Advertisement

Photoelectrochemistry

Keywords

Conduction Band Valence Band Surface State Schottky Barrier Space Charge Region 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Further Reading

Seminal

  1. 1.
    E. Becquerel, C.R. Acad. Sci. 9: 561 (1939). First paper recording effect of light on electrodes.Google Scholar
  2. 2.
    A. W. Copeland, B. Black, and A. B. Garret, Chem. Rev. 31: 177 (1942). Review ofwork up to 1942.CrossRefGoogle Scholar
  3. 3.
    P. J. Hilson and E. K. Rideal, Proc. Roy. Soc. London 199: 295 (1949). Light effects in metals.Google Scholar
  4. 4.
    J. O’M. Bockris, S. U. M. Khan, and K. Uosaki, J. Res. Inst. Catal. Hokkaido 24:1 (1976). Theory of photoelectrochemistry at metals.Google Scholar
  5. 5.
    W. W. Gätner, Phys. Rev. 116: 84 (1959). Photoemission from solids; basis of much of Gerischer’s subsequent Schottky barrier theory. Origin of neglect of surface properties until 1980s.Google Scholar
  6. 6.
    H. Gerischer and F. Beck, Z. Elektrochem. 63: 500 (1959). Early Schottky barrier paper.Google Scholar
  7. 7.
    M. Green, “Semiconductor Electrochemistry,” in Modern Aspects of Electrochemistry, J. O’M. Bockris and B. E. Conway, eds., Vol. 2,Ch. 2, Plenum, New York (1959). First formulation of semiconductor electrode kinetics in terms of equations; band bending; surface states; limiting currents.Google Scholar
  8. 8.
    G. C. Barker, Electrochim. Acta 13:1221 (1968). Light effect on metals in the presence of certain agents in solution.CrossRefGoogle Scholar
  9. 9.
    H. Gerischer, Electroanal. Interfacial Chem. 50:263 (1975). Photoelectrochemical kinetics.Google Scholar
  10. 10.
    D. S. Ginley and M. A. Butler, J. Appl. Phys. 48:2019 (1977). Photocurrents in the limiting current region interpreted in terms of Schottky barrier.CrossRefGoogle Scholar
  11. 11.
    M. A. Butler, J. Appl. Phys. 44: 1914 (1977). Theory of photocurrents in terms of energy gap and flatband potential; transport in rate control.Google Scholar
  12. 12.
    A. M. Bard and B. Krautler, J. Am. Chem. Soc. 100: 4317 (1978). Photoelectrochemical decomposition of wastes.Google Scholar
  13. 13.
    A. D. Beardsley, C. Bookbinder, R. N. Dominey, N. S. Lewis, and M. Wrighton, J. Am. Chem. Soc. 102: 36 (1980). Hydrogen evolution from semiconductors. “Pinned” Fermi levels.Google Scholar
  14. 14.
    J. O’M. Bockris, K. Uosaki, and H. Kita, J. Appl. Phys. 52: 808 (1981). Experimental evidence of surface effects in photoelectrochemical kinetics.Google Scholar
  15. 15.
    R. Memming, in Comprehensive Treatise of Electrochemistry, B. E. Conway et al., eds., Vol. 7, p. 534, Plenum, New York (1983). General survey of photoelectrochemistry; Schottky oriented.Google Scholar
  16. 16.
    M. Szklarczyk, J. O’M. Bockris, V. Brusic, and G. Sparrow, Int. J. Hydrogen Energy 9:707 (1984). Substrate effects in photoelectrochemistry.Google Scholar
  17. 17.
    N. S. Lewis, C. M. Gronet, G. W. Cogan, J. E. Gibbons, and G. M. Moddel, J. Electrochem. Soc. 131: 2873 (1984). Nonaqueous solution study of redox reactions at light activated semiconductors confirming applicability of Schottky-type theory.Google Scholar

Modern

  1. 1.
    A. Fujishama and K. Honda, Nature 238: 37 (1972). Claim of first photoelectrochemistry water splitting.Google Scholar
  2. 2.
    J. O’M. Bockris and K. Uosaki, J. Electrochem. Soc. 125: 223 (1977). First theoretical treatment of photoelectrochemical kinetics at high surface source case.Google Scholar
  3. 3.
    E. Buhks and F. Williams, Proc. Electrochem. Soc. 82: 1 (1981). Model for photoelectron transfer from semiconductors.Google Scholar
  4. 4.
    K. Uosaki and H. Kita, J. Electrochem. Soc. 128: 2153 (1981). Tafel lines in photoelectrochemical kinetics when measured at current densities sufficiently below that of the limiting current.Google Scholar
  5. 5.
    Y. Y. Pleskov and Y. Y. Gurevich, Semiconductor Electrochemistry, Consultant’s Bureau, New York (1986). Textbook.Google Scholar
  6. 6.
    H. Tributsch, in Modern Aspects of Electrochemistry, J. O’M. Bockris, B. E. Conway, and R. H. White eds., Vol. 17,Ch. 4, Plenum, New York (1986). Materials for photoelectrodes.Google Scholar
  7. 7.
    M. A. Fox, Topics Current Chem. 142: 75 (1987). Organic photoreactions, some photoelectrochemical.Google Scholar
  8. 8.
    S. Fan and A. J. Bard, J. Appl. Phys. 27: 1331 (1988). First use of tunneling microscopy approach to semiconductor surfaces in solution.Google Scholar
  9. 9.
    F. Willig, in Modern Aspects of Electrochemistry, R. H. White, B. E. Conway, and J. O’M. Bockris, eds., Vol. 19,Ch. 4, Plenum, New York (1989). Charge transfer at organic crystal surfaces.Google Scholar
  10. 10.
    H. M. Kuhne and J. Schefeld, J. Electrochem. Soc. 137: 548 (1990). A Helmholtz interpretation of the effect of metal clusters; Tafel lines.Google Scholar
  11. 11.
    K. Uosaki, Trends Anal. Chem. 9: 98 (1990). Photoluminescence at electrodes.CrossRefGoogle Scholar
  12. 12.
    L. T. Canham, Appl. Phys. Lett. 57: 1046 (1990). First paper on photoluminescence from porous Si.CrossRefGoogle Scholar
  13. 13.
    P. V. Kamat, J. Am. Chem. Soc. 113: 9705 (1991). Effect of coatings to protect electrodes.CrossRefGoogle Scholar
  14. 14.
    A. Hamnett and R. A. Bachelor, in Modern Aspects of Electrochemistry, R. White, B. E. Conway, and J. O’M. Bockris, eds., Vol. 22,Ch. 3, Plenum, New York (1992). Surface states.Google Scholar
  15. 15.
    A. Hagefeldt and M. Gräzel, Chem. Rev. 95: 835 (1995). High efficiency of light conversion using dye-sensitized TiO2.Google Scholar
  16. 16.
    M. Koinume and K. Uosaki, Electrochim. Acta 40: 1345 (1995). Atomic force microscope studies of GaAs.Google Scholar
  17. 17.
    E. M. Arce, J. G. Ibanez, and T. Mear, Electrochim. Acta 40: 263 (1995). Characterization of the surfaces of photoelectrodes.CrossRefGoogle Scholar
  18. 18.
    W. Jaegermann, in Modern Aspects of Electrochemistry, R. H. White, B. E. Conway, and J. O’M. Bockris, eds., Vol. 30,Ch. 1, Plenum, New York (1996). Semiconductor/solution interface.Google Scholar
  19. 19.
    K. Uosaki, “Electrochemistry 1992–1995,” in Ann. Report of the Chemical Society, Vol. 92, pp. 50–58 (1996).Google Scholar
  20. 20.
    M. J. Schimmel and H. Wendt, Proc. Electrochem. Soc. 97–20, p. 16. Anodic formation of tenary semiconductors.Google Scholar
  21. 21.
    D. J. Fermin, E. A. Ponorarev, and L. M. Peter, Proc. Electrochem. Soc. 97–20, p. 62. Electrode processes during the photoillumination of TiO2.Google Scholar
  22. 22.
    P. Bonkote, P. Compte, and M. Gräzel, Proc. Electrochem. Soc. 97–20, p. 106. Performance of nanocrystalline solar cells.Google Scholar
  23. 23.
    A. Michallis, M. Schweinsburg, and J. W. Schultze, Proc. Electrochem. Soc. 97–20, p. 209. Photocurrent specks on thin films.Google Scholar
  24. 24.
    A. M. Cheperro, M. Alonso-Vonte, P. Salvador, and H. Tributsch, Proc. Electrochem. Soc. 97–20, p. 218. Electroreflectance with Bu2S.Google Scholar
  25. 25.
    H. Noguchi, T. Kondo, and K. Uosaki, Proc. Electrochem. Soc. 97–20, p. 260. Electroreflectance.Google Scholar
  26. 26.
    S. Licht, P. A. Ramakrishnan, O. Khaselev, T. Soga, and M. Umeno, Proc. Electrochem. Soc. 97–20, p. 358. Multiple band gap cells.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Personalised recommendations