Skip to main content

Biotransformation of Halogenated Pesticides

  • Chapter
  • 616 Accesses

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexander M (1961) Introduction to Soil Microbiology. John Wiley and Sons, New York

    Google Scholar 

  2. Alexander M (1965) Biodegradation: Problems of molecular recalcitrance and microbial fallability. Adv. Appl. Microbiol. 7:35–76

    CAS  Google Scholar 

  3. Alexander M (1999) Biodegradation and Bioremediation. Academic Press, San Diego

    Google Scholar 

  4. Anonymous (1986) Ground water quality in California: A review of scientific and technical issues. ESE Report No. 86-61. UCLA Environmental Science and Engineering Program

    Google Scholar 

  5. Audus LJ (1952) The decomposition of 2,4-dichlorophenoxyacetic acid and 2-methyl-4-chlorophenoxyacetic acid in the soil. J. Sci. Food Agr. 3:268–274

    CAS  Google Scholar 

  6. Baker ME (1990) Sequence similarity between Pseudomonas dihydrodioldehydrogenase, part of the gene cluster that metabolizes PCBs, and dihyrogenases involved in metabolism of ribitol and glucitol and synthesis of antibiotics and 17 b-oestradiol, testosterone and corticosterone. Biochem. J. 267:839–841

    CAS  Google Scholar 

  7. Bartha R (1971) Fate of herbicide-derived chloroanilines in soil. J. Agric. Food Chem. 19:385–387

    CAS  Google Scholar 

  8. Bartha R, Linke HAB & Pramer D (1968) Pesticide transformations: Production of chloroazobenzenes from chloroanilines. Science 161:582–583

    CAS  Google Scholar 

  9. Barton MR & Crawford RL (1988) Novel biotransformations of 4-chlorobiphenyl by a Pseudomonas sp. Appl. Environ. Microbiol. 54:594–595

    CAS  Google Scholar 

  10. Bedard DL, Haberl ML, May RJ & Brennan MJ (1987) Evidence for novel mechanisms of polychlorinated biphenyl metabolism in Alcaligenes eutrophus H850. Appl. Environ. Microbiol. 53:1103–1112

    CAS  Google Scholar 

  11. Bollag J-M & Liu S-Y (1985) Copolymerization of halogenated phenols and syringic acid. Pesticide Biochemistry and Physiology 23:261–272

    Article  CAS  Google Scholar 

  12. Brown JF Jr, Wagner RE, Bedard DL, Brennan MJ, Carnahan JC, May RJ & Tofflemire TJ (1984) PCB transformations in upper Hudson sediments. Northeast. Environ. Sci. 3:167–179

    CAS  Google Scholar 

  13. Brunner W, Sutherland FH & Focht DD (1985) Enhanced biodegradation of polychlorinated biphenyls in soil by analog enrichment and bacterial inoculation. J. Environ. Qual. 14:324–328

    Article  CAS  Google Scholar 

  14. Carpenter DF, McCormick NG, Cornell JH & Kaplan AM (1978) Microbial transformation of 14 C-labeled 2,4,6-trinitrotoluene in an activated sludge system. Appl. Environ. Microbiol. 35:949–954

    CAS  Google Scholar 

  15. Carson R (1962) Silent Spring. Houghton Miflin Co., Boston

    Google Scholar 

  16. Crawford RL & Mohn WW (1985) Microbiological removal of pentachlorophenol from soil using a Flavobacterium. Enzyme Microb. Technol. 7:617–620

    Article  CAS  Google Scholar 

  17. De Jong E, Cazemie AE, Field JA & De Bont JAM (1994) Physiological role of chlorinated aryl alcohols biosynthesized de novo by the white rot fungus Bjerkandera sp. strain BOS55. Appl. Environ. Microbiol. 60:271–277

    Google Scholar 

  18. De Jong E, Field JA, Spinnler HE, Wijnberg JBPA & De Bont JAM (1994) Significant biogenesis of chlorinated aromatics by fungi in naturalenvironments. Appl. Environ. Microbiol. 60:264–270

    Google Scholar 

  19. Dec J & Bollag J-M (1994) Dehalogenation of chlorinated phenols during binding to humus. In: Anderson TA & Coats JR (Eds) Bioremediation through Rhizosphere Technology (pp 102–111) American Chemical Society, Washington, DC

    Google Scholar 

  20. Dimond JB, Belyea GY, Kadunce RE, Getchell AS & Blease JA (1970) DDT residues in robins and earthworms associated with contaminated forest soils. Can. Entomol. 102:1122–1130

    Article  CAS  Google Scholar 

  21. Donnelly PK, Hegde RS & Fletcher JS (1994) Growth of PCB-degrading bacteria on compounds from photosynthetic plants. Chemosphere 28:981–988

    Article  Google Scholar 

  22. Focht DD & Alexander M (1971) Aerobic cometabolism of DDT analogues by Hydrogenomonas sp. J. Agric. Food Chem. 19:20–22

    Article  CAS  Google Scholar 

  23. Focht DD & Brunner W (1985) Kinetics of biphenyl and polychlorinated biphenyl metabolism in soil. Appl. Environ. Microbiol. 50:1058–1063

    CAS  Google Scholar 

  24. Focht DD, McCullar MV, Searles DB & Koh S-C (2001) Mechanisms involving aerobic biodegradation of PCBs in nature. In: Agathos S & Reineke W (Eds) Focus on Biotechnology Vol 3A. Biotechnology for the Environment: Strategy and Fundamentals. Kluwer Academic Publishers, BV Dordrecht, The Netherlands.

    Google Scholar 

  25. Gale EF (1952) The Chemical Activities of Bacteria. Academic Press, London

    Google Scholar 

  26. Gerritse J & Gottschal JC (1992) Mineralization of the herbicide 2,3,6-trichlorobenzoic acid by a co-culture of anaerobic and aerobic bacteria. FEMS Microbiol. Ecol. 101:89–98

    Article  CAS  Google Scholar 

  27. Gilbert ES & Crowley DE (1997) Plant compounds that inducepolychlorinated biphenyl biodegradation by Arthrobacter sp. strain B1B. Appl. Environ. Microbiol. 63:1933–1938

    CAS  Google Scholar 

  28. Guenzi WD & Beard WE (1967) Anaerobic biodegradation of DDT to DDD in soil. Science 156:1116–1117

    CAS  Google Scholar 

  29. Häggblom MM, Nohynek LJ & Salkinoja-Salonen MS (1988) Degradation and O-methylation of chlorinated phenolic compounds by Rhodococcus and Mycobacterium strains. Appl. Environ. Microbiol. 54:3043–3052

    Google Scholar 

  30. Harkness MR, McDermott JB, Abramowicz DA, Salvo JJ, Flanagan WP, Stephens ML, Mondello FJ, May RJ, Lobos JH, Carroll KM, M.J. B, Bracco AA, Fish KM, Warner GL, Wilson PR, Dietrich DK, Lin DT, Morgan CB & Gately WL (1993) In-situ stimulation of aerobic PCB biodegradation in Hudson River sediments. Science 259:503–507

    CAS  Google Scholar 

  31. Hay AG & Focht DD (1998) Cometabolism of 1,1-dichloro-2,2-bis(4-chlorophenyl)ethyleneby Pseudomonas acidovorans M3GY grown on biphenyl. Appl. Environ. Microbiol. 64:2141–2146

    CAS  Google Scholar 

  32. Hay AG & Focht DD (2000) Transformation of 1,1-dichloro-2,2-(4-chlorophenyl)ethane (DDD) by Ralstonia eutropha A5. FEMS Microbiol. Ecol. 31:249–253

    CAS  Google Scholar 

  33. Heitkamp MA & Cerniglia CE (1989) Polycyclic aromatic hydrocarbon degradation by a Mycobacterium sp. in microcosms containing sediment and water from a pristine ecosystem. Appl. Environ. Microbiol. 55:1968–1973

    CAS  Google Scholar 

  34. Hernandez. BS, Koh S-C, Chial M & Focht DD (1997) Terpene-utilizing isolates and their relevance to enhanced biotransformation of polychlorinated biphenyls in soil. Biodegradation 8:153–158

    Article  CAS  Google Scholar 

  35. Hickey WJ & Focht DD (1990) Degradation of mono-, di-, and trihalogenated benzoic acids by Pseudomonas aeruginosa JB2. Appl. Environ. Microbiol. 56:3842–3850

    CAS  Google Scholar 

  36. Hitch RK & Day HR (1992) Unusual persistence of DDT in some western USA soils. Bull. Environ. Contam. Toxicol. 48:259–264

    Article  CAS  Google Scholar 

  37. Hutzinger O & Veerkamp W (1981) Xenobiotic chemicals with pollution potential. In: Leisinger T, Cook AM, Hütter R & Nüsch J (Eds) Microbial Degradation of Xenobiotic and Recalcitrant Compounds (pp 3–45) Academic Press, New York

    Google Scholar 

  38. Ishida M (1972) Phytotoxic metabolites of pentachlorobenzyl alcohol. In: Matsumura F, Bousch GM & Misato T (Eds) Environmental Toxicology of Pesticides (pp 281–299) Academic Press, New York

    Google Scholar 

  39. Jensen S (1972) The PCB story. Ambio 1:123–131

    CAS  Google Scholar 

  40. Kaufman DD, Katen Y, Edwards DS & Jordon EJ (1985) Microbial adaptation and metabolism of pesticides. In: Hilton JL (Ed) Agricultural Chemicals of the Future (pp 437–451) BARC Symposium 8. Rowman and Allanheld, Totawa, NJ

    Google Scholar 

  41. Kelce WR, Stone CR, Laws SC, Gray LE, Kemppainen JA & Wilson EM (1995) Persistent DDT metabolite p,p′-DDE is a potent androgen receptor antagonist. Nature 375:581–585

    Article  CAS  Google Scholar 

  42. Khan SH (1994) Special Issue on DDT in the Tropics: Appraisal of overall programme accomplishments. J. Environ. Sci. Health Part B-Pesticides Food Contamin. Agricult. Wastes 29:205–226

    Google Scholar 

  43. Kuhm AE, Stolz A & Knackmuss H-J (1991) Metabolism of naphthalene by the biphenyl-degrading bacterium Pseudomonas paucimobilis Q1. Biodegradation 2:115–120

    Article  CAS  Google Scholar 

  44. Lajoie CA, Layton AC & Sayler GS (1994) Cometabolic oxidation of polychlorinated biphenyls in soil with a surfactant-based field application vector. Appl. Environ. Microbiol. 60:2826–2833

    CAS  Google Scholar 

  45. Lalah JO, Acholla FV & Wandiga SO (1994) Fate of 14 C-p,p’-DDT in Kenyan tropical soils. J. Environ. Sci. Health Part B-Pesticides Food Contam. Agricult. Wastes 29:57–64

    Google Scholar 

  46. Lichtenstein EP, DePew LJ & Quirk AV (1960) Persistence of DDT, aldrin, and lindane in some midwestern soils. J. Econ. Entomol. 53:136–142

    CAS  Google Scholar 

  47. Martijn A, Bakker H & Schreuder RH (1993) Soil persistence of DDT, dieldrin, and lindane over a long period. Bull. Environ. Contam. Toxicol. 51:178–184

    Article  CAS  Google Scholar 

  48. Martin JP (1946) The hormone weed killer 2,4-D. Calif. Citrograph 31:248, 264–265

    CAS  Google Scholar 

  49. Martin JP & Focht DD (1977) Biological properties of soil. In: Elliot LF & Stevenson FJ (Eds) Soils for Management of Organic Wastes and Waste Waters (pp 115–169) Soil Science Society of America, Madison, WI

    Google Scholar 

  50. Metcalf RL & Fukuto TR (1968) The comparative toxicity of DDT and analogues to susceptible and resistant houseflies and mosquitos. Bull. Wld. Hlth. Org. 38:633–647

    CAS  Google Scholar 

  51. Montgomery JH (1993) Agrochemicals Desk Reference: Environmental Data. Lewis Publishers, Boca Raton

    Google Scholar 

  52. Nadeau LJ, Menn FM, Breen A & Sayler GS (1994) Aerobic degradation of 1,1,1,-trichloro-2,2-bis(4-chlorophenyl)ethane (DDT) by Alcaligenes eutrophus A5. Appl. Environ. Microbiol. 60:51–55

    CAS  Google Scholar 

  53. Nadeau LJ, Sayler GS & Spain JC (1998) Oxidation of l,l, l-trichloro-2,2-bis(4-chlorophenyl)ethane (DDT) by Alcaligenes eutrophus A5. Arch. Microbiol. 171:44–49

    Article  CAS  Google Scholar 

  54. Nash RG & Woolson EA (1967) Persistence of chlorinated hydrocarbon insecticides in soil. Science 157:924–927

    CAS  Google Scholar 

  55. Onsager JA, Rusk HW & Butler LI (1970) Residues of aldrin, dieldrin, chlordane, and DDT in soil and sugarbeets. J, Econ. Entomol. 63:1143–1146

    CAS  Google Scholar 

  56. Pfaender FK & Alexander M (1972) Extensive microbial degradation of DDT in vitro and DDT metabolism by natural communities. J. Agric. Food Chem. 20:842–846

    Article  CAS  Google Scholar 

  57. Quensen III, JF, Tiedje JM & Boyd SA (1988) Reductive dechlorination of polychlorinated biphenyls by anaerobic microorganisms from sediments. Science 242:752–754

    CAS  Google Scholar 

  58. Quensen III, JF, Tiedje JM, Jain MK & Mueller SA (2001) Factors controlling the rate of DDE dechlorination to DDMU in Palos Verdes margin sediments under anaerobic conditions. Environ. Sci. Technol. 35:286–291

    Article  CAS  Google Scholar 

  59. Radehaus PM & Schmidt SK (1992) Characterization of a novel Pseudomonas sp. that mineralizes high concentrations of pentachlorophenol. Appl. Environ. Microbiol. 58:2879–2885

    CAS  Google Scholar 

  60. Rieger P-G & Knackmuss H-J (1995) Basic knowledge and perspectives on biodegradation of 2,4,6-trinitrotoluene and related aromatic compounds in contaminated soil. In: Spain JC (Ed), Biodegradation of Nitroaromatic Compounds (pp 1–18) Plenum Press, New York

    Google Scholar 

  61. Riseborough RW, Reiche P, Peakall DB, Hersman SG & Kirven MN (1968) Polychlorinated biphenyls in the global ecosystem. Nature 220:1098–1102

    Google Scholar 

  62. Sanseverino J, Applegate BM, King JMH & Sayler GS (1993) Plasmid-mediated mineralization of naphthalene, phenanthrene, and anthracene. Appl. Environ. Microbiol. 59:1931–1937

    CAS  Google Scholar 

  63. Steinberg SM, Pignatello JJ & Sawhney BL (1987) Persistence of 1,2-dibromoethane in soils: Entrapment in intraparticle micropores. Environ. Sci. Technol. 21:1201–1208

    Article  CAS  Google Scholar 

  64. Stott DE, Martin JP, Focht DD & Haider K (1982) Biodegradation, stabilization in humus, and incorporation into soil biomass of 2,4-D and chlorocatechol carbons. Soil Sci. Soc. Am. J. 47:66–70

    Google Scholar 

  65. Watanabe T (1963) Infective heredity of multiple drug resistance in bacteria. Bacteriol. Rev. 27:87–115

    CAS  Google Scholar 

  66. Wedemeyer G (1967) Biodegradation of dichlorodiphenyltrichloroethane: Intermediates in dichlorodiphenylacetic acid metabolism by Aerobacter aerogenes. Appl. Environ. Microbiol. 15:1494–1495

    CAS  Google Scholar 

  67. Wedemeyer G (1967) Dechlorination of 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane by Aerobacter aerogenes. Appl. Environ. Microbiol. 15:569–574

    CAS  Google Scholar 

  68. Whiteside JS & Alexander M (1960) Measurement of microbiological effects of herbicides. Weeds 8:204–213

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this chapter

Cite this chapter

Focht, D.D. (2004). Biotransformation of Halogenated Pesticides. In: Häggblom, M.M., Bossert, I.D. (eds) Dehalogenation. Springer, Boston, MA. https://doi.org/10.1007/0-306-48011-5_11

Download citation

  • DOI: https://doi.org/10.1007/0-306-48011-5_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4020-7406-6

  • Online ISBN: 978-0-306-48011-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics