Axiomatization for Approximate Solutions in Optimization

  • Henk Norde
  • Fioravante Patrone
  • Stef Tijs
Part of the Nonconvex Optimization and Its Applications book series (NOIA, volume 58)


Approximate solutions to optimization problems are characterized by means of properties like consistency, non-emptiness, behaviour w.r.t. inclusion, invariance w.r.t. translation, multiplication.


Approximate optimization consistency invariance properties maximizing sequences vector optimization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Arrow K. J. (1951), Social Choice and Individual Values. Wiley, New York.Google Scholar
  2. [2]
    Chernoff H. (1954), Rational selection of decision functions. Econometrica 22: 422–443.MathSciNetzbMATHGoogle Scholar
  3. [3]
    Dontchev A. and Zolezzi T. (1993), Well-posed Optimization Problems. Lecture Notes in Mathematics, 1543, Springer, Berlin.Google Scholar
  4. [4]
    Jurg P. and Tijs S. (1993), On the determinateness of semi-infinite bimatrix games. Internat. J. Game Theory 21: 361–369.CrossRefMathSciNetGoogle Scholar
  5. [5]
    Kaneko M. (1980), An extension of the Nash bargaining problem and the Nash social welfare function. Theory and Decision 12, 135–148.CrossRefMathSciNetzbMATHGoogle Scholar
  6. [6]
    Lucchetti R., Patrone F., Tijs S. (1986), Determinateness of twoperson games. Bollettino U.M.I. 6: 907–924.MathSciNetGoogle Scholar
  7. [7]
    Nash, J. F. Jr. (1950), The Bargaining Problem. Econometrica 18: 155–162.MathSciNetGoogle Scholar
  8. [8]
    Norde H., Patrone F. and Tijs S. (1999), Characterizing Properties of Approximate Solutions to Optimization Problems, Mimeo. To appear in Mathematical Social Sciences.Google Scholar
  9. [9]
    Norde H. and Potters J. (1997), On the determinateness of m × ∞-bimatrix games. Mathematics of Operations Research 22: 631–638.MathSciNetGoogle Scholar
  10. [10]
    Patrone F. (1987), Well-Posedness as an Ordinal Property. Rivista di Matematica pura ed applicata 1: 95–104.MathSciNetzbMATHGoogle Scholar
  11. [11]
    Patrone F., Pieri G., Tijs S. and Torre A. (1998), On Consistent Solutions for Strategic Games. Internat. J. Game Theory, 27: 191–200.CrossRefMathSciNetGoogle Scholar
  12. [12]
    Peleg B. and Tijs S. (1996), The Consistency Principle for Games in Strategic Form. Internat. J. Game Theory 25: 13–34.CrossRefMathSciNetGoogle Scholar
  13. [13]
    Peters H. (1992), Axiomatic bargaining game theory. Kluwer Academic Publishers, Dordrecht.Google Scholar
  14. [14]
    Radner R. (1980), Collusive behavior in non-cooperative epsilon equilibria of oligopolies with long but finite lives. Journal of Economic Theory, 22: 121–157.CrossRefGoogle Scholar
  15. [15]
    Shapley L. S. (1953), A Value for n-Person Games. In: Contributions to the Theory of Games II, (eds.: Kuhn H. W. and Tucker A. W.). Annals of Math. Studies, 28, Princeton University Press, Princeton (NJ): 307–317.Google Scholar
  16. [16]
    Tijs S. (1981), Nash equilibria for noncooperative n-person games in normal form. SIAM Review 23: 225–237.MathSciNetGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Henk Norde
    • 1
  • Fioravante Patrone
    • 2
  • Stef Tijs
    • 1
  1. 1.Department of Econometrics and CentERTilburg UniversityTilburgThe Netherlands
  2. 2.Department of MathematicsUniversity of GenoaGenoaItaly

Personalised recommendations