Skip to main content

Diversity of Dechlorinating Bacteria

  • Chapter
Dehalogenation

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abrahamsson K, Collén J & Pedersén M (1995) Marine algae — a source of trichloroethylene and perchloroethylene. Limnol. Oceanog. 40:1321–1326

    Article  CAS  Google Scholar 

  2. Adriaens P, Kohler HP, Kohler-Staub D & Focht DD (1989) Bacterial dehalogenation of chlorobenzoates and coculture biodegradation of 4,4′-dichlorobiphenyl. Appl. Environ. Microbiol. 55:887–92

    CAS  Google Scholar 

  3. Adrian L, Szewzyk U, Wecke J & Görisch H (2000) Bacterial dehalorespiration with chlorinatedbenzenes. Nature 408:580–583

    Article  CAS  Google Scholar 

  4. Amann RI, Ludwig W & Schleifer K-H (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev.59:143–169

    CAS  Google Scholar 

  5. Apajalahti JHA, Kärpänoja P & Salkinoja-Salonen MS (1986) Rhodococcus chlorophenolicus sp. nov., a chlorophenol-mineralizing actinomycete. Int. J. Syst. Bacteriol. 36:246–251

    CAS  Google Scholar 

  6. Arensdorf JJ & Focht DD (1995) A meta cleavage pathway for 4-chlorobenzoate, an intermediate in the metabolism of 4-chlorobiphenyl by Pseudomonas cepacia P166. Appl. Environ. Microbiol. 61:443–447

    CAS  Google Scholar 

  7. Asplund G & Grimwall A (1991) Organohalogens in nature. Environ. Sci. Technol. 25:1347–1350

    Article  Google Scholar 

  8. Bedard DL, van Dort HM, May RJ & Smullen LA (1997) Enrichment of microorganisms that sequentially meta, para-dechlorinate the residue of Aroclor 1260 in Housatonic River sediment. Environ. Sci. Technol. 31:3308–3313

    Article  CAS  Google Scholar 

  9. Bhat MA, Tsuda M, Horiike K, Nozaki M, Vaidyanathan CS & Nakazawa T (1994) Identification and characterization of a new plasmid carrying genes for degradation of 2,4-dichlororphenoxyacetate from Pseudomonas cepacia SCV90. Appl. Environ. Microbiol. 60:307–312

    CAS  Google Scholar 

  10. Bouchard B, Beaudet R, Villemur R, McSween G, Lépine F & Bisaillon J-G (1996) Isolation and characterization of Desulfitobacterium frappieri sp. nov., an anaerobic bacterium which reductively dechlorinates pentachlorophenol to 3-chlorophenol. Int. J. Syst. Bacteriol. 46:1010–1015

    CAS  Google Scholar 

  11. Bradley PM & Chapelle FH (1996) Anaerobic mineralization of vinyl chloride in Fe(III)-reducing, aquifer sediments. Environ. Sci. Technol. 30:2084–2086

    Article  CAS  Google Scholar 

  12. Bradley PM & Chapelle FH (1999) Role for acetotrophic methanogens in methanogenic biodegradation of vinyl chloride. Environ. Sci. Technol. 33:3473–3476

    CAS  Google Scholar 

  13. Breitenstein A, Saano A, Salkinoja-Salonen M, Andreesen JR & Lechner U (2001) Analysis of 2,4,6-trichlorophenol-dehalogenating enrichment culture and isolation of the dehalogenating member Desulfitobacterium frappieri strain TCP-A. Arch. Microbiol. 175:133–142

    Article  CAS  Google Scholar 

  14. Brenner V, Hernandez BS & Focht DD (1993) Variation in chlorobenzoate catabolism by Pseudomonasputida p111 as a consequence of genetic alterations. Appl. Environ. Microbiol. 59:2790–2794

    CAS  Google Scholar 

  15. Briglia M, Eggen RI, Van Elsas DJ & De Vos WM (1994) Phylogenetic evidence for transfer ofpentachlorophenol-mineralizingRhodococcus chlorophenolicus PCP-IT to the genus Mycobacterium. Int. J. Syst. Bacteriol. 44:494–498

    CAS  Google Scholar 

  16. Cassidy MB, Lee H, Trevors JT & Zablotowicz RM (1999) Chlorophenol and nitrophenol metabolism by Sphingomonas sp. UG30. J. Ind. Microbiol. Biot. 23:232–241

    CAS  Google Scholar 

  17. Chae JC & Kim CK (1997) Dechlorination of 4-chlorobenzoate by Pseudomonas sp. DJ-12. J. Microbiol. 35:290–294

    CAS  Google Scholar 

  18. Chandler DP, Brockman FJ, Bailey TJ & Frederickson JK (1998) Phylogenetic diversity of archaea and bacteria in a deep subsurface paleosol. Microb. Ecol. 36:37–50

    Article  CAS  Google Scholar 

  19. Chang YC, Hatsu M, Jung K, Yoo YS & Takamizawa K (2000) Isolation and characterization of a tetrachloroethylene dechlorinating bacterium, Clostridium bifermentans DPH-1. J. Biosci. Bioeng. 89:489–491

    Article  CAS  Google Scholar 

  20. Chatterjee DK & Chakrabarty AM (1983) Genetic homology between independently isolated chlorobenzene-degradativeplasmids. J. Bacteriol. 153:532–534

    CAS  Google Scholar 

  21. Chatterjee DK, Kellogg ST, Hamada S & Chakrabarty AM (1981) Plasmid specifying total degradation of 3-chlorobenzoate by a modified ortho pathway. J. Bacteriol. 146:639–646

    CAS  Google Scholar 

  22. Chaudhry GR & Huang GH (1988) Isolation and characterization of a new plasmid from a Flavobacterium sp. which carries the genes for degradation of 2,4-dichlorophenoxyacetate. J. Bacteriol. 170:3897–3902

    CAS  Google Scholar 

  23. Christiansen N & Ahring BK (1996) Desulfitobacterium hafniense sp. nov., an anaerobic reductively dechlorinatingbacterium. Int. J. Syst. Bacteriol. 46:442–448

    Google Scholar 

  24. Cole JR, Cascarelli AL, Mohn WW & Tiedje JM (1994) Isolation and characterization of a novel bacterium growing via reductive dehalogenation of 2-chlorophenol. Appl. Environ. Microbiol. 60:3536–3542

    CAS  Google Scholar 

  25. Crooks GP & Copley SD (1994) Purification and characterization of 4-chlorobenzoyl CoA dehalogenase from Arthrobacter sp. strain 4-CB1. Biochemistry 33:11645–11649

    Article  CAS  Google Scholar 

  26. Cutter L, Sowers KR & May HD (1998) Microbial dechlorination of 2,3,5,6-tetrachlorobiphenyl under anaerobic conditions in the absence of soil or sediment. Appl. Environ. Microbiol. 64:2966–2969

    CAS  Google Scholar 

  27. Davison AD, Jardine DR & Karuso P (1999) 5-Chloropicolinic acid is produced by specific degradation of 4-chlorobenzoic acid by Sphingomonas paucimobilis BPSI-3. J. Ind. Microbiol. Biot. 23:347–352

    CAS  Google Scholar 

  28. De Jong E, Field JA, Spinnler H-E, Wijnberg JBPA & De Bont JAM (1994) Significant biogenesis of chlorinated aromatics by fungi in natural environments. Appl. Environ. Microbiol. 60:264–270

    Google Scholar 

  29. De Wever H, Cole JR, Fettig MR, Hogan DA & Tiedje JM (2000) Reductive dehalogenation of trichloroacetic acid by Trichlorobacter thiogenes gen. nov., sp.nov. Appl. Environ. Microbiol. 66:2297–2301

    Google Scholar 

  30. DeWeerd KA, Mandelco L, Tanner RS, Woese CR & Suflita JM (1991) Desulfumonile tiedjei gen. nov. and sp. nov., a novel anaerobic, dehalogenating, sulfate-reducing bacterium. Arch. Microbiol. 154:23–30

    Google Scholar 

  31. Di Gioia D, Peel M, Fava F & Wyndham RC (1998) Structures of homologous composite transposons carrying cbaABC genes from Europe and North America. Appl. Environ. Microbiol. 64:1940–1946

    Google Scholar 

  32. Dojka MA, Hugenholtz P, Haack SK & Pace NR (1998) Microbial diversity in a hydrocarbon-and chlorinated-solvent-contaminated aquifer undergoing intrinsic bioremediation. Appl. Environ. Microbiol. 64:3869–3877

    CAS  Google Scholar 

  33. Dolfing J (2000) Energetics of anaerobic degradation pathways of chlorinated aliphatic compounds. Microb. Ecol. 40:2–7

    CAS  Google Scholar 

  34. Dolfing J & Beurskens JEM (1995) The microbial logic and environmental significance of reductive dehalogenation. ( pp 143–206). Advances in Microbial Ecology. Plenum Press, New York.

    Google Scholar 

  35. Dolfing J & Harrison BK (1992) Gibbs free energy of formation of halogenated aromatic compounds and their potential role as electron acceptors in anaerobic environments. Environ. Sci. Technol. 26:2213–2218

    Article  CAS  Google Scholar 

  36. Dolfing J & Janssen DB (1994) Estimates of Gibbs free energies of formation of chlorinated aliphatic compounds. Biodegradation 5:21–28

    CAS  Google Scholar 

  37. Don RH & Pemberton JM (1981) Properties of six pesticide degradation plasmids isolated from Alcaligenes eutrophus and Alcaligenes paradoxus. J. Bacteriol. 145:681–686

    CAS  Google Scholar 

  38. Don RH & Pemberton JM (1985) Genetic and physical map of the 2,4-dichlorophenoxyacetic acid-degradative plasmid pJP4. J. Bacteriol. 161:466–468

    CAS  Google Scholar 

  39. Dunaway-Mariano D & Babbitt PC (1994) On the origins and functions of the enzymes of the 4-chlorobenzoate to 4-hydroxybenzoate converting pathway. Biodegradation 5:259–276

    Article  CAS  Google Scholar 

  40. Dunbar J, Wong DCL, Yarus MJ & Forney LJ (1996) Autoradiographic method for isolation of diverse microbial species with unique catabolic traits. Appl. Environ. Microbiol. 62:4180–4185

    CAS  Google Scholar 

  41. Ebersbach H, Breitenstein A & Lechner U (2000) All species of Desulfitobacterium contain two types of 16S rRNA genes of different length. Abstr. 15.P.13.01, p. 157. In Biospektrum, Sonderausgabe 2000, Germany

    Google Scholar 

  42. Ederer MM, Crawford RL, Herwig RP & Orser CS (1997) PCP degradation is mediated by closely related strains of the genus Sphingomonas. Mol. Ecol. 6:39–49

    Article  CAS  Google Scholar 

  43. Egland PG, Gibson J & Harwood CS (2001) Reductive, coenzyme A-mediated pathway for 3-chlorobenzoate degradation in the phototrophic bacterium Rhodopseudomonas palustris. Appl. Environ. Microbiol. 67:1396–1399

    Article  CAS  Google Scholar 

  44. Fetzner S (1998) Bacterial dehalogenation. Appl. Microbiol. Biotechnol. 50:623–657

    Article  Google Scholar 

  45. Fetzner S & Lingens F (1994) Bacterial dehalogenases: biochemistry, genetics, and biotechnological applications. Microbiol. Rev. 58:641–685

    CAS  Google Scholar 

  46. Fetzner S, Müller R & Lingens F (1992) Purification and some properties of 2-halobenzoate 1,2-dioxygenase, a two-component enzyme system from Pseudomonas cepacia 2CBS. J. Bacteriol. 174:279–290

    CAS  Google Scholar 

  47. Flynn SJ, Löffler FE & Tiedje JM (2000) Microbial community changes associated with a shift from reductive dechlorination of PCE to reductive dechlorination of cis-DCE and VC. Environ. Sci. Technol. 34:1056–1061

    Article  CAS  Google Scholar 

  48. Fukumori F & Hausinger RP (1993) Alcaligenes eutrophus JMP134 2,4-dichlorophenoxyacetate monooxygenase is an α-ketoglutarate-dependent dioxygenase. J. Bacteriol. 175:2083–2086

    CAS  Google Scholar 

  49. Fukumori F & Hausinger RP (1993) Purification and characterization of 2,4-dichlorophenoxy-acetate/α-ketoglutarate dioxygenase. J. Biol. Chem. 268:24311–24317

    CAS  Google Scholar 

  50. Fulthorpe RR, McGowan C, Maltseva OV, Holben WE & Tiedje JM (1995) 2,4-Dichlorophenoxyacetic acid-degradingbacteria contain mosaics of catabolic genes. Appl. Environ. Microbiol. 61:274–3282

    Google Scholar 

  51. Fulthorpe RR & Wyndham RC (1991) Transfer and expression of the catabolic plasmid pBRC60 in wild bacterial recipients in a fresh-water ecosystem. Appl. Environ. Microbiol. 57:1546–1553

    CAS  Google Scholar 

  52. Gerritse J, Drzyzga O, Kloetstra G, Keijmel M, Wiersum LP, Hutson R, Collins MD & Gottschal JC (1999) Influence of different electron donors and acceptors on dehalorespiration of tetrachloroethene by Desulfitobacterium frappieri TCE1. Appl. Environ. Microbiol. 65:5212–5221

    CAS  Google Scholar 

  53. Gerritse J, Renard V, Pedro Gomes TM, Lawson PA, Collins MD & Gottschal JC (1996) Desulfitobacterium sp. strain PCE1, an anaerobic bacterium that can grow by reductive dechlorination of tetrachloroethene or ortho-chlorinated phenols. Arch. Microbiol. 165:132–140

    Article  CAS  Google Scholar 

  54. Ghosal D & You I-S (1988) Gene duplication in haloaromatic degradative plasmids pJP4 and pJP2. Can. J. Microbiol. 34:709–715

    Article  CAS  Google Scholar 

  55. Giesy PJ & Kannan K (2001) Global distribution of perfluorooctane sulfonate in wildlife. Environ. Sci. Technol. 35:1339–1342

    Article  CAS  Google Scholar 

  56. Giovannoni SJ, Rappé MS, Vergin KL & Adair NL (1996) 16S rRNA genes reveal stratified open ocean bacterioplankton populations related to the green non-sulfur bacteria. P. Natl. Acad. Sci. USA 93:7979–7984

    Article  CAS  Google Scholar 

  57. Godon J-J, Zumstein E, Dabert P, Habouzit F & Moletta R (1997) Molecular microbial diversity of an anaerobic digestor as determined by small-subunit rDNA sequence analysis. Appl. Environ. Microbiol. 63:2802–2813

    CAS  Google Scholar 

  58. Greer CW, Hawari J & Samson R (1990) Influence of environmental factors on 2,4-dichlorophenoxyacetic acid degradation by Pseudomonas cepacia isolated from peat. Arch. Microbiol. 154:317–322

    Article  CAS  Google Scholar 

  59. Gribble GW (1992) Naturally occurring organohalogen compounds — a survey. J. Nat. Prod. 55:1353–1395

    Article  CAS  Google Scholar 

  60. Gribble GW (1994) The natural production of chlorinated compounds. Environ. Sci. Technol. 28:310A–319A

    CAS  Google Scholar 

  61. Gribble GW (1996) The diversity of natural organochlorines in living organisms. Pure Appl. Chem. 68:1699–1712

    CAS  Google Scholar 

  62. Gribble GW (1998) Chlorinated compounds in the biosphere, natural production. In: Meyers RA (ed.) Encyclopedia of environmental analysis and remediation, (pp 972–1035). John Wiley & Sons, Inc., New York

    Google Scholar 

  63. Gschwend PM, MacFarlane JK & Newman KA (1985) Volatile halogenated organic compounds released to seawater from temperate marine macroalgae. Science 227:1033

    CAS  Google Scholar 

  64. Haak B, Fetzner F & Lingens F (1995) Cloning, nucleotide sequence, and expression of the plasmid-encoded genes for the two-component 2-halobenzoate 1,2-dioxygenase from Pseudomonas cepacia 2CBS. J. Bacteriol. 177:667–675

    CAS  Google Scholar 

  65. Häggblom MM, Knight VK & Kerkhof LJ (2000) Anaerobic decomposition of halogenated aromatic compounds. Environ. Pollut. 107:199–207

    Google Scholar 

  66. Häggblom MM & Young LY (1999) Anaerobic degradation of 3-halobenzoates by a denitrifying bacterium. Arch. Microbiol. 171:230–236

    Google Scholar 

  67. Häggblom M. M, Nohynek LJ, Palleroni NJ, KronqvistK, Nurmiaho-Lassila E-L, Salkinoja-Salonen MS, Klatte S & Kroppenstedt RM (1994) Transfer of polychlorophenol-degrading Rhodococcus chlorophenolicus (Apajalathi et al. 1986) to the genus Mycobacterium as Mycobacterium chlorophenolicum comb. nov. Int. J. Syst. Bacteriol. 44:485–493

    Google Scholar 

  68. Hanselmann KW (1991) Microbial energetics applied to waste repositories. Experentia 47:645–687

    Article  CAS  Google Scholar 

  69. Harker AR, Olsen RH & Seidler RJ (1989) Phenoxyacetic acid degradation by the 2,4-dichlrophenoxyacetic acid (TFD) pathway of plamid pJP4: mapping and characteriztion of the TFDregulatory gene tfdR. J. Bacteriol. 171:314–320

    CAS  Google Scholar 

  70. Harper DB (1985) Halomethane from halide ion — a highly efficient fungal conversion of environmental significance. Nature 315:55–57

    Article  CAS  Google Scholar 

  71. Hartmann J, Reineke W & Knackmuss HJ (1979) Metabolism of 3-chloro-, 4-chloro-, and 3,5-dichlorobenzoate by apseudomonad. Appl. Environ. Microbiol. 37:421–428

    CAS  Google Scholar 

  72. Hay ME (1996) Marine chemical ecology: what’s known and what’s next? J. Exp. Mar. Biol. Ecol. 200:103–134

    Article  CAS  Google Scholar 

  73. Hay ME & Fenical W (1996) Chemical ecology and marine biodiversity: Insights and products from the sea. Oceanography 9:10–20

    Google Scholar 

  74. He J, Ritalahti KM & Löffler FE (2001) Characterization of a highly enriched culture that reductively dechlorinates vinyl chloride to ethene. Abstr. Q-253, p. 634. In Abstracts of the 101st Annual Meeting of the American Society for Microbiology 2001, Orlando

    Google Scholar 

  75. Heider J & Fuchs G (1997) Anaerobic metabolism of aromatic compounds. Eur. J. Biochem. 243:577–596

    Article  CAS  Google Scholar 

  76. Hoekstra EJ & De Leer EWB (1994) AOX levels in the River Rhine: Fifty percent of natural origin? Wat. Sci. Tech. 29:133–136

    CAS  Google Scholar 

  77. Hoekstra EJ, De Leer EWB & Brinkman UATH (1998) Natural formation of chloroform and brominated trihalomethanes in soil. Environ. Sci. Technol. 32:3724–3729

    Article  CAS  Google Scholar 

  78. Holliger C, Hahn D, Harmsen H, Ludwig W, Schumacher W, Tindall B, Vazquez F, Weiss N & Zehnder AJB (1998) Dehalobacter restrictus gen. nov. and sp. nov., a strictly anaerobic bacterium that reductively dechlorinates tetra-and trichloroethene in an anaerobic respiration. Arch. Microbiol. 169:313–321

    Article  CAS  Google Scholar 

  79. Holliger C, Wohlfarth G & Diekert G (1998) Reductive dechlorination in the energy metabolism of anaerobic bacteria. FEMS Microbiol. Rev. 22:383–398

    Article  CAS  Google Scholar 

  80. Holoman TRP, Elberson MA, Cutter LA, May HD & Sowers KR (1998) Characterization of a defined 2,3,5,6-tetrachlorobiphenyl-ortho-dechlorinating microbial community by comparative sequence analysis of genes coding for 16S rRNA. Appl. Environ. Microbiol. 64:3359–3367

    CAS  Google Scholar 

  81. Hugenholtz P, Pitulle C, Hershberger KL & Pace NR (1998) Novel division level bacterial diversity in a Yellowstone hot spring. J. Bacteriol. 180:366–376

    CAS  Google Scholar 

  82. Isidorov VA (1990) Organic chemistry of the earth’s atmosphere. Springer Verlag, Berlin, Germany

    Google Scholar 

  83. Janssen DB, Scheper A, Dijkhuizen L & Witholt B (1985) Degradation of halogenated aliphatic compounds by Xanthobacter autotrophicus GJ10. Appl. Environ. Microbiol. 49:673–677

    CAS  Google Scholar 

  84. Juteau P, Beaudet R, McSween G, Lépine F, Milot S & Bisaillon JG (1995) Anaerobic biodegradation of pentachlorophenol by a methanogenic consortium. Appl. Microbiol. Biotechnol. 44:218–224

    CAS  Google Scholar 

  85. Ka JO, Holben WE & Tiedje JM (1994) Genetic and phenotypic diversity of 2,4-dichlorophenoxyacetic acid (2,4-D)-degrading bacteria isolated from 2,4-D treated field soils. Appl. Environ. Microbiol. 60:1106–1115

    CAS  Google Scholar 

  86. Ka JO & Tiedje JM (1994) Integration and excision of a 2,4-dichlorophenoxyacetic acid-degradative plasmid in Alcaligenesparadoxus and evidence of its natural intergeneric transfer. J. Bacteriol. 176:5284–5289

    CAS  Google Scholar 

  87. Kamagata Y, Fulthorpe RR, Tamura K, Takami H, Forney LJ & Tiedje JM (1997) Pristine environments harbor a new group of oligotrophic 2,4-dichlorophenoxyacetic acid-degrading bacteria. Appl. Environ. Microbiol. 63:2266–2272

    CAS  Google Scholar 

  88. Kannan K., Koistinen J, Beckmen K, Evans T, Gorzelany JF, Hansen KJ, Jones PD, Helle E, Nyman M & Giesy JP (2001) Accumulation of perfluorooctanesulfonate in marine mammals. Environ. Sci. Technol. 35:1593–1598

    CAS  Google Scholar 

  89. Kaphammer B, Kukor JJ & Olsen RH (1990) Regulation of tfdCDEF by tfdR of the 2,4-dichlorophenoxyacetic acid degradation plasmid pJP4. J. Bacteriol. 172:2280–2286

    CAS  Google Scholar 

  90. Kaphammer B & Olsen RH (1990) Cloning and characterization of tfdS, the repressor-activator gene of tfdB, from the 2,4-dichlorophenoxyacetic acid degradation plasmid pJP4. J. Bacteriol. 172:5856–5862

    CAS  Google Scholar 

  91. Karlson U, Rojo F, Van Elsas JD & Moore E (1995) Genetic and serological evidence for the recognitionoffourpentachlorophenol-degrading bacterial strain as a species of the genus Sphingomonas. Syst. Appl. Microbiol. 18:539–548

    Google Scholar 

  92. Kawasaki H, Tsuda K, Matsushita I & Tunomura K (1992) Lack ofhomology between two haloacetate dehalogenase genes encoded on a plasmid from Moraxella sp. strain B. J. Gen. Microbiol. 138:1317–1323

    CAS  Google Scholar 

  93. Keil H, Klages U & Lingens F (1981) Degradation of 4-chlorobenzoate by Pseudomonas sp. CBS3: Induction of catabolic enzymes. FEMS Microbiol. Lett. 10:213–215

    CAS  Google Scholar 

  94. Key BD, Howell RD & Criddle CS (2001) Fluorinated organics in the bioshere. Environ. Sci. Technol. 31:2445–2454

    Google Scholar 

  95. Klages U & Lingens F (1979) Degradation of 4-chlorobenzoic acid by a Nocardia species. FEMS Microbiol. Lett. 6:201–203

    Article  CAS  Google Scholar 

  96. Klages U & Lingens F (1980) Degradation of 4-chlorobenzoic acid by a Pseudomonas sp. Zbl. Bakt. Hyg., I. Abt. Orig. C1:215–223

    Google Scholar 

  97. Kohler-Staub D, Hartmans S, Gälli R, Suter F & Leisinger T (1986) Dichloromethane dehalogenase of Hyphomicrobium sp. strain DM2. J. Bacteriol. 162:676–681

    Google Scholar 

  98. Kozyreva LP, Shurukhin YV, Finkelshtein ZI, Bashunov BP & Golovleva LA (1993) Metabolism of the herbicide 2,4-D by a Nocardioides simplex strain. Microbiology 62:78–85

    Google Scholar 

  99. Krajmalnik-Brown R, Ritalahti KM & Löffler FE (2001) Molecular tools detect Dehalococcoides species in different vinyl chloride and cis-1,2-dichloroethene dechlorinating enrichment cultures. Abstr. N-55, p. 494. In Abstracts of the 101st Annual Meeting of the American Society for Microbiology 2001, Orlando

    Google Scholar 

  100. Krooneman J., Wieringa EBA, Moore ERB, Gerritse J, Prins RA & Gottschal JC (1996) Isolation of Alcaligenes sp. strain L6 at low oxygen concentrations and degradation of 3-chlorobenzoate via a pathway not involving (chloro)catechols. Appl. Environ. Microbiol. 62:2427–2434

    CAS  Google Scholar 

  101. Krumholz LR (1997) Desulfuromonas chloroethenica sp. nov. uses tetrachloroethylene and trichloroethylene as electron acceptors. Int. J. Syst. Bacteriol. 47:1262–1263

    CAS  Google Scholar 

  102. Krumholz LR, Sharp R & Fishbain S (1996) A freshwater anaerobe coupling acetate oxidation to tetrachloroethene dehalogenation. Appl. Environ. Microbiol. 62:4108–4113

    CAS  Google Scholar 

  103. Laemmli CM, JH Leveau, Zehnder AJ & van der Meer JR (2000) Characterization of a second tfd gene cluster for chlorophenol and chlorocatechol metabolism on plasmid pJP4 in Ralstonia eutropha. J. Bacteriol. 182:4165–4172

    Article  CAS  Google Scholar 

  104. Layton AC, Sanseverino J, Wallace W, Corcoran C & Sayler GS (1992) Evidence for 4-chlorobenzoic acid dehalogenation mediated by plasmids related to pSS50. Appl. Environ. Microbiol. 58:399–402

    CAS  Google Scholar 

  105. Lee SG, Yoon BD, Park YH & Oh HM (1998) Isolation of a novel pentachlorophenol-degrading bacterium, Pseudomonas sp. Bu34. J. Appl. Micorbiol. 85:1–8

    CAS  Google Scholar 

  106. Leung KT, Cassidy MB, Shaw KW, Lee H, Trevors JT, Lohmeier Vogel EM & Vogel HJ (1997) Pentachlorophenol biodegradation by Pseudomonas spp. UG25 and UG30. World J. Microb. Biot. 13:305–313

    CAS  Google Scholar 

  107. Leveau JHJ & van der Meer JR (1996) The tfdR gene product can successfully take over the role of the insertion element-inactivated TfdT protein as a transcriptional activator of the tfdCDEF gene cluster, which encodes chlorocatechol degradation in Ralstonia eutropha JMP134(pJP4). J. Bacteriol. 178:6824–6832

    CAS  Google Scholar 

  108. Leveau JHJ & van der Meer JR (1997) Genetic characterization of insertion sequence ISJP4 on plasmid pJP4 from Ralstonia eutropha JMP134. Gene 202:103–114

    Article  CAS  Google Scholar 

  109. Löffler FE, Champine JE, Ritalahti KM, Sprague SJ & Tiedje JM (1997) Complete reductive dechlorination of 1,2-dichloropropane by anaerobic bacteria. Appl. Environ. Microbiol. 63:2870–2875

    Google Scholar 

  110. Löffler F& Müller R (1991) Identification of 4-chlorobenzoyl-coenzyme A as intermediate in the dehalogenation catalyzed by 4-chlorobenzoate dehalogenase from Pseudomonas sp. CBS3. FEBS Lett. 290:224–226

    Google Scholar 

  111. Löffler F, Müller R & Lingens F (1991) Dehalogenation of 4-chlorobenzoate by 4-chlorobenzoate dehalogenase from Pseudomonas sp. CBS3: an ATP/coenzyme A dependent reaction. Biochem. Biophys. Res. Commun. 176:1106–1111

    Google Scholar 

  112. Löffler FE, Ritalahti KM & Tiedje JM (1997) Dechlorination of chloroethenes is inhibited by 2-bromoethanesulfonate in the absence of methanogens. Appl. Environ. Microbiol. 63:4982–4985

    Google Scholar 

  113. Löffler FE, Sanford RA & Tiedje JM (1996) Initial characterization of a reductive dehalogenase from Desulfitobacterium chlororespirans Co23. Appl. Environ. Microbiol. 62:3809–3813

    Google Scholar 

  114. Löffler FE, Sun Q, Li J & Tiedje JM (2000) 16S rRNA gene-based detection oftetrachloroethene (PCE)-dechlorinating Desulfuromonas and Dehalococcoides species. Appl. Environ. Microbiol. 66:1369–1374

    Google Scholar 

  115. Löffler FE, Tiedje JM & Sanford RA (1999) Fraction of electrons consumed in electron acceptor reduction and hydrogen thresholds as indicators of halorespiratory physiology. Appl. Environ. Microbiol. 65:4049–4056

    Google Scholar 

  116. Loos MA, Roberts RN & Alexander M (1967) Formation of 2,4-dichlorophenol and 2,4-dichloroanisole from 2,4-dichlorophenoxy-acetate by Arthrobacter sp. Can. J. Microbiol. 13:691–699

    CAS  Google Scholar 

  117. Mäe AA, Reet OM, Ausmees NR, Koiv VM & Heinaru AL (1993) Characterization of a new 2,4-dichlorophenoxyacetic acid degrading plasmid pEMT4011: physical map and localization of catabolic genes. J. Gen. Microbiol. 139:3165–3170

    Google Scholar 

  118. Mägli A, Wendt M & Leisinger T (1996) Isolation and characterization of Dehalobacterium formicoaceticum gen. nov. sp. nov., a strictly anaerobic bacteriumutilizing dichloromethane as source of carbon and energy. Arch. Microbiol. 166:101–108

    Google Scholar 

  119. Magnuson JK, Romine MF, Burris DR & Kingsley MT (2000) Trichloroethene reductive dehalogenase from Dehalococcoides ethenogenes: Sequence of tceA and substrate range range characterization. Appl. Environ. Microbiol. 66:5141–5147

    CAS  Google Scholar 

  120. Magnuson JK, Stern RV, Gossett JM, Zinder SH & Burris DR (1998) Reductive dechlorination oftetrachloroethene to etheneby a two-component enzyme pathway. Appl. Environ. Microbiol. 64:1270–1275

    CAS  Google Scholar 

  121. Maltseva O, McGowan C, Fulthorpe R & Oriel P (1996) Degradation of 2,4-dichlorophenoxyacetic acid by haloalkaliphilic bacteria. Microbiology 142:1115–22

    Article  CAS  Google Scholar 

  122. Männistö MK, Tiirola MA, Salkinoja-Salonen MS, Kulomaa MS & Puhakka JA (1999) Diversity of chlorophenol-degrading bacteria isolated from contaminated boreal groundwater. Arch. Microbiol. 171:189–197

    Google Scholar 

  123. Marks TS, Smith ARW & Quirk AV (1984) Degradation of 4-chlorobenzoic acid by Arthrobacter sp. Appl. Environ. Microbiol. 48:1020–1025

    CAS  Google Scholar 

  124. Matrubuthan U & Harker AR (1994) Analysis of duplicated gene sequences associated with tfdR and tfdS in Alcaligenes eutrophus JMP134. J. Bacteriol. 176:2348–2353

    Google Scholar 

  125. Maymó-Gatell X, Anguish T & Zinder SH (1999) Reductive dechlorination ofchlorinated ethenes and 1,2-dichloroethane by ‘Dehalococcoides ethenogenes’ 195. Appl. Environ. Microbiol. 65:3108–3113

    Google Scholar 

  126. Maymó-Gatell X, Chien Y-T, Gossett JM & Zinder SH (1997) Isolation of a bacterium that reductively dechlorinates tetrachloroethene to ethene. Science 276:1568–1571

    Google Scholar 

  127. McCarty PL (1997) Breathing with chlorinated solvents. Science 276:1521–1522

    Article  CAS  Google Scholar 

  128. McGrath JE & Harfoot CG (1997) Reductive dehalogenation of halocarboxylic acids by the phototrophic genera Rhodospirillum and Rhodopseudomonas. Appl. Environ. Microbiol. 63:3333–3335

    CAS  Google Scholar 

  129. Messmer M, Reinhardt S, Wohlfarth G & Diekert G (1996) Studies on methyl chloride dehalogenase and O-demethylase in cell extracts of the homoacetogen strain MC based on a newly developed coupled enzyme assay. Arch. Microbiol. 165

    Google Scholar 

  130. Messmer M, Wohlfarth G & Diekert G (1993) Methyl chloride metabolism of the strictly anaerobic, methyl chloride-utilizing homoacetogen strain MC. Arch. Microbiol. 160:383–387

    CAS  Google Scholar 

  131. Miller E, Wohlfarth G & Diekert G (1997) Comparative studies on tetrachloroethene reductive dechlorination mediated by Desulfitobacterium sp. strain PCE-S. Arch. Microbiol. 168:513–519

    Article  CAS  Google Scholar 

  132. Miller E, Wohlfarth G & Diekert G (1998) Purification and characterization of the tetrachloroethene reductive dehalogenase of strain PCE-S. Arch. Microbiol. 169:497–502

    Article  CAS  Google Scholar 

  133. Mohn WW & Tiedje JM (1992) Microbial reductive dehalogenation. Microbiol. Rev. 56:482–507

    CAS  Google Scholar 

  134. Nakatsu CH, Fulthorpe RR, Holland BA, Peel MC & Wyndham RC (1995) The phylogenetic distribution of a transposable dioxygenase from Niagara River watershed. Mol. Ecol. 4:593–603

    CAS  Google Scholar 

  135. Nakatsu C, Ng J, Singh R, Straus N & Wyndham C (1991) Chlorobenzoate catabolic transposon Tn5271 is a composite class I element with flanking class II insertion sequences. P. Natl. Acad. Sci. USA 88:8312–8316

    CAS  Google Scholar 

  136. Nakatsu CH & Wyndham RC (1993) Cloning and expression of the transposable chlorobenzoate-3,4-dioxygenase genes of Alcaligenes sp. strain BR60. Appl. Environ. Microbiol. 59:3625–3633

    CAS  Google Scholar 

  137. Neilson JW, Josephson KL, Pepper IL, Arnold RB, DiGiovanni GD & Sinclair NA (1994) Frequency of horizontal gene transfer of a large catabolic plasmid (pJP4) in soil. Appl. Environ. Microbiol. 60:4053–4058

    CAS  Google Scholar 

  138. Neumann A, Wohlfarth G & Diekert G (1996) Purification and characterization of tetrachloroethene reductive dehalogenase from Dehalospirillum multivorans. J. Biol. Chem. 271:16515–16519

    Article  CAS  Google Scholar 

  139. Neumann A, Wohlfarth G & Diekert G (1998) Tetrachloroethene dehalogenase from Dehalospirillum multivorans: Cloning, sequencing of the encoding genes, and expression of the pceA gene in Escherichia coli. J. Bacteriol. 180:4140–4145

    CAS  Google Scholar 

  140. Nixon PJ (2000) Chlororespiration. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 355:1541–1547

    CAS  Google Scholar 

  141. Nohynek LJ, Suhonen EL, Nurmiaho-Lassila EL, Hantula J & Salkinoja-Salonen M (1996) Description of four pentachlorophenol-degrading bacterial strains as Sphingomonas chlorophenolica sp. nov. Syst. Appl. Microbiol. 18:527–538

    CAS  Google Scholar 

  142. Ogawa N & Miyashita K (1999) The chlorocatechol-catabolic transposon Tn5707 of Alcaligenes eutrophus NH9, carrying a gene cluster highly homologous to that in the 1,2,4-trichlorobenzene-degrading bacterium Pseudomonas sp. strain P51, confers the ability to grow on 3-chlorobenzoate. Appl. Environ. Microbiol. 65:724–731

    CAS  Google Scholar 

  143. Okeke BC, Chang YC, Hatsu M, Suzuki T & Takamizawa K (2001) Purification, cloning, and sequencing of an enzyme mediating the reductive dechlorination oftetrachloroethylene (PCE) from Clostridium bifermentans DPH-1. Can. J. Microbiol. 47:448–456

    Article  CAS  Google Scholar 

  144. Peel CP & Wyndham RC (1999) Selection of clc, cba, and fcb chlorobenzoate-catabolic genotypes from groundwater and subsurface waters adjacent to the Hyde Park, Niagara Falls, chemical landfill. Appl. Environ. Microbiol. 65:1627–1635

    CAS  Google Scholar 

  145. Pereira WE, Rostad CE & Taylor HE (1980) Mount St. Helens, Washington, 1980 volcanic eruption: Characterization of organic compounds in ash samples. Geophysical Research Letters 11:953–954

    Google Scholar 

  146. Petty MA (1961) An introduction to the origin and biochemistry of microbial halometabolites. Bact. Rev. 25:111–130

    CAS  Google Scholar 

  147. Poelarends GJ, Kulakov LA, Larkin MJ, van Hylckama Vlieg JET & Janssen DB (2000) Roles of horizontal gene transfer and gene integration in evolution of 1,3-dichloropropene-and 1,2-dibromoethane-degradative pathways. J. Bacteriol. 182:2191–2199

    CAS  Google Scholar 

  148. Radehaus PM & Schmidt SK (1992) Characterization of a novel Pseudomonas sp. that mineralizes high concentrations of pentachlorophenol. Appl. Environ. Microbiol. 58:2879–2885

    CAS  Google Scholar 

  149. Resnick SM & Chapman PJ (1994) Physiological properties and substrate specificity of a pentachlorophenol-degrading Pseudomonas species. Biodegradation 5:47–54

    CAS  Google Scholar 

  150. Rodrigues JLM, Maltseva OV, Tsoi TV, Helton RR, Quensen JF, Fukuda M & Tiedje JM (2001) Development of a Rhodococcus recombinant strain for degradation of products from anaerobic dechlorination of PCBs. Environ. Sci. Technol. 35:663–668

    Article  CAS  Google Scholar 

  151. Rogoff MH & Reid JJ (1956) Bacterial decomposition of 2,4-dichlorophenoxyacetic acid. J. Bacteriol. 71:303–307

    CAS  Google Scholar 

  152. Romanov V & Hausinger RP (1996) NADPH-dependent reductive ortho dehalogenation of 2,4-dichlorobenzoic acid in Corynebacterium sepedonicum KZ-4 and coryneform bacterium strain NTB-1 via 2,4-dichlorobenzoyl coenzyme A. J. Bacteriol. 178:2656–2561

    CAS  Google Scholar 

  153. Rosner BM, McCarty PL & Spormann AM (1997) In vitro studies on reductive vinyl chloride dehalogenation by an anaerobic mixed culture. Appl. Environ. Microbiol. 63:4139–4144

    CAS  Google Scholar 

  154. Ruisinger S, Klages U & Lingens F (1976) Degradation of 4-chlorobenzoic acid by an Arthrobacter species. Arch. Microbiol. 110:253–256

    Article  CAS  Google Scholar 

  155. Rutgers M, Gooch DD & Breure AM (1996) Assessment of inhibition kinetics of the growth of strain P5 on pentachlorophenol under steady-state conditions in anutristat. Arch. Microbiol. 165:194–200

    CAS  Google Scholar 

  156. Saber DL & Crawford RL (1985) Isolation and characterization of Flavobacterium strains that degrade pentachlorophenol. Appl. Environ. Microbiol. 50:1512–1518

    CAS  Google Scholar 

  157. Saboo VM & Gealt MA (1998) Gene sequence of the pcpB gene of pentachlorophenol-degrading Sphingomonas chlorophenolica found in nondegrading bacteria. Can. J. Microbiol. 44:667–675

    Article  CAS  Google Scholar 

  158. Sanford RA (1996) Characterization of microbial populations in anaerobic food webs that reductively dechlorinate chlorophenols. Ph.D. thesis, Michigan State University, East Lansing.

    Google Scholar 

  159. Sanford RA, Cole JR, Löffler FE & Tiedje JM (1996) Characterization of Desulfitobacterium chlororespirans sp. nov., which grows by coupling the oxidation of lactate to the reductive dechlorination of 3-chloro-4-hydroxybenzoate. Appl. Environ. Microbiol. 62:3800–3808

    CAS  Google Scholar 

  160. Sanford RA & Tiedje JM (1997) Chlorophenol dechlorination and subsequent degradation in denitrifying microcosms fed low concentrations of nitrate. Biodegradation 7:425–434

    Article  Google Scholar 

  161. Schall C, Heumann KG, De Mora S & Lee PA (1996) Biogenic brominated and iodinated organic compounds in ponds on the McMurdo Ice Shelf, Antartica. Antacrtic Science 8:45–48

    Google Scholar 

  162. Schmitz AK, H Gartemann H, Fiedler J, Grund E & Eichenlaub R (1992) Cloning and sequence analysis of genes for dehalogenation of 4-chlorobenzoate from Arthrobacter sp. strain SU. Appl. Environ. Microbiol. 58:4068–4071

    CAS  Google Scholar 

  163. Scholten JD, K-H Chang., Babbitt PC, Charest H, Sylvestre M & Dunaway-Mariano D (1991) Novel enzymic hydrolytic dehalogenation of a chlorinated aromatic. Science 253:182–185

    CAS  Google Scholar 

  164. Scholz-Muramatsu H, Neumann A, Messmer M, Moore E & Diekert G (1995) Isolation and characterization of Dehalospirillum multivorans gen. nov., sp. nov., a tetrachloroethene-utilizing, strictly anaerobic bacterium. Arch. Microbiol. 163:48–56

    CAS  Google Scholar 

  165. Schumacher W, C. Holliger C, Zehnder AJB & Hagen WR (1997) Redox chemistry of cobalamin and iron-sulfur cofactors in the tetrachloroethene reductase of Dehalobacter restrictus. FEBS Lett. 409:421–425

    Article  CAS  Google Scholar 

  166. Seo DI, Chae JC, Kim KP, Kim Y, Lee KS & Kim CK (1998) A pathway for 4-chlorobenzoate degradation by Pseudomonas sp. S-47. Journal of Microbiology and Biotechnology 8:96–100

    CAS  Google Scholar 

  167. Sharma PK & McCarty PL (1996) Isolation and characterization of a facultative bacterium that reductively dehalogenates tetrachloroethene to cis-1,2-dichloroethene. Appl. Environ. Microbiol. 62:761–765

    CAS  Google Scholar 

  168. Sheffield A (1985) Sources and releases of PCDD’s and PCDF’s in the Canadian environment. Chemosphere 14:811–814

    Article  Google Scholar 

  169. Shelton DR & Tiedje JM (1984) Isolation and partial characterization of bacteria in an anaerobic consortium that mineralizes 3-chlorobenzoic acid. Appl. Environ. Microbiol. 48:840–848

    CAS  Google Scholar 

  170. Shimao M, Onishi S, Mizumori S, Kato N & Sakazawa C (1989) Degradation of 4-chlorobenzoate by facultatively alkalophilic Arthrobacter sp. strain SB8. Appl. Environ. Microbiol. 55:478–482

    CAS  Google Scholar 

  171. Smidt H, Akkermans ADL, van der Oost J & de Vos WM (2000) Halorespiring bacteria-molecular characterization and detection. Enzyme Microb. Technol. 27:812–820

    Article  CAS  Google Scholar 

  172. Song BK, Palleroni NJ & Häggblom MM (2000) Isolation and characterization of diverse halobenzoate-degrading denitrifying bacteria from soils and sediments. Appl. Environ. Microbiol. 66:3446–3453

    CAS  Google Scholar 

  173. Springael D, Kreps S & Mergeay M (1993) Identification of a catabolic transposon, Tn4371, carrying biphenyl and 4-chlorobiphenyl degradation genes in Alcaligenes eutrophus A5. J. Bacteriol. 175:1674–1681

    CAS  Google Scholar 

  174. Stanier RY & Ornston LN (1973) The β-ketoadipate pathway. Adv. Microb. Physiol. 9:89–151

    CAS  Google Scholar 

  175. Stanlake GJ & Finn RK (1982) Isolation and characterization of a pentachlorophenol-degrading bacterium. Appl. Environ. Microbiol. 44:1421–1427

    CAS  Google Scholar 

  176. Steiert JG, Pignatello JJ & Crawford RL (1987) Degradation of chlorinated phenols by a pentachlorophenol-degrading bacterium. Appl. Environ. Microbiol. 53:907–910

    CAS  Google Scholar 

  177. Stoiber RE, Leggett DC, Jenkins TF, Murrmann RP & Rose Jr WL (1971) Organic compounds in volcanic gas from Santaguito volcano, Guatemala. Geol. Soc. Am. Bull. 82:2299–2302

    CAS  Google Scholar 

  178. Stokes HW & Hall RM (1989) A novel family of potentially mobile DNA elements encoding site-specific gene-integration functions: Integrons. Mol. Microbiol. 3:1669–1683

    CAS  Google Scholar 

  179. Suflita JM, Horowitz A, Shelton DR & Tiedje JM (1982) Dehalogenation: A novel pathway for the anaerobic biodegradation of haloaromatic compounds. Science 218:1115–1117

    CAS  Google Scholar 

  180. Sun B, Cole JR, Sanford RA & Tiedje JM (2000) Isolation and characterization of Desulfovibrio dechloracetivorans sp. nov., a marine dechlorinating bacterium growing by coupling the oxidation of acetate to the reductive dechlorination of 2-chlorophenol. Appl. Environ. Microbiol. 66:2408–2413

    Article  CAS  Google Scholar 

  181. Suwa Y, Wright AD, Fukumori F, Nummy KA, Hausinger RP, Holben WE & Forney LJ (1996) Characterization of a chromosomally encoded 2,4-dichlorophenoxyacetic acid (2,4-D)/alpha-ketoglutarate dioxygenase from Burkholderia sp. RASC. Appl. Environ. Microbiol. 62:2464–2469

    CAS  Google Scholar 

  182. Thomas AW, Slater JH & Weightman AJ (1992) The dehalogenase gene dehI from Pseudomonas putida PP3 is carried on an unusual mobile genetic element designated DEH. J. Bacteriol. 174:1932–1940

    CAS  Google Scholar 

  183. Tiedje JM, Quensen III JF, Chee-Sanford J, Schimel JP & Boyd SA (1994) Microbial reductive dechlorination of PCBs. Biodegradation 4:231–240

    Article  CAS  Google Scholar 

  184. Top EM, Holben WE & Forney LJ (1995) Characterization of diverse 2,4-dichlorophenoxyaceticacid-degradingplasmids isolated from soil by complementation. Appl. Environ. Microbiol. 61:3274–3281

    Google Scholar 

  185. Top EM, Maltseva OV & Forney LJ (1996) Capture of a catabolic plasmid that encodes only 2,4-dichlorophenoxyacetic acid:alpha-ketoglutaric acid dioxygenase (TfdA) by genetic complementation. Appl. Environ. Microbiol. 62:2470–2476

    CAS  Google Scholar 

  186. Traunecker J, Preuss A, Diekert G & Preuss A (1991) Isolation and characterization of a methyl-chloride utilizing, strictly anaerobic bacterium. Arch. Microbiol. 156:416–421

    Article  CAS  Google Scholar 

  187. Tschäpe H (1994) The spread of plasmids as a function of bacterial adaptation. FEMS Microbiol. Ecol. 15:23–32

    Google Scholar 

  188. Utkin I, Woese C & Wiegel J (1994) Isolation and characterization of Desulfitobacterium dehalogenans gen. nov., sp. nov., an anaerobic bacterium which reductively dechlorinates chlorophenolic compounds. Int. J. Syst. Bacteriol. 44:612–619

    Article  CAS  Google Scholar 

  189. Valleyes T, Courde L, McGowan C, Wright AD & Fulthorpe RR (1999) Phylogenetic analyses indicate independent recruitment of diverse gene cassettes during assemblage of the 2,4-D catabolic pathway. FEMS Microbiol. Ecol. 28:373–382

    Google Scholar 

  190. van de Pas BA, Harmsen HJM, Raangs GC, de Vos WM, Schraa G. & Stams AJM (2001) A Desulfitobacterium strain isolated from human feces that does not dechlorinate chloroethenes or chlorophenols. Arch. Microbiol. 175:389–394

    Google Scholar 

  191. van den Tweel WJ, Kok JB & de Bont JA (1987) Reductive dechlorination of 2,4-dichlorobenzoate to 4-chlorobenzoate and hydrolytic dehalogenation of 4-chloro-, 4-bromo-, and 4-iodobenzoate by Alcaligenes denitrificans NTB-1. Appl. Environ. Microbiol. 53:810–815

    Google Scholar 

  192. van der Meer JR, Ravatn R & Sentchilo V (2001) The clc element of Pseudomonas sp. strain B13 and other mobile degradative elements employing phage-like integrases. Arch. Microbiol. 175:79–85

    Google Scholar 

  193. van der Meer JR, Zehnder AJB & de Vos WM (1991) Identification of a novel composite transposable element, Tn 5280, carrying chlorobenzene dioxygenase genes of Pseudomonas sp. strain P51. J. Bacteriol. 173:7077–7083

    Google Scholar 

  194. van der Woude BJ, de Boer M, van der Put NMJ, van der Geld FM, Prins RA & Gottschal JC (1994) Anaerobic degradation of halogenated benzoic acids by photoheterotrophic bacteria. FEMS Microbiol Letters 119:199–208

    Google Scholar 

  195. Vannelli T, Messmer M, Studer A, Vuilleumier S & Leisinger T (1999) A corrinoid-dependent catabolic pathway for growth of a Methylobacterium strain with chloromethane. P. Natl. Acad. Sci. USA 96:4615–4620

    Article  CAS  Google Scholar 

  196. von Wintzingerode F, Selent B, Hegemann W & Göbel UB (1999) Phylogenetic analysis of an anaerobic, trichlorobenzene-transforming microbial consortium. Appl. Environ. Microbiol. 65:283–286

    Google Scholar 

  197. Wiegel J & Wu Q (2000) Microbial reductive dehalogenation of polychlorinated biphenyls. FEMS Microbiol. Ecol. 32:1–15

    CAS  Google Scholar 

  198. Wiegel J, Zhang XM & Wu QZ (1999) Anaerobic dehalogenation of hydroxylated polychlorinated biphenyls by Desulfitobacterium dehalogenans. Appl. Environ. Microbiol. 65:2217–2221

    CAS  Google Scholar 

  199. Wild A, Hermann R & Leisinger T (1996) Isolation of an anaerobic bacterium which reductively dechlorinates tetrachloroethene and trichloroethene. Biodegradation 7:507–511

    CAS  Google Scholar 

  200. Wischnak C, Löffler FE, Li J, Urbance JW & Müller R (1998) Isolation and characterization of a Pseudomonas species that degrades medium length α, ω-dichloroalkanes. Appl. Environ. Microbiol. 64:3507–3511

    CAS  Google Scholar 

  201. Wu QZ, Sowers KR & May HD (2000) Establishment of a polychlorinated biphenyl-dechlorinating microbial consortium, specific for doubly flanked chlorines, in a defined, sediment-free medium. Appl. Environ. Microbiol. 66:49–53

    Article  CAS  Google Scholar 

  202. Wu Q, Watts JEM, Sowers KR & May HD (2001) A green non-sulfur bacterium is responsible for doubly-flanked PCB dechlorination. Abstr. Q-245, p. 633. In Abstracts of the 101st Annual Meeting of the American Society for Microbiology 2001, Orlando

    Google Scholar 

  203. Wyndham RC, Cahore AE, Nakatsu CH & Peel MC (1994) Catabolic transposons. Biodegradation 5:323–342

    Article  CAS  Google Scholar 

  204. Wyndham RC, Singh RK & Straus NA (1988) Catabolic instability, plasmid gene deletion and recombination in Alcaligenes sp. BR60. Arch. Microbiol. 150:237–243

    CAS  Google Scholar 

  205. Yang Y & McCarty PL (1998) Competition for hydrogen within a chlorinated solvent dehalogenating anaerobic mixed culture. Environ. Sci. Technol. 32:3591–3597

    CAS  Google Scholar 

  206. Zablotowicz RM, Leung KT, Alber T, Cassidy MB, Trevors JT, Lee H, Veldhuis L & Hall JC (1999) Degradation of 2,4-dinitrophenol and selected nitroaromatic compounds by Sphingomonas sp. UG30. Can. J. Microbiol. 45:840–848

    Article  CAS  Google Scholar 

  207. Zaitsev GM, Tsoi TV, Grishenkov VG, Plotnikova EG & Boronin AM (1991) Genetic control of degradation of chlorinated benzoic acids in Arthrobacter globiformis, Corynebacterium sepedonicum and Pseudomonas cepacia strains. FEMS Microbiol. Lett. 65:171–176

    CAS  Google Scholar 

  208. Zhang WH, Lai SY, Layton AC, Sayler GS & Dunaway-Mariano D (1997) Sequencing, subcloning and characterization of the enzymes of the 4-chlorobenzoate degradation pathway in Alcaligenes sp. strain AL3007. FASEB J. 11:200

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this chapter

Cite this chapter

Löffler, F.E., Cole, J.R., Ritalahti, K.M., Tiedje, J.M. (2004). Diversity of Dechlorinating Bacteria. In: Häggblom, M.M., Bossert, I.D. (eds) Dehalogenation. Springer, Boston, MA. https://doi.org/10.1007/0-306-48011-5_3

Download citation

  • DOI: https://doi.org/10.1007/0-306-48011-5_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4020-7406-6

  • Online ISBN: 978-0-306-48011-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics