subramanyam, J. Electrochem. Soc. 118: 114 (1971). H2 traps the pressure produced.Google Scholar
  16. 16.
    J. O’M. Bockris and P. K. Subramanyam, Electrochim. Acta 16: 2169 (1971). Internal pressure as a function of overpotential for various kinetic mechanisms of the surface desorption of H.Google Scholar

Modern

  1. 1.
    H. J. Flitt and J. O’M. Bockris, Int. J. Hydrogen Energy 7: 411 (1982). Effect of organic inhibitors on the ingress of H into metals.Google Scholar
  2. 2.
    H. J. Flitt and J. O’M. Bockris, Int. J. Hydrogen Energy 8: 39 (1983). A laser-based technique for measuring H in local areas of metals.Google Scholar
  3. 3.
    T. B. Flanagan, Proc. Electrochem. Soc. 94–21: 17 (1995). Cathodic absorption of H; review by a principal contributor to the field.Google Scholar
  4. 4.
    G. Jerkiewicz, J. Borodzinski, W. Chrzanowski, and B. E. Conway, Proc. Electrochem. Soc. 94–21: 44 (1995). Factors involving blocking of H absorption.Google Scholar
  5. 5.
    M. Enyo, Proc. Electrochem. Soc. 94–21: 75 (1995). H pressure in cathodes.Google Scholar
  6. 6.
    O. Yamazardi, H. Yoshitaka, N. Kamiya, and K. Ohta, Proc.Electrochem. Soc. 94–21: 92 (1995). H absorption as a function of Li inclusions in Pd.Google Scholar
  7. 7.
    F. R. Durand, J. C. Chen, J. P. Dicard, and C. Montella, Proc. Electrochem. Soc. 94–21: 207 (1995). Impedance study of H absorption.Google Scholar
  8. 8.
    E. Protopopoff and P. Marcus, Proc. Electrochem. Soc. 94–21: 374 (1995). Site blocking of H entry.Google Scholar
  9. 9.
    L. J. Gao and B. E. Conway, Proc. Electrochem. Soc. 94–21: 388 (1995). Poisoning of H entry into metals.Google Scholar
  10. 10.
    J. O’M. Bockris, Z. Minevski, and G. H. Lin, Proc. Electrochem. Soc. 94–21: 410 (1995). The experimental establishment of 3000 atm pressure in voids in Pd.Google Scholar

Further Reading

  1. 1.
    K. Uosaki and H. Kita, J. Electroanal. Chem. 259: 301 (1989).CrossRefGoogle Scholar
  2. 2.
    J. W. Schultze (organizer), The Technology of Electrochemical Micro Systems, University of Dusseldorf, 1996.Google Scholar

Further Reading

  1. 1.
    H. J. Flitt, J. Pezy, and J. O’M. Bockris, Int. J. Hydrogen Energy 8: 39 (1983). The neodynium Yag laser and the detection of H in local areas.Google Scholar
  2. 2.
    K. C. Pillai and J. O’M. Bockris, J.Electrochem. Soc, 131: 568 (1984). The mixed-potential theory of separative mineral flotation; a quantitative study.Google Scholar
  3. 3.
    K. C. Pillai and V.Y. Young, J.Colloid Interface Sci. 103: 103 (1985). X-ray photoelectron spectroscopy study of xanthate adsorption on pyrite mineral surfaces.CrossRefGoogle Scholar
  4. 4.
    F. Fen and A. J. Bard, J. Electrochem. Soc. 136: 166(1989). Scanning tunneling microscopy and the corrosion of stainless steel.Google Scholar
  5. 5.
    R. Sonnenfeld, J. Schneir, and P. Hansma, in Modern Aspects of Electrochemistry, B. E. Conway, R. H. White, and J. O’H. Bockris, eds., Vol. 21, p. 1, Plenum, New York, 1990. STM in electrochemistry.Google Scholar
  6. 6.
    R. C. Bhardwaj, A. Gonzalez-Martin, and J. O’M. Bockris, J.Electrochem. Soc. 138:1901 (1991). Scanning tunneling microscopy and the corrosion of iron.Google Scholar
  7. 7.
    J. P. Thomas and R. P. Wei, Mat. Sci. Eng. A159: 205,233 (1992). Fatigue in metals.Google Scholar
  8. 8.
    R. Woods, in Modern Aspects of Electrochemistry, R. H. White, J. O’M. Bockris, and B. E. Conway, eds., Vol. 29, p. 401, Plenum, New York (1996). The mechanism of the separation of minerals by means of preferential flotation.Google Scholar
  9. 9.
    G. C. Farrington, K. Kowal, J. De Luccia, J. Y. Josefowicz, and C. Laird, J.Electrochem. Soc. 143: 2471 (1996). Atomic force microscopy in the corrosion of alloys.Google Scholar
  10. 10.
    A. Michaelis and J. W. Schultze, Thin Solid Films 274: 82 (1996). Microellipsometry in corrosion.CrossRefGoogle Scholar
  11. 11.
    F. Mansfeld, C. C. Lee, and G. Zhang, Electrochim. Acta 43: 435 (1998). Comparison of noise and impedance data.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Personalised recommendations