Selected Aspects of Organoelectrochemistry

11.6.4. Conclusion

Many expertly designed new electrode surfaces have been created (R. Murray, 1992–1998) and made active by mixing the polymer with some kind of redox system, which in turn brings about the oxidation or reduction of the reactant. Several factors are intertwined here: the permeation of the reactant into the film which reaches an optimal thickness, electron-transfer steps, and steps involving surface reaction.

There are undoubtedly systems where the net result of the use of macrocycles is advantageous (e.g., use of the crown ethers by Wass in 1989 to photo reduce CO 2 ); it is necessary to be sure that the increase in rate is more than an effect of the extra area introduced (which is somewhat similar to that arising from the use of a porous electrode containing a metal catalyst) before one concludes that there is a catalytic effect per real square centimeter due to the new structure.


Organic Polymer Electrode Reaction Ionic Doping Electrochemical Synthesis Methyl Thiophene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Further Reading


  1. 1.
    A. Von Arnim, Ann. Phys. (Leipzig) 8:257 (1801). Electrolysis of red wine.Google Scholar
  2. 2.
    A. Crum-Brown and J. Walker, Justus Liebigs Ann. Chem. 261:107 (1891). Kolbe synthesis.Google Scholar
  3. 3.
    H. Hofer and M. Moist, Justus Liebigs Ann. Chem. 323:285 (1902). Alcohols from carbonylic acid.Google Scholar
  4. 4.
    R. Criegee, Justus Liebigs Ann. Chem. 73:523 (1936). First chiral synthesis.Google Scholar
  5. 5.
    A. Hickling, Trans. Faraday Soc. 38:27 (1942). The potentiostat.Google Scholar
  6. 6.
    J. R. Backhurst, J. M. Coulion, F. Goodridge, R. E. Mimley, and M. Fleischmann, J. Electrochem. Soc. 116:1600 (1969). Packed-bed (3D) electrodes.Google Scholar


  1. 1.
    J. Heinze, K. Hinkelmann, M. Dietrich, and J. Mortenzen, Ber. Bunsenges. Phys. Chem. 89:1225 (1985). Synthesis of conducting organic polymers.Google Scholar
  2. 2.
    A. V. Rama Rao, M. K. Gurjar, and S. V. Jocki, Tetrahedron Asym. 1: 697 (1990). Formation of chiral compounds.Google Scholar
  3. 3.
    B. R. Scharifker, E. Garcia-Partorize, and W. Marino, J. Electroanal. Chem. 300: 85 (1991). Growth of polypyrrole films.CrossRefGoogle Scholar
  4. 4.
    D. Stökert, R. Kessel, and J. W. Schultze, Synthet. Metals 41–43: 1295 (1991). Photoelectrochemistry of heterocyclic polymers.Google Scholar
  5. 5.
    D. L. Miller and J. O’M. Bockris, J. Electrochem. Soc. 139: 967 (1992). The polypyrrole/solution interface.Google Scholar
  6. 6.
    T. Yoshiyama and T. Fuchigami, Chem. Lett. 40: 1995 (1992). Difluorination of diacetals.Google Scholar
  7. 7.
    D. J. Fermin, J. Mostany, and B. R. Scharifker, Curr. Topics Electrochem. 2:132 (1993). Review of electronically conducting organic compounds.Google Scholar
  8. 8.
    “Electrons are green:Electrochemical Syntheses,” RC-175. Business Communications Co., Inc., Niagara Falls, NY (1994).Google Scholar
  9. 9.
    E. Herrero, K. Frenasczuk, and A. Wieckowski, J. Phys. Chem. 8: 5074 (1994). Methanol eoxidation at low-index crystal planes.Google Scholar
  10. 10.
    N. L. Weinberg and D. J. Mazur, Annual Report of the Royal Society of Chemistry 42: 58 (1996). Recent electro-organic syntheses.Google Scholar
  11. 11.
    R. D. Little, H. Bode, T. Brigant, and M. Schwaebe, in Novel Trends in Synthesis, S. Torii, ed., p. 103, Kodanski, Tokyo (1995). Stereoselective coupling.Google Scholar
  12. 12.
    J. Y. Lin, W. K. Paik, and I. H. Yeu, Synth. Met. 69: 451 (1995). Growth of polypyrrole and the microbalance.Google Scholar
  13. 13.
    M. Palucka, G. J. McCormack, and E. N. Jacobson, Tetrahedron Lett. 36: 547 (1995). Asymmetric epoxidation of olefin gives a chiral result.Google Scholar
  14. 14.
    J. Um and W. K. Paik, Bull. Korean. Chem. Soc. 17: 369 (1996). Capacitance of polypyrrole films.Google Scholar
  15. 15.
    D. J. Fermin, Helene Teruel, and B. R. Scharifker, J. Electroanal. Chem. 401: 207 (1996). Species and charge carriers in the oxidation of polypyrrole.Google Scholar
  16. 16.
    D. Kim, D. Lee, and W. K. Paik, Bull. Korean. Chem. Soc. 17: 707 (1996). Polypyrrole films and ellipsometry.Google Scholar
  17. 17.
    C. Herrero, W. Chrzanowski, and A. Wieckowski, J. Phys. Chem. 99: 10423 (1995). Dual-path mechanism in the electro-oxidation of methanol.CrossRefGoogle Scholar
  18. 18.
    Y. Sato, M. Fujita, F. Mizutani, and K. Uosaki, J. Electroanal. Chem. 409: 145 (1996). Electrochemical properties of 2-mercaptohydroquinone monolayers on gold.CrossRefGoogle Scholar
  19. 19.
    T. Kondo, T. Itu, S. Nomura, and K. Uosaki, Thin Solid Films 286: 652 (1996). Photoelectrochemical properties of porphyrin mercaptoquinone.Google Scholar
  20. 20.
    S. Ye, A. Yashiro, Y. Sato, and K. Uosuki, J. Chem. Soc. Faraday Trans. 92: 3813 (1996). FT-IRCAS studies of self-assembled 2-(11-mercaptoundecyl) hydroquinone.CrossRefGoogle Scholar
  21. 21.
    M. E. William, J. Long, H. Mesui, and R. W. Murray, J. Am. Chem. Soc. 119:1286 (1997). Electron transport in redox polyether melts.Google Scholar
  22. 22.
    R. H. Tersil, J. E. Hutchison, and R. W. Murray, J. Phys. Chem. 101: 1535 (1997). Electron hopping in viologen tetraethylene oxide copolymer.Google Scholar
  23. 23.
    V. M. Manes, H. Masui, R. M. Wrighton, and R. W. Murray, J. Am. Chem. Soc. 119: 3987 (1997). Luminescence in molten ruthenium 2,21-bipyridine complex.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Personalised recommendations