Skip to main content

Part of the book series: Nonconvex Optimization and Its Applications ((NOIA,volume 58))

  • 554 Accesses

Abstract

A well-known approach for solving large and sparse linearly constrained quadratic programming (QP) problems is given by the splitting and projection methods. After a survey on these classical methods, we show that they can be unified in a general iterative scheme consisting in to solve a sequence of QP subproblems with the constraints of the original problem and an easily solvable Hessian matrix. A convergence theorem is given for this general scheme. In order to improve the numerical performance of these methods, we introduce two variants of a projection- type scheme that use a variable projection parameter at each step. The two variable projection methods differ in the strategy used to assure a sufficient decrease of the objective function at each iteration. We prove, under very general hypotheses, the convergence of these schemes and we propose two practical, nonexpensive and efficient updating rules for the projection parameter. An extensive numerical experimentation shows the effectiveness of the variable projection-type methods.

This work was supported by MURST Project “Numerical Analysis: Methods and Mathematical Software” and by CNR Research Contribution N. 98.01029.CT01, Italy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H.C. Andrews, B.R. Hunt, Digital Image Restoration, Prentice Hall, Englewood Press, New Jersey, 1977.

    Google Scholar 

  2. D.P. Bertsekas, Nonlinear Programming, Athena Scientific, Belmont, MA, 1995.

    MATH  Google Scholar 

  3. I. Bongartz, A.R. Conn, N. Gould, Ph.L. Toint, CUTE: constrained and unconstrained testing environment, ACM Transaction on Mathematical Software 1995, 21, 123–160.

    Article  MATH  Google Scholar 

  4. Y. Censor, S.A. Zenios, Parallel Optimization: Theory, Algorithms and Applications, Oxford University Press, New York, 1997.

    MATH  Google Scholar 

  5. H.G. Chen, R.T. Rockafellar, Convergence rates in forward-backward splitting, SIAM Journal on Optimization 7 (1997), 421–444.

    MathSciNet  MATH  Google Scholar 

  6. C. Cortes, V.N. Vapnik, Support vector network, Machine Learning 20 (1995), 1–25.

    Google Scholar 

  7. C.W. Cryer, The solution of a quadratic programming problem using systematic overrelaxation, SIAM Journal on Control 9 (1971), 385–392.

    Article  MathSciNet  MATH  Google Scholar 

  8. S. Dafermos, Traffic equilibrium and variational inequalities, Transportation Science 14 (1980), 14:42–54.

    MathSciNet  Google Scholar 

  9. P.L. De Angelis, P.M. Pardalos, G. Toraldo, Quadratic Programming with Box Constraints, In Developments in Global Optimization, I.M. Bomze et al. eds., A0A0A0 Kluwer Academic Publishers, Dordrecht, 1997.

    Google Scholar 

  10. N. Dyn, J. Ferguson, The numerical solution of equality-constrained quadratic programming problems, Mathematics of Computation 41 (1983), 165–170.

    MathSciNet  MATH  Google Scholar 

  11. C.S. Fisk, S. Nguyen, Solution algorithms for network equilibrium models with asymmetric user costs, Transportation Science 16 (1982), 361–381.

    Article  MathSciNet  Google Scholar 

  12. E. Galligani, C 1 surface interpolation with constraints, Numerical Algorithms 5 (1993), 549–555.

    Article  MathSciNet  MATH  Google Scholar 

  13. E. Galligani, V. Ruggiero, L. Zanni, Splitting methods for quadratic optimization in data analysis, International Journal of Computer Mathematics 63 (1997), 289–307.

    MathSciNet  Google Scholar 

  14. E. Galligani, V. Ruggiero, L. Zanni, Splitting methods for constrained quadratic programs in data analysis, Computers & Mathematics with Applications 32 (1996), 1–9.

    Article  MathSciNet  MATH  Google Scholar 

  15. E. Galligani, V. Ruggiero, L. Zanni, Splitting methods and parallel solution of constrained quadratic programs, Proceedings of Equilibrium Problems with Side Constraints. Lagrangean Theory and Duality II, 1996 May 17–18; Scilla, Italy; Rendiconti del Circolo Matematico di Palermo, Ser. II, Suppl. 48 (1997), 121–136.

    MathSciNet  Google Scholar 

  16. E. Galligani, V. Ruggiero, L. Zanni, Parallel solution of large scale quadratic programs. Proceedings of High Performance Algoritms and Software in Nonlinear Optimization, June 4–6 1997, Italy; Kluwer Academic Publishers, Dordrecht, 1998.

    Google Scholar 

  17. P.E. Gill, W. Murray, M.A. Saunders, SNOPT: An SQP Algorithm for Large-scale Constrained Optimization, Numerical Analysis Report 96-2. Departement of Mathematics, University of California, San Diego, 1996.

    Google Scholar 

  18. B. He, Solving a class of linear projection equations, Numerische Mathematik 68 (1994), 71–80.

    Article  MathSciNet  MATH  Google Scholar 

  19. F. Leibftitz, E.W. Sachs, Numerical Solution of Parabolic State Constrained Control Problems Using SQP and Interior-Point-Methods, In Optimization: State of the Art, W.W. Hager et al. eds., Kluwer Academic Publishers, Dordrecht, 1994.

    Google Scholar 

  20. Y.Y. Lin, J.S. Pang, Iterative methods for large convex quadratic programs: a survey, SIAM Journal on Control and Optimization 25 (1987), 383–411.

    Article  MathSciNet  MATH  Google Scholar 

  21. Z.Q. Luo, P. Tseng, On the linear convergence of descent methods for convex essentially smooth minimization, SIAM Journal on Control and Optimization 30 (1992), 408–425.

    Article  MathSciNet  MATH  Google Scholar 

  22. O.L. Mangasarian, Solution of symmetric linear complementarity problems by iterative methods, Journal of Optimization Theory and Applications 22 (1977), 465–485.

    Article  MathSciNet  MATH  Google Scholar 

  23. O.L. Mangasarian, R. De Leone, Parallel successive overrelaxation methods for symmetric linear complementarity problems and Linear Programs, Journal of Optimization Theory and Applications 54 (1987), 437–446.

    Article  MathSciNet  MATH  Google Scholar 

  24. O.L. Mangasarian, R. De Leone, Parallel gradient projection successive overrelaxation for symmetric linear complementarity problems and linear programs, Annals of Operations Research 14 (1988), 41–59.

    Article  MathSciNet  MATH  Google Scholar 

  25. P. Marcotte, J.H. Wu, On the convergence of projection methods: application to the decomposition of affine variational inequalities, Journal of Optimization Theory and Applications 85 (1995), 347–362.

    Article  MathSciNet  MATH  Google Scholar 

  26. J.J. Morè, S.J. Wright, Optimization Software Guide, SIAM, Philadelphia, PA, 1993.

    MATH  Google Scholar 

  27. W. Murray, Sequential quadratic programming methods for largescale problems, Computational Optimization and Applications 7 (1997). 127–142.

    Article  MathSciNet  MATH  Google Scholar 

  28. B.A. Murtagh, M.A. Saunders, MINOS 5.4 User’s Guide, Report SOL 83-20R. Department of Operations Research, Stanford University, 1995.

    Google Scholar 

  29. NAG Fortran Library Manual, Mark 18, 1998.

    Google Scholar 

  30. Y. Nesterov, A. Nemirovskii, Interior-Point Polynomial Algorithms in Convex Programming, SIAM, Philadelphia, PA, 1994.

    MATH  Google Scholar 

  31. S.N. Nielsen, S.A. Zenios, Massively parallel algorithms for single constrained convex programs, ORSA Journal on Computing 4 (1992), 166–181.

    MathSciNet  MATH  Google Scholar 

  32. J.M. Ortega, W.C. Rheinboldt, Iterative Solution of Nonlinear Equations in Several Variables, Academic Press, New York, 1970.

    MATH  Google Scholar 

  33. J.S. Pang, D. Chan, Iterative methods for variational and complementarity problems, Mathematical Programming 24 (1982), 284–313.

    Article  MathSciNet  MATH  Google Scholar 

  34. P.M. Pardalos, N. Kovoor, An algorithm for a single constrained class of quadratic programs subject to upper and lower bounds, Mathematical Programming 46 (1990), 321–328.

    Article  MathSciNet  MATH  Google Scholar 

  35. P.M. Pardalos, Y. Ye, C.G. Han, Computational aspects of an interior point algorithm for quadratic problems with box constraints, In Large-Scale Numerical Optimization, T. Coleman and Y. Li eds., SIAM Philadelphia, 1990.

    Google Scholar 

  36. M. Patriksson, The Traffic Assignment Problem: Models and Methods, Topics in Transportation, VSP, Utrecht, 1994.

    Google Scholar 

  37. M. Patriksson, Nonlinear Programming and Variational Inequality Problems: A Unified Approach. Kluwer Academic Publisher, Dordrecht, 1999.

    MATH  Google Scholar 

  38. V. Ruggiero, L. Zanni, Modified projection algorithm for large strictly convex quadratic programs Journal of Optimization Theory and Applications 104 (2000), 281–299.

    Article  MathSciNet  MATH  Google Scholar 

  39. V. Ruggiero, L. Zanni, On the efficiency of splitting and projection methods for large strictly convex quadratic programs, In Nonlinear Optimization and Related Topics, G. Di Pillo ang F. Giannessi eds., Kluwer Academic Publishers, Dordrecht, 1999.

    Google Scholar 

  40. M.V. Solodov, P. Tseng, Modified projection-type methods for monotone variational inequalities SIAM Journal on Control and Optimization 34 (1996), 1814–1830.

    Article  MathSciNet  MATH  Google Scholar 

  41. G.W. Stewart, The efficient generation of random orthogonal matrices with an application to condition estimators, SIAM Journal on Numerical Analysis 17 (1980), 403–409.

    Article  MathSciNet  MATH  Google Scholar 

  42. R.J. Vanderbei, T.J. Carpenter, Symmetric indefinite systems for interior point methods, Mathematical Programming 58 (1993), 1–32.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Kluwer Academic Publishers

About this chapter

Cite this chapter

Ruggiero, V., Zanni, L. (2001). An Overview on Projection-Type Methods for Convex Large-Scale Quadratic Programs. In: Giannessi, F., Maugeri, A., Pardalos, P.M. (eds) Equilibrium Problems: Nonsmooth Optimization and Variational Inequality Models. Nonconvex Optimization and Its Applications, vol 58. Springer, Boston, MA. https://doi.org/10.1007/0-306-48026-3_18

Download citation

  • DOI: https://doi.org/10.1007/0-306-48026-3_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4020-0161-1

  • Online ISBN: 978-0-306-48026-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics