Advertisement

Continuous-time sigma-delta modulation

Chapter
  • 316 Downloads
Part of the The International Series in Engineering and Computer Science book series (SECS, volume 634)

Keywords

Quantization Error Quantization Noise Signal Band Radio Receiver Noise Transfer Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [3.1]
    Cutler, C.C., “Transmission system employing quantization,” U.S. Patent No. 2,927,962, March 8, 1960 (filed 1954).Google Scholar
  2. [3.2]
    Norsworthy, S.R., R. Schreier, G.C. Temes, Delta-sigma data. converters — Theory, design, and simulation, IEEE Press, New York, 1997.Google Scholar
  3. [3.3]
    Inose, H., Y. Yasuda, and J. Murakami, “A telemetering system by code modulation-Σ-Δ modulation,” IRE Trans. Space Electron. Telemetry, Vol. SET-8, pp. 204–209, Sept. 1962.Google Scholar
  4. [3.4]
    Jager, F. de, “Delta modulation — a method of PCM transmission using the one unit code,” Philips Res. Rep., Vol. 7, pp. 442–466, 1952.Google Scholar
  5. [3.5]
    Bennett, W.R., “Spectra of quantized signals,” Bell Syst. Tech. J., Vol. 27, pp. 446–472, Jul. 1948.Google Scholar
  6. [3.6]
    Zwan, E.J. van der, E.C. Dijkmans, “A 0.2 mW CMOS ΣΔ modulator for speech coding,” IEEE J. Solid-State Circuits, Vol. 31, pp. 1873–1880, Dec. 1996.Google Scholar
  7. [3.7]
    Schuchman, L., “Dither signals and their effect on quantization noise,” IEEE Trans. Commun. Tech., Vol. COM-12, pp. 162–165, Dec. 1964.Google Scholar
  8. [3.8]
    LaMay, J.L., and H. T. Bogard, “How to obtain maximum practical performance from state-of-the-art delta-sigma analog-to-digital converters,” IEEE Trans. Instr. Meas., Vol. 41, pp. 861–867, Dec. 1992.Google Scholar
  9. [3.9]
    Breems, L.J., E.J. van der Zwan, E.C. Dijkmans and J.H. Huijsing, “A 1.8 mW CMOS ΣΔ Modulator with Integrated Mixer for A/D Conversion of IF Signals,” ISSCC Dig. Tech. Papers, pp. 64–65, Feb. 1999.Google Scholar
  10. [3.10]
    Breems, L.J., E.J. van der Zwan, J.H. Huijsing, “Design for Optimum Performance-to-Power Ratio of a Continuous-time ΣΔ Modulator,” Proc. of ESSCIRC, pp. 318–321, Sep. 1999.Google Scholar
  11. [3.11]
    Adams, R.W., “Design and implementation of an audio 18-bit analog-to-digital converter using oversampling techniques,” J. Audio Eng. Soc., Vol. 34, pp. 153–166, Mar. 1986.Google Scholar
  12. [3.12]
    Westra, J.R., High-performance oscillators and oscillator systems. Ph.D. thesis, Delft University of Technology, 1998.Google Scholar
  13. [3.13]
    Plassche, R. van der, Integrated analog-to-digital and. digital-to-analog converters, Kluwer Academic Publishers, Dordrecht, 1994.Google Scholar
  14. [3.14]
    Kirk, C.-H, Chao, Shujaat, N., Wai L. Lee, and Charles G. Sodini, “A higher order topology for interpolative modulators for oversampling A/D converters,” IEEE Trans. on Circuits and. Systems, Vol. 37, pp. 309–318, Mar. 1990.Google Scholar
  15. [3.15]
    Bhagawati, P.A., K. Shenoi, “Design methodology for ΣΔ,” IEEE. Trans. on Communications, Vol. 31, pp. 360–370, Mar. 1983.Google Scholar
  16. [3.16]
    Atherton, D.P., Stability of non-linear systems, Research Studies press; Wiley, ISBN 0-387-94582-2, 1981.Google Scholar
  17. [3.17]
    Ardalan, S.H., and J.J. Paulos, “Analysis of nonlinear behavior in delta-sigma modulators,” IEEE Trans. Circuits Sys., Vol. 34, pp. 593–603, June 1987.Google Scholar
  18. [3.18]
    Hoffelt, M.H., “On the stability of a 1-bit quantized feedback system,” Proc. of ICASSP, pp. 844–848, 1979.Google Scholar
  19. [3.19]
    Engelen, J. van, Stability analysis and design of bandpass sigma. delta modulators, Ph.D. thesis, Technische Universiteit Eindhoven, 1999.Google Scholar
  20. [3.20]
    Jantzi, S.A., K.W. Martin, A.S. Sedra, “Quadrature bandpass ΣΔ modulation for digital radio,” IEEE J. Solid-State Circuits, Vol. 32, pp. 1935–1950, Dec. 1997.CrossRefGoogle Scholar
  21. [3.21]
    Jantzi, S.A., K. Martin, A.S. Sedra, “A quadrature bandpass delta-sigma modulator for digital radio,” ISSCC Dig. Tech. Papers, pp. 216–217, Feb. 1997.Google Scholar
  22. [3.22]
    Jantzi, S.A., K.W. Martin and A.S. Sedra, “Mismatch effects in complex bandpass ΣΔ modulators,” Proc. of ISCAS, Vol. 1, pp. 227–230, May 1996.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Personalised recommendations