Skip to main content

Bioavailability of Organohalides

  • Chapter

8. Summary

From the brief overview and analysis provided in this chapter, it is clear that bioavailability is an extremely important criterion when considering the environmental fate and persistence of HOCs. Because of the hydrophobic nature of many of the compounds in this class, their sorption onto, and sequestration into, natural organic matter matrices will more often than not govern and limit the potential intrinsic biodegradation of many of these compounds. Moreover, these same sorption and sequestration processes that affect biodegradation by microorganisms can also affect the bioavailability of these compounds to multicellular organisms. This, in turn, can have a profound impact on assessment of apparent toxicity, as well as the impact of long-term exposure to contaminated environmental matrices.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahlert WK & Uchrin CG (1990) Rapid and secondary sorption of benzene and toluene by twoaquifersolids. J. Hazard. Mater. 23:317–333

    CAS  Google Scholar 

  2. Alexander M (1981) Biodegradation of chemicals of environmental concern. Science 211:132–138

    CAS  Google Scholar 

  3. Alexander M (1995) How toxic are toxic chemicals in soil? Environ. Sci. Technol. 29:2713–2717

    Article  CAS  Google Scholar 

  4. Alexander M (1999) Biodegradation and Bioremediation, 2d ed. Academic Press, San Diego, CA

    Google Scholar 

  5. Ball WP & Roberts PV (1991) Long-term sorption of halogenated organic chemicals by aquifer materials. 2. Intraparticle diffusion. Environ, Sci. Technol. 25:1237–1249

    CAS  Google Scholar 

  6. Barkovskii AL & Adriaens P (1996) Microbial dehalogenation of historically present and freshly spiked chlorinated dioxins and diversity of dioxin-dechlorinating populations. Appl. Environ. Microbiol. 62:4556–4562

    CAS  Google Scholar 

  7. Bosma TN, Middeldorp PJM, Schraa G & Zehnder AJB (1997) Mass transfer limitation of biotransformation: Quantifying bioavailability. Environ. Sci. Technol. 31:248–252

    CAS  Google Scholar 

  8. Bossert ID & Bartha R (1986) Structure-biodegradability relationships of polycyclic aromatic hydrocarbons in soil. Bull. Environ. Contam. Toxicol. 37:490–495

    Article  CAS  Google Scholar 

  9. Bowmer KH (1991) Atrazine persistence and toxicity in two irrigated soils of Australia. Aust. J. Soil.Res. 29:339–350

    Article  CAS  Google Scholar 

  10. Brusseau ML & Rao PSC (1989) The influence of sorbate-organic matter interactions on sorption nonequilibrium. Chemosphere 18:1691–1706

    Article  CAS  Google Scholar 

  11. Calvillo YM & Alexander M (1996) Mechanism of microbial utilization of biphenyl sorbed to polyacrylic beads. Appl. Micrbiol. Biotechnol. 45:383–390

    CAS  Google Scholar 

  12. Carroll KM, Harkness MR, Bracco AA & Batcarcel RR (1994) Application of a permeant/polymer diffusional model to the desorption of polychlorinated biphenyls from Hudson River sediments. Environ. Sci. Technol. 28:253–258

    Article  CAS  Google Scholar 

  13. Chaudhry GR & Chapalamdugu S (1991) Biodegradation of halogenated organic compounds. Microbiol. Rev. 55:59–79

    CAS  Google Scholar 

  14. Chiba M & Merely HV (1968) Factors influencing extraction of aldrin, dieldrin residues from different soil types. J. Agric. Food Chem. 16:916–922

    Article  CAS  Google Scholar 

  15. Chiou CT (1989) Theoretical considerations of the partition uptake of nonionic organic compounds by soil organic matter. In: Sawhney BL, Brown K (Eds) Reactions and Movement of Organic Chemicals in Soils, (pp 1–29). Soil Science Society of America, Madison, WI

    Google Scholar 

  16. Chiou CT, Peters LJ & Fred VH (1979) A physical concept of soil-water equilibria for nonionic organic compounds. Science 206:831–832

    CAS  Google Scholar 

  17. Coates JT & Elzerman AW (1986) Desorption kinetics for selected PCB congeners from river sediments. J. Contam. Hydrol. 1:191–210

    CAS  Google Scholar 

  18. Commandeur LCM & Parsons JR (1994) Biodegradation of halogenated aromatic compounds. In: Ratledge C (Ed) Biochemistry of Microbial Degradation, (pp 423–458). Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  19. Connaughton DF, Stedinger JR, Lion LW & Shuler ML (1993) Description of time-varying desorption kinetics: Release ofnaphthalene from contaminated soils. Environ. Sci. Technol. 27:2397–2403

    Article  CAS  Google Scholar 

  20. Croker FH, Guerin WF & Boyd SA (1995) Bioavailability of naphthalene sorbed to cationic surfactant-modified smectite clay. Environ. Sci. Technol. 29:2953–2958

    Google Scholar 

  21. DiToro DM & Horzempa LM (1982) Reversible and resistant components of PCB adsorption-desorption isotherm. Environ. Toxicol. Chem. 16:594–602

    CAS  Google Scholar 

  22. Freeman DH & Cheung LS (1981) A gel partition model for organic desorption from a pond sediment. Science 214:790–792

    CAS  Google Scholar 

  23. Fu G, Kan AT & Tomson MB (1994) Adsorption and desorption hysteresis of PAHs in surface sediment. Environ. Toxicol. Chem. 13:1559–1567

    CAS  Google Scholar 

  24. Fu MH, Mayton H & Alexander M (1994) Desorption and biodegradation of sorbed styrene in soil and aquifer soilds. Environ. Toxicol. Chem. 13:749–753

    CAS  Google Scholar 

  25. Garbarini DR & Lion LW (1986) Influence of the nature of soil organics on the sorption of toluene and trichloroethylene. Environ. Sci. Technol. 20:1263–1269

    Article  CAS  Google Scholar 

  26. Gribble GW (1994) The natural production of chlorinated compounds. Environ. Sci. Technol. 28:310A–319A

    CAS  Google Scholar 

  27. Guerin WF & Boyd SA (1992) Differential bioavailability of soil-sorbednaphthaleneto two bacterial species. Appl. Environ. Microbiol. 58:1142–1152

    CAS  Google Scholar 

  28. Guha S & Jaff’e PR (1996) Bioavailability of hydrophobic compounds partitioned into the micellar phase of nonionic surfactants. Environ. Sci. Technol. 30:1382–1391

    CAS  Google Scholar 

  29. Hardman DJ (1991) Biotransformation of halogenated compounds. Crit. Rev. Biotechnol. 11:1–40

    CAS  Google Scholar 

  30. Harkey GA, van Hoof PL & Landrum PF (1995) Bioavailability of polycyclic aromatic hydrocarbons from a historically contaminated sediment core. Environ. Toxicol. Chem. 14:1551–1560

    CAS  Google Scholar 

  31. Harmansson M & Marshall KC (1985) Utilization of surface localized substrate by non-adhesive marine bacteria. Microb. Ecol. 11:91–105

    Google Scholar 

  32. Harms H & Zehnder AJB (1995) Bioavailability of sorbed 3-chlorodibenzofuran. Appl. Environ. Microbiol. 61:27–33

    CAS  Google Scholar 

  33. Harris CR (1966) Influence of soil type on the activity of insecticides in soil. J. Econ. Entomol. 59:1221–1225

    CAS  Google Scholar 

  34. Hassett JJ & Banwart WL (1989) The sorption of nonpolar organics by soils and sediments. In: Sawhney BL, Brown K (Eds) Reactions and Movement of Organic Chemicals in Soils, (pp 31–45). Soil Science Society of America, Madison, WI

    Google Scholar 

  35. Hatzinger PB & Alexander M (1995) Effect of aging of chemicals in soil on their biodegradability and extractability. Environ. Sci. Technol. 29:537–545

    CAS  Google Scholar 

  36. Kan AT, Fu G & Tomson MB (1994) Adsorption/desorption hysteresis in organic pollutants and soil/sediment interaction. Environ. Sci. Technol. 28:859–867

    Article  CAS  Google Scholar 

  37. Karickhoff SW (1980) Sorption kinetics of hydrophobic pollutants in natural sediments. In: Baker RA (Ed) Contaminants and Sedimants: Analysis, Chemistry, Biology. Vol 2, (pp 193–205). Ann Arbor Science Publishers, Ann Arbor, MI

    Google Scholar 

  38. Karickhoff SW & Morris KR (1985) Sorption dynamics of hydrophobic pollutants in sediment suspensions. Environ. Toxicol. Chem. 4:469–479

    CAS  Google Scholar 

  39. Kelsey JW & Alexander M (1997) Declining bioavailability and inappropriate estimation of risk of persistent compounds. Environ. Toxicol. Chem. 16:582–585

    Article  CAS  Google Scholar 

  40. Khan SU (1973) Equilibrium and kinetics studies of the adsorption of 2,4-D and picloram on humic acid. Can. J. Soil Sci. 53:429–434

    CAS  Google Scholar 

  41. Kile DE, Chiou CT, Zhou H, Li H & Xu O (1995) Partition of nonpolar organic pollutants from water to soil and sediment organic matters. Environ. Sci. Technol. 29:1401–1406

    Article  CAS  Google Scholar 

  42. Landrum PF, Eadie BJ & Faust WR (1992) Variation in the bioavailability of polycyclic aromatic hydrocarbons to the amphipod Diporeia (spp) with sediment aging. Environ. Toxicol. Chem. 11:1197–1208

    CAS  Google Scholar 

  43. Laor Y, Strom PF & Farmer WJ (1996) The effect of sorption on phenanthrene bioavailability. J. Biotechnol. 51:227–234

    Article  CAS  Google Scholar 

  44. Lichtenstein EP, DePew LJ, Eshbaugh EL & Sleesman JP (1960) Persistence of DDT, aldrin, and lindane in some midwestern soils. J. Econ. Entomol. 53:136–142

    CAS  Google Scholar 

  45. Luthy RG, Aiken GR, Brusseau ML, Cunningham SD, Gschwend PM, Pignatello JJ, Reinhard M, Traina SJ, Weber WJ Jr & Westall JC (1997) Sequestration ofhydrophobic organic contaminants by geosorbents. Environ. Sci. Technol. 31:3341–3347

    Article  CAS  Google Scholar 

  46. Madsen EL, Mann CL & Bilotta SE (1996) Oxygen limitations and aging as explanations for the field persistence of naphthalene in coal tar-contaminated surface sediments. Environ. Toxicol. Chem. 15:1876–1882

    Article  CAS  Google Scholar 

  47. Manilal VB & Alexander M (1991) Factors affecting the microbial degradation of phenanthrene in soil. Appl. Microbiol. Biotechnol. 35:401–405

    Article  CAS  Google Scholar 

  48. Maurice PA & Namjesnik-Dejanovic K (1999) Aggregate structure of sorbed humic substances observed in aqueous solution. Environ. Sci. Technol. 33:1538–1541

    Article  CAS  Google Scholar 

  49. Mayer LM (1994) Relationships between mineral surfaces and organic carbon concentrations in soils and sediments. Chem. Geol. 114:347–363

    Article  CAS  Google Scholar 

  50. Mayer LM (1994) Surface area control of organic accumulation in continental shelf sediments. Geochim. Cosmochim. Acta 58:1271–1284

    Article  CAS  Google Scholar 

  51. McCall PJ & Agin GL (1985) Desorption kinetics of picloram as affected by residence time in the soil. Environ. Toxicol. Chem. 4:37–44

    CAS  Google Scholar 

  52. Mott SC, Groenevelt PH & Voroney RP (1990) Biodegradation of a gas oil applied to aggregates of different sizes. J. Environ. Qual. 19:257–260

    Article  CAS  Google Scholar 

  53. Nam K & Alexander M (1998) Role of nanoporosity and hydrophobicity in sequestration and bioavailability: Tests with model solids. Environ. Sci. Technol. 32:71–74

    CAS  Google Scholar 

  54. Nash RG & Woolson EA (1967) Persistence of chlorinated hydrocarbon insecticides in soils. Science 157:924–927

    CAS  Google Scholar 

  55. Ogram AV, Jessup RE, Ou LT & Rao PSC (1985) Effects of sorption on biological degradation rates of (2,4-dichloro-phenoxy)acetic acids in soils. Appl. Environ. Microbiol. 49:582–587

    CAS  Google Scholar 

  56. Onsager JA, Rusk HW & Butler LI (1970) Residues of aldrin, dieldrin, chlordane, and DDT in soil and sugarbeets. J. Econ. Entomol. 63:1143–1146

    CAS  Google Scholar 

  57. Pavlostathis SG & Jaglal K (1991) Desorptive behavior of trichloroethylene in contaminated soil. Environ. Sci. Technol. 25:274–279

    Article  CAS  Google Scholar 

  58. Pavlostathis SG & Mathavan GN (1992) Desorption kinetics of selected volatile organic compounds from field contaminated soils. Environ. Sci. Technol. 26:532–538

    Article  CAS  Google Scholar 

  59. Peterson JR, Adams Jr. RS & Cutkomp LK (1971) Soil properties influencing DDT bioactivity. Soil. Sci. Soc. Am. Proc. 35:71–78

    Google Scholar 

  60. Pignatello JJ (1989) Sorption dynamics of organic compounds in soils and sediments. In: Sawhney BL, Brown K (Eds) Reactions and Movement of Organic Chemicals in Soils, (pp 45–80). Soil Science Society of America, Madison, WI

    Google Scholar 

  61. Pignatello JJ (1990) Slowly reversible sorption of aliphatic halocarbons in soils. I. Formation of residual fractions. Environ. Toxicol. Chem. 9:1107–1115

    CAS  Google Scholar 

  62. Pignatello JJ (1990) Slowly reversible sorption of aliphatic halocarbons in soils. II. Mechanistic aspects. Environ. Toxicol. Chem. 9:1117–1126

    CAS  Google Scholar 

  63. Pignatello JJ & Huang LQ (1991) Sorptive reversibility of atrazine and metolachlor residues in field soil samples. J. Environ. Qual. 20:222–228

    Article  CAS  Google Scholar 

  64. Pignatello JJ & Xing B (1996) Mechanisms of slow sorption of organic chemicals to natural particles. Environ. Sci. Technol. 30:1–10

    Article  CAS  Google Scholar 

  65. Pignatello JJ, Ferrandino FJ & Huang LQ (1993) Elution of aged and freshly added herbicides from a soil. Environ. Sci. Technol. 27:1563–1571

    Article  CAS  Google Scholar 

  66. Rao PSC & Davidson JM (1980) Estimation of pesticide retention and transformation parameters required in nonpopint source pollution models. In: Overcash MR, Davidson JM (Eds) Environmental Impact of Nonpoint Source Pollution, (pp 23–67). Ann Arbor Science Publishers, Ann Arbor, MI

    Google Scholar 

  67. Remberger M, Allard A-S & Neilson AH (1986) Biotransformation of chloroguaiacols and chloroveratroles in sediments. Appl. Environ. Microbiol. 51:552–558

    CAS  Google Scholar 

  68. Rijnaarts HHM, Bachmann A, Jumelet JC & Zehnder AJB (1990) Effect of desorption and intraparticle mass transfer on the aerobic biomineralization of hexachlorocyclohexane in a contaminated calcareous soil. Environ. Sci. Technol. 24:1349–1354

    Article  CAS  Google Scholar 

  69. Robinson KG, Farmer WS & Novak JT (1990) Availability of sorbed toluene in soils for biodegradation by acclimated bacteria. Wat. Res. 24:345–350

    Article  CAS  Google Scholar 

  70. Sandoli RL, Ghiorse WC & Madsen EL (1996) Regulation of microbial phenanthrene mineralization in sediment samples by sorbent-sorbate contact time, inocula and gamma irradiation-induced sterilization artifacts. Environ. Toxicol. Chem. 15:1901–1907

    Article  CAS  Google Scholar 

  71. Scow KM & Alexander M (1992) Effect of diffusion on the kinetics of biodegradation: Experimental results with synthetic aggregates. Soil Sci. Soc. Am. J. 41:340–342

    Google Scholar 

  72. Scribner SL, Benzing TR, Sun S & Boyd SA (1992) Desorption and bioavailability of aged simazine residues in soil from a continuous corn field. J. Environ. Qual. 21:115–120

    CAS  Google Scholar 

  73. Shelton DR & Parkin TB (1991) Effect of moisture on sorption and biodegradation of carbofuran in soil. J. Agric. Food Chem. 39:2063–2068

    Article  CAS  Google Scholar 

  74. Shimp RJ & Young RL (1988) Availability of organic chemicals for biodegradation in settled bottom sediments. Ectoxicol. Environ. Safety 15:31–45

    CAS  Google Scholar 

  75. Slater JH, Bull AT & Hardman DJ (1995) Microbial dehalogenation. Biodegradation 6:181–189

    Article  CAS  Google Scholar 

  76. Steinberg SM, Pignatello JJ & Sawhney BL (1987) Persistence of 1,2-dibromoethane in soils: Entrapment in intraparticle micropores. Environ. Sci. Technol. 21:1201–1208

    Article  CAS  Google Scholar 

  77. Torrents A, Jayasundera S & Schmidt WJ (1997) Influence of the polarity of organic matter on the sorption of acetamide pesticides. J. Agric. Food Chem. 45:3320–3325

    Article  CAS  Google Scholar 

  78. Varanasi U, Reichert WL, Stein JE, Brown DW & Sanborn HR (1985) Bioavailability and biotransformation of aromatic hydrocarbons in benthic organisms exposed to sediment from an urban estuary. Environ. Sci. Technol. 19:836–841

    Article  CAS  Google Scholar 

  79. Volkering F, Breure AM, Strekenburg A & van Andel JG (1992) Microbial degradation of polycyclic aromatic hydrocarbons: effect of substrate availability on bacterial growth kinetics. Appl. Microbiol. Biotechnol. 40:535–540

    Google Scholar 

  80. Weber JB, Best JA & Gonese JU (1993) Bioavailability and bioactivity of sorbed organic chemicals. In: Luxmore RJ, Peterson GA (Eds) Sorption and Degradation of Pesticides and Organic Chemicals in Soil, (pp 153–196). Soil Science Society of America, Madison, WI

    Google Scholar 

  81. Weber, Jr. WJ & Huang W (1996) A distributed reactivity model for sorption by soils and sediments. 4. Intraparticle heterogeneity and phase-distribution relationships under nonequilibrium conditions. Environ. Sci. Technol. 30:881–888

    CAS  Google Scholar 

  82. Weissenfels WD, Klewer H & Langhoff J (1992) Adsorption of polycyclic aromatic hydrocarbons (PAHs) by soil particles: influence on biodegradability and biotoxicity. Appl. Microbiol. Biotechnol. 36:689–696

    Article  CAS  Google Scholar 

  83. Wershaw RL (1989) Application of a membrane model to the sorptive interactions of humic substances. Environ. Health Perspect. 83:191–203

    CAS  Google Scholar 

  84. White JC & Alexander M (1996) Reduced biodegradability of desorption-resistantfractions of polycyclic aromatic hydrocarbons in soil and aquifer solids. Environ. Toxicol. Chem. 15:1973–1978

    Article  CAS  Google Scholar 

  85. Wodzinski RS & Coyle JE (1974) Physical state ofphenanthrenefor utilization by bacteria. Appl. Microbiol. 27:1081–1084

    CAS  Google Scholar 

  86. Wszolek PC & Alexander M (1979) Effect of desorption rate on the biodegradation of N-alkylamines bound to clay. J. Agric. Food Chem. 27:410–414

    Article  Google Scholar 

  87. Wu S & Gschwend PM (1986) Sorption kinetics of hydrophobic organic compounds to natural sediments and soils. Environ. Sci. Technol. 20:717–725

    Article  CAS  Google Scholar 

  88. Xing B & Pignatello JJ (1996) Time-dependent isotherm shape of organic compounds in soil organic matter: Implications for sorption mechanism. Environ. Toxicol. Chem. 15:1282–1288

    Article  CAS  Google Scholar 

  89. Xing B, Pignatello JJ & Gigliotti B (1996) Competitive sorption between atrazine and other organic compounds in soils and model sorbents. Environ. Sci. Technol. 30:2432–2440

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this chapter

Cite this chapter

Nam, K., Kukor, J.J. (2004). Bioavailability of Organohalides. In: Häggblom, M.M., Bossert, I.D. (eds) Dehalogenation. Springer, Boston, MA. https://doi.org/10.1007/0-306-48011-5_10

Download citation

  • DOI: https://doi.org/10.1007/0-306-48011-5_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4020-7406-6

  • Online ISBN: 978-0-306-48011-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics