Skip to main content

Microbial Ecology of Dehalogenation

  • Chapter
Dehalogenation

5. Summary

In reviewing the physicochemical factors and biological activities that describe the microbial ecology of an environment, in particular how it pertains to the global cycling of halogens, many elements are evident. A unifying principle in these often complex systems can perhaps be found in the energy flow through the system. On a small scale, this can be seen in the microbial communities which support and mediate dehalogenation. Hydrogen transfer, through syntrophic and cometabolic microbial associations, together with its impact on the environmental matrix, e.g., redox and mineral speciation, provides a commonality to the cycling of nutrients in the environment, including halogenated substrates. A better understanding can serve as a basis for exploiting these processes for the better good, in particular for the cleanup of contaminated environments, but also for better management of naturally-occurring processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abramowicz DA, Brennan MJ, Van Dort HM & Gallagher EL(1993) Factors influencing the rate of polychlorinated biphenyl dechlorination in Hudson River sediments. Environ. Sci. Technol. 27:1125–1131

    Article  CAS  Google Scholar 

  2. Adriaens P & Vogel T (1995) Biological treatment of chlorinated organics. In: Young LY & Cerniglia CE (Eds) Microbial Transformation and Degradation of Toxic Organic Chemicals (pp 435–486) Wiley-Liss, New York

    Google Scholar 

  3. Alexander M (1985) Biodegradation of organic chemicals. Environ. Sci. Technol. 18:106–112

    Google Scholar 

  4. Alexander M (1981) Biodegradation of chemicals of environmental concern. Science 211:132–138

    CAS  Google Scholar 

  5. Allard A-S, Hynning P-å, Remberger M & Neilson AH (1992) Role of sulfate concentration in dechlorination of 3,4,5-trichlorocatechol by stable enrichment cultures grown with coumarin and flavanone glycones and aglycones. Appl. Environ. Microbiol. 58:961–968

    CAS  Google Scholar 

  6. Apajalahti JHA & Salkinoja-Salonen MS (1984) Absorption of pentachlorophenol (PCP) by bark chips and its role in microbial PCP degradation. Microb. Ecol. 10:359–367

    Article  CAS  Google Scholar 

  7. Arands R, Bossert I, Kosson D, Lederman P, Lyman W, Massry I, Schaefer C & Tekrony M (1999) Mobility and Degradation of Organic Contaminants in Subsurface Environments: Update for Phase I. EPA report 600/2-91/053

    Google Scholar 

  8. Bartha R & Atlas R (1998) Microbial Ecology: Fundamentals and Applications. Benjamin Cummings Publ. Co. Menlo Park, CA

    Google Scholar 

  9. Bossert I & Compeau G (1995) Petroleum hydrocarbon contamination in soil. In: Young LY & Cerniglia CE (Eds) Microbial Transformation and Degradation of Toxic Organic Chemicals (pp 77–125) Wiley-Liss, New York

    Google Scholar 

  10. Boyle AW, Knight VK, Häggblom MM & Young LY (1999) Transformation of 2,4-dichlorophenoxyacetic acid in four different marine and estuarine sediments: effects of sulfate, hydrogen and acetate on dehalogenation and side-chain cleavage. FEMS Microbiol. Ecol. 29:105–113

    CAS  Google Scholar 

  11. Boyle AW, Phelps CD & Young LY (1999) Isolation from estuarine sediments of a Desulfovibrio strain which can grow on lactate coupled to the reductive dehalogenation of 2,4,6-tribromophenol. Appl. Environ. Microbiol. 65:1133–1140

    CAS  Google Scholar 

  12. Bradley PM, Chapelle FH (1996) Anaerobic mineralization of vinyl chloride in Fe(III)-reducing aquifer sediments. Environ. Sci. Technol. 30:2084–2086

    Article  CAS  Google Scholar 

  13. Bradley PM & Chapelle F (1998) Microbial Mineralization of VC and DCE under different terminal electron accepting conditions. Anaerobe 4:81–87

    Article  CAS  Google Scholar 

  14. Bradley PM & Chapelle FH (2000) Aerobic microbial mineralization of dichloroethene as sole carbon substrate. Environ. Sci. Technol. 34:221–223

    CAS  Google Scholar 

  15. Chapelle FH, Haack SK, Adriaens P, Henry MA & Bradley PM (1996) Comparison of Eh and H2 measurements for delineatingredox processes in a contaminated aquifer. Environ. Sci. Technol. 30:3565–3569

    Article  CAS  Google Scholar 

  16. DeWeerd KA, Concannon F & Suflita JM (1991) Relationship between hydrogen consumption, dehalogenation, and the reduction of sulfur oxyanions by Desulfomonile tiedjei. Appl. Environ. Microbiol. 57:1929–1934

    CAS  Google Scholar 

  17. DeWeerd KA & Suflita JM (1990) Anaerobic aryl reductive dehalogenation of halobenzoates by cell extracts of &ldDesulfomonile tiedjei&ld. Appl. Environ, Microbiol. 56:2999–3005

    CAS  Google Scholar 

  18. DiStefano TD, Gossett JM & Zinder SH (1992) Hydrogen as an electron donor for dechlorination of tetrachloroethene by an anaerobic mixed culture. Appl. Environ. Microbiol. 58:3622–3629

    CAS  Google Scholar 

  19. Dolfing J & Tiedje JM (1986) Hydrogen cycling in a three-tiered food web growing on the methanogenic conversion of 3-chlorobenzoate. FEMS Microbiol. Ecol. 38:293–298

    Article  CAS  Google Scholar 

  20. Dolfing J & Tiedje JM (1991) Kinetics of two complementary hydrogen sink reactions in a defined 3-chlorobenzoate degrading methanogenic co-culture. FEMS Microbiol. Ecol. 86:25–32

    Article  CAS  Google Scholar 

  21. Ehrlich, HL (1996) Geomicrobiology, Third Edition. Marcel Dekker, Inc., New York

    Google Scholar 

  22. El Fantroussi S, Naveau H & Agathos SN (1998) Anaerobic dechlorinating bacteria. Biotechnol. Prog. 14:167–188

    CAS  Google Scholar 

  23. Erbs M, Hansen HCB & Olsen CE (1999) Reductive dechlorination of carbon tetrachloride using iron(II) iron(III)hydroxide sulfate (green rust). Environ. Sci. Technol. 33:307–311

    Article  CAS  Google Scholar 

  24. Fennell DE, Gossett JM & Zinder SH (1997) Comparison of butyric acid, ethanol, lactic acid, and propionic acid as hydrogen donors for the reductive dechlorination of tetrachloroethene. Environ. Sci. Technol. 31:918–926

    Article  CAS  Google Scholar 

  25. Fetzner S (1998) Bacterial dehalogenation. Appl. Microbiol. Biotechnol. 50:633–657

    Article  CAS  Google Scholar 

  26. Fish KM (1996) Influence of Aroclor 1242 concentration on polychlorinated biphenyl biotransformations in Hudson River test tube microcosms. Appl. Environ. Microbiol. 62:3014–3016

    CAS  Google Scholar 

  27. Genthner BRS, Price WA II & Pritehard PH (1989) Anaerobic degradation of chloroaromatic compounds in aquatic sediments under a variety of enrichment conditions. Appl. Environ. Microbiol. 55:1466–1471

    CAS  Google Scholar 

  28. Genthner BRS, Price WA II & Pritchard PH (1989) Characterization of anaerobic dechlorinating consortia derived from aquatic sediments. Appl. Environ. Microbiol. 55:1472–1476

    CAS  Google Scholar 

  29. Ghiorse WC, Wilson JT (1988) Microbial ecology of the terrestrial subsurface. Adv. Appl. Microbiol. 33:107–172

    CAS  Google Scholar 

  30. Gibson SA & Suflita JM (1986) Extrapolation of biodegradation results to groundwater aquifers: reductive dehalogenation of aromatic compounds. Appl. Environ. Microbiol. 52:681–688

    CAS  Google Scholar 

  31. Goldman (1972) Enzymology of carbon-halogen bonds. In: Degradation of Synthetic Organic Molecules in the Biosphere (pp 147–165). National Academy of Sciences, Washington, D.C.

    Google Scholar 

  32. Häggblom MM, Rivera MD & Young, LY (1993) Influence of alternative electron acceptors on the anaerobic biodegradability of chlorinated phenols and benzoic acids. Appl. Environ. Microbiol. 59:1162–1167

    Google Scholar 

  33. Häggblom MM, Rivera MD & Young LY (1993) Effects of auxiliary carbon sources and electron acceptors on methanogenic degradation of chlorinated phenols. Environ. Toxicol. Chem. 12:1395–1403

    Google Scholar 

  34. Häggblom MM & Young, LY (1995) Anaerobic degradation of halogenated phenols by sulfate-reducing consortia. Appl. Environ. Microbiol. 61:1546–1550

    Google Scholar 

  35. Häggblom MM & Young LY (1990) Chlorophenol degradation coupled to sulfate reduction. Appl. Environ. Microbiol. 56:3255–3260

    Google Scholar 

  36. Häggblom MM & Young LY (1999) Anaerobic degradation of halogenated benzoic acids by a denitrifying bacterium. Arch. Microbiol. 171:230–236

    Google Scholar 

  37. Holliger C, Schraa G, Stams AJM & Zehnder AJB (1992) Enrichment and properties of an anaerobic mixed culture reductively dechlorinating 1,2,3-trichlorobenzene to 1,3-dichlorobenzene. Appl. Environ. Microbiol. 58:1636–1644

    CAS  Google Scholar 

  38. Järvinen KT, Melin ES & Puhakka JA (1994) High-rate bioremediation of chlorophenol contaminated ground water at low temperatures. Environ. Sci. Technol. 28:2387–2392

    Google Scholar 

  39. Järvinen KT & Puhakka JA (1994) Bioremediation of chlorophenol contaminated ground water. Environ. Technol. 15:823–832

    Google Scholar 

  40. Juteau P, Beaudet R, McSween G, Lépine F & Bisaillon J-G (1995) Study of the reductive dehalogenation of pentachlorophenol by a methanogenic consortium. Can. J. Microbiol. 41:862–868

    Article  CAS  Google Scholar 

  41. Kazumi J, Häggblom MM & Young LY (1995) Diversity of anaerobic microbial processes in chlorobenzoate degradation: nitrate, iron, sulfate and carbonate as electron acceptors. Appl. Microbiol. Biotechnol. 43:929–936

    Article  CAS  Google Scholar 

  42. Kazumi J, Häggblom MM & Young LY (1995) Degradation of monochlorinated and non-chlorinated aromatic compounds under iron-reducing conditions. Appl. Environ. Microbiol. 61:4069–4073

    CAS  Google Scholar 

  43. Kohring G-W, Rogers JE & Wiegel J (1989) Anaerobic biodegradation of 2,4-dichlorophenol in freshwater lake sediments at different temperatures. Appl. Environ. Microbiol. 55:348–353

    CAS  Google Scholar 

  44. Kohring G-W, Zhang X & Wiegel J (1989) Anaerobic dechlorination of 2,4-dichlorophenol in freshwater sediments in the presence of sulfate. Appl. Environ. Microbiol. 55:2735–2737

    CAS  Google Scholar 

  45. Kuhn EP & Suflita JM (1989) Dehalogenation of pesticides by anaerobic microorganisms in soils and groundwater A review. In: Sawhney BL, Brown K (Eds) Reactions and Movements of Organic Chemicals in Soils (pp 111–180) Soil Sci. Soc. of America and American Soc. of Agronomy, Madison, WI

    Google Scholar 

  46. Kuhn EP, Townsend GT & Suflita JM (1990) Effect of sulfate and organic carbon supplements on reductive dehalogenation of chloroanilines in anaerobic aquifer slurries. Appl. Environ. Microbiol. 56:2630–2637

    CAS  Google Scholar 

  47. Kuo C-W & Genthner BRS (1996) Effect of added heavy metal ions on biotransformation and biodegradation of 2-chlorophenol and 3-chlorobenzoate in anaerobic bacterial consortia. Appl. Environ. Microbiol. 62:2317–2323

    CAS  Google Scholar 

  48. Liu S-M, Kuo C-E & Hsu T-B (1996) Reductive dechlorination of chlorophenols and pentachlorophenol in anoxic estuarine sediments. Chemosphere 32:1287–1300

    Article  CAS  Google Scholar 

  49. Löffler FE, Tiedje JM & Sanford RA (1999) Fraction of electrons consumed in electron acceptor reduction and hydrogen thresholds as indicators of halorespiratory physiology. Appl. Environ. Microbiol. 65:4049–4056

    Google Scholar 

  50. Lovley DR, Chapelle FH & Woodward JC (1994) Use of dissolved H2 concentrations to determine distribution of microbially catalyzed reactions in anoxic groundwater. Environ. Sci. Technol. 28:1205–1210

    CAS  Google Scholar 

  51. Madsen T & Aamand J (1992) Anaerobic transformation and toxicity of trichlorophenols in a stable enrichment culture. Appl Environ Microbiol 58:557–561

    CAS  Google Scholar 

  52. Madsen T & Aamand J (1991) Effects of sulfuroxy anions on degradation of pentachlorophenol by a methanogenic enrichment culture. Appl. Environ. Microbiol. 57:2453–2458

    CAS  Google Scholar 

  53. Männisto MK & Puhakka JA (2002) Psychrotolerant and microaerophilic bacteria in boreal groundwater. FEMS Microbiol. Ecol. 41:9–16

    Google Scholar 

  54. Männisto MK, Tiirola MA & Puhakka JA (2001) Degradation of 2,3,4,6-tetrachlorophenol at low temperature and low dioxygen concentrations by phylogenetically different groundwater and bioreactor bacteria. Biodegradation 12:291–301

    Google Scholar 

  55. Männistö MK, Tiirola MA, Salkinoja-Salonen MS, Kulomaa MS & Puhakka JA (1999) Diversity of chlorophenol-degrading bacteria isolated from contaminated boreal groundwater. Arch. Microbiol. 171:189–197

    Google Scholar 

  56. Master ER, Mohn WW (1998) Psychrotolerant bacteria isolated from arctic soil that degrade polychlorinated biphenyls at low temperatures. Appl. Environ. Microbiol. 64:4823–4829

    CAS  Google Scholar 

  57. Matheson LJ & Tratnyek PG (1994) Reductive dehalogenation of chlorinated methanes by iron metal. Environ. Sci. Technol. 28:2045–2053

    CAS  Google Scholar 

  58. McCarty PL (1993) In situ bioremediation of chlorinated solvents. Curr. Opin. Biotechnol. 4:323–330

    Article  CAS  Google Scholar 

  59. McNab WW & Ruiz R (2000) In-situ destruction of chlorinated hydrocarbons in groundwater using catalytic reductive dehalogenation in a reactive well: testing and operational experiences. Environ. Sci. Technol. 34:149–153

    Article  CAS  Google Scholar 

  60. Miller R (1994) Surfactant-enhanced bioavailability of slightly soluble organic compounds. In: Skipper H (Ed) Bioremediation &2-Science and Applications. Soil Science Society of American Publications, Madison, WI

    Google Scholar 

  61. Milligan PW & Häggblom MM (2000) Anaerobic biodegradation of halogenated pesticides: Influence of alternate electron acceptors. In: Bollag J-M & Stotzky G (Eds) Soil Biochemistry, (pp 1–34) Marcel Dekker, New York

    Google Scholar 

  62. Mohn WW & Kennedy KJ (1992) Reductive dehalogenation of chlorophenols by Desulfomonile tiedjei DCB-1. Appl. Environ. Microbiol. 58:1367–1370

    CAS  Google Scholar 

  63. Mohn WW & Tiedje JM (1992) Microbial reductive dehalogenation. Microbiol. Rev. 56:482–507

    CAS  Google Scholar 

  64. Mohn WW, Westerberg K, Cullen WR, Reimer KJ (1997) Aerobic biodegradation of biphenyl and polychlorinated biphenyls by arctic soil microorganisms. Appl. Environ. Microbiol. 63:3378–3384

    CAS  Google Scholar 

  65. Monserrate E & Häggblom MM (1997) Dehalogenation and biodegradation of phenols and benzoic acids under iron-reducing, sulfidogenic, and methanogenic conditions. Appl. Environ. Microbiol. 63:3911–3915

    CAS  Google Scholar 

  66. Moran BN & Hickey WJ (1997) Trichloroethylene biodegradation by mesophilic and psychrophilic ammonia oxidizers and methanotrophs in groundwater microcosms. Appl. Environ. Microbiol. 63:3866–3871

    CAS  Google Scholar 

  67. Oremland RS, Newman DK, Kail BW & Stolz JF (2001) Bacterial respiration of arsenate and its significance in the environment. In: Frankenberger WT Jr (Ed) Environmental Chemistry of Arsenic (pp 273–295) Marcel Dekker, New York

    Google Scholar 

  68. Pardue JH, Kongara S & Jones WJ (1996) Effect of cadmium on reductive dechlorination of trichloroaniline. Environ. Toxicol. Chem. 15:1083–1088

    Article  CAS  Google Scholar 

  69. Quensen JF III, Tiedje JM & Boyd SA (1988) Reductive dechlorination of polychlorinated biphenyls by anaerobic microorganisms from sediments. Science 242:752–754

    CAS  Google Scholar 

  70. Ramaswami A & Luthy R (1997) Measuring and modeling physicochemical limitations to bioavailability and biodegradation. In: Hurst C, Knudsen G, McInerney M, Stetzenbach L & Walter M (Eds) Manual of Environmental Microbiology (pp 721–729) ASM Press, Washington, DC

    Google Scholar 

  71. Reineke W (2001) Aerobic and anaerobic biodegradation potentials ofmicroorganisms. In: Beek B (Ed) Handbook of Environmental Chemistry, Vol 2, Part K. Biodegradation and Persistence (pp 1–161). Springer-Verlag, Berlin

    Google Scholar 

  72. Rhee G-Y, Bush B, Bethoney CM, DeNucci A, Oh H-M & Sokol RC (1993) Reductive dechlorination of Aroclor 1242 in anaerobic sediments: pattern, rate and concentration dependence. Environ. Toxicol. Chem. 12:1025–1032

    CAS  Google Scholar 

  73. Richardson JP & Nicklow JW (2002) In situ permeable reactive barriers for groundwater contamination. Soil Sediment Contam. 11:241–268

    CAS  Google Scholar 

  74. Ritter K, Odziemkowski MS & Gillham RW (2002) An in situ study of the role of surface films on granular iron in the permeable iron wall technology. J. Contam. Hydrol. 55:97–111

    Google Scholar 

  75. Sanford RA & Tiedje JM (1997) Chlorophenol dechlorination and subsequent degradation in denitrifying microcosms fed low concentrations of nitrate. Biodegradation 7:425–434

    Article  Google Scholar 

  76. Scherer MM, Balko BA, Gallagher DA & Tratnyek PG (1998) Correlation analysis of rate constants for dechlorination by zero-valent iron. Environ. Sci. Technol. 32:3026–3033

    Article  CAS  Google Scholar 

  77. Semprini L, Hopkins GD, McCarty PL & Roberts PV (1992) In-situ transformation of carbon tetrachloride and other halogenated compounds resulting from biostimulation under anoxic conditions. Environ. Sci. Technol. 26:2454–2461

    Article  CAS  Google Scholar 

  78. Semprini L, Kitanidis PK, Kampbell DH & Wilson JT (1995) Anaerobic transformation of chlorinated aliphatic hydrocarbons in a sand aquifer based on spatial chemical distributions. Water Resour. Res. 31:1051–1062

    Article  CAS  Google Scholar 

  79. Shelton DR & Tiedje JM (1984) Isolation and partial characterization of bacteria in an anaerobic consortium that mineralizes 3-chlorobenzoic acid. Appl. Environ. Microbiol. 48:840–848

    CAS  Google Scholar 

  80. Smith RL (1997) Subsurface and landfills. In: Hurst C, Knudsen G, McInerney M, Stetzenbach L & Walter M (Eds) Manual of Environmental Microbiology (pp 577–585) ASM Press, Washington, DC

    Google Scholar 

  81. Stolz JF & Oremland RS (1999) Bacterial respiration of arsenic and selenium. FEMS Microbiol. Rev. 23:615–627

    Article  CAS  Google Scholar 

  82. Suflita JM & Townsend GT (1995) The microbial ecology and physiology of aryl dehalogenation reactions and implications for biorermediation In: Young LY & Cerniglia CE (Eds) Microbial Transformation and Degradation of Toxic Organic Chemicals (pp 243–268) Wiley-Liss, New York

    Google Scholar 

  83. Sun B, Cole JR & Tiedje JM (2001) Desulfomonile limimaris sp. nov., an anaerobic dehalogenating bacterium from marine sediments. Int. J. Syst. Evol. Microbiol. 51:365–371

    CAS  Google Scholar 

  84. Tandol V, DiStefano TD, Bowser PA, Gossett JM & Zinder SH (1994) Reductive dehalogenation of chlorinated ethenes and halogenated ethanes by a high-rate anaerobic enrichment culture. Environ. Sci. Technol. 28:973–979

    Google Scholar 

  85. Tratnyek, PG, Scherer MM, Deng B & Hu S (2001) Effects of natural organic matter, anthropogenic surfactants, and model quinones on the reduction of contaminants by zero-valent iron. Water Research 25:4435–4443

    Google Scholar 

  86. Townsend GT & Suflita JM (1997) Influence of sulfur oxyanions on reductive dehalogenation activities in Desulfomonile tiedjei. Appl. Environ. Microbiol. 63:3594–3599

    CAS  Google Scholar 

  87. Townsend GT, Ramanand K & Suflita JM (1997) Reductive dehalogenation and mineralization of 3-chlorobenzoate in the presence of sulfate by microorganisms from a methanogenic aquifer. Appl. Environ. Microbiol. 63:2785–2791

    CAS  Google Scholar 

  88. Valo R, Apajalahti J & Salkinoja-Salonen M (1985) Studies on the physiology of microbial degradation of pentachlorophenol. Appl. Microbiol. Biotechnol. 21:313–319

    Article  CAS  Google Scholar 

  89. Venkatramen S, Schuring JR, Boland TM, Bossert ID & Kosson D (1998) Application of pneumatic fracturing to enhance in-situ bioremediation. J. Soil Contam. 7:143–162

    Google Scholar 

  90. Vogan JL, Focht RM, Clark DK & Graham SL (1999) Performance evaluation of a permeable reactive barrier for remediation of dissolved chlorinated solvents in groundwater. J Haz. Mater. 68:97–108

    CAS  Google Scholar 

  91. Vogel TM & McCarty PL (1985) Biotransformation of tetrachloroethylene to trichloroethylene, dichloroethylene, vinyl chloride, and carbon dioxide under methanogenic conditions. Appl. Environ. Microbiol. 49:1080–1083

    CAS  Google Scholar 

  92. Vogel TM, Criddle CS & McCarty PL (1987) Transformations of halogenated aliphatic compounds. Environ. Sci. Technol. 21:722–736

    CAS  Google Scholar 

  93. Wackett LP (1995) Bacterial co-metabolism of halogenated organic compounds. In: Young LY & Cerniglia CE (Eds) Microbial Transformation and Degradation of Toxic Organic Chemicals (pp 217–241) Wiley-Liss, New York

    Google Scholar 

  94. Wall AJ & Stratton GW (1994) Effects of a chromated-copper-arsenate wood preservative on the bacterial degradation of pentachlorophenol. Can. J. Microbiol. 40:388–392

    Article  CAS  Google Scholar 

  95. Wall AJ & Stratton GW (1994) The effects of chromium on the growth and activity of a pentachlorophenol-degrading bacterium. Environ. Toxicol. Wat. Qual. 9:193–201

    CAS  Google Scholar 

  96. Williams WA & May RJ (1997) Low-temperature microbial aerobic degradation of polychlorinated biphenyls in sediment. Environ. Sci. Technol. 31:3491–3496

    CAS  Google Scholar 

  97. Wu Q, Bedard DL & Wiegel J (1996) Influence of incubation temperature on the microbial reductive dechlorination of 2,3,4,6-tetrachlorobiphenyl in two freshwater sediments. Appl. Environ. Microbiol. 62:4174–4179

    CAS  Google Scholar 

  98. Wu Q, Bedard DL & Wiegel J (1997) Effect of incubation temperature on the route of microbial reductive dechlorination of 2,3,4,6-tetrachlorobiphenyl in polychlorinated biphenyl (PCB)-contaminated and PCB-free freshwater sediments. Appl. Environ. Microbiol. 63:2836–2843

    CAS  Google Scholar 

  99. Wu Q, Bedard DL & Wiegel J (1997) Temperature determines the pattern of anaerobic microbial dechlorination of Aroclor 1260 primed by 2,3,4,6-tetrachlorobiphenyl in Woods Pond sediment. Appl. Environ. Microbiol. 63:4818–4825

    CAS  Google Scholar 

  100. Yang Y & McCarty PL (1998) Competition for hydrogen within a chlorinated solvent dehalogenating anaerobic mixed culture. Environ. Sci. Technol. 32:3591–3597

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this chapter

Cite this chapter

Bossert, I.D., Häggblom, M.M., Young, L.Y. (2004). Microbial Ecology of Dehalogenation. In: Häggblom, M.M., Bossert, I.D. (eds) Dehalogenation. Springer, Boston, MA. https://doi.org/10.1007/0-306-48011-5_2

Download citation

  • DOI: https://doi.org/10.1007/0-306-48011-5_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4020-7406-6

  • Online ISBN: 978-0-306-48011-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics