Skip to main content

Water vapor vertical profile by Raman lidar in the free troposphere from the Jungfraujoch Alpine Station

  • Chapter
Climatic Change: Implications for the Hydrological Cycle and for Water Management

Abstract

The water vapor content in the atmosphere is an important criteria for the validation of predictive results obtained from global scale atmospheric models. Due to its non-homogeneous distribution in the troposphere, both in space and time, the water vapor content in the atmosphere may still be considered today as the largest uncertainty in our understanding of the earth radiation budget. This paper presents new results obtained by Raman lidar measurements as one of the attractive method for long-term continuous observation of the water vapor content in the atmosphere. A powerful pulsed laser beam at 355 nm is emitted and the inelastic back-scatter signals (Raman shift) from nitrogen and water vapor are recorded respectively. The ratio between the water vapor Raman shifted wavelength at 408nm and the nitrogen at 387nm gives a first estimate of the relative water vapor mixing ratio with good vertical resolution. The absolute water vapor vertical profiles are retrieved using an additional in situexternal reference value directly obtained from a local meteorological station. The Raman lidar system, operated at an altitude of 3′580 m above see level in the Swiss Alpine region at the Jungfraujoch research station, is presented, and two typical water vapor vertical profiles obtained in clear sky and in cloudy conditions are discussed and directly compared with radio sounding measurements performed by the Swiss Meteorological Station from Payerne (80 km West). A first estimate of the statistical (signal to noise) and systematic error sources is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Houghton, J.T., G.J. Jenkins, and Ephraim J.J. (Eds.), “Climate Change: The IPCC Scientific Assessment, Intergovernmental Panel on Climate Change”, U.K. Meteorological Office, Bracknell, England, (1990).

    Google Scholar 

  2. Chahine, M.T., “The hydrological cycle and its influence on climate”, Nature, 359, 373, (1992).

    Article  Google Scholar 

  3. Starr, D.O. and Melfi, S.H. (Eds.), “The Role of Water-vapor in Climate: A Strategic Research Plan for the Proposed GEWEX” , Water-vapor Project (GVaP), NASA Conf. Publ., CP-3120, 50 pp., (1991).

    Google Scholar 

  4. England, M.N., Ferrare, R.A., Melfi, S.H., Whiteman, D.N. and Clark, T.A. “Atmospheric water-vapor measurements: Comparison of microwave radiometry and lidar”,. J. Geophys. Res., 97, 899, (1992).

    Article  Google Scholar 

  5. Melfi, S.H., and Whitemann, D.N., “ Observation of lower-atmospheric moisture structure and its evolution using a Raman lidar”, Bulletin of the American Meteorological Society, 66(10), pp. 1288–1292, (1985).

    Article  Google Scholar 

  6. Ansmann, A., Riebessel, M., Wandinger,U., et al., “Combined Raman elastic-backscatter LIDAR for vertical profiling of moisture, aerosols extinction, backscatter and lidar ratio”, Applied Physics B:Photonics and Laser chemistry, vol. 55, pp. 18–28 (1992).

    Article  Google Scholar 

  7. Lazzarotto, B., Frioud, M., Larchevêque, G., Mitev, V., Quaglia, P., Simeonov, V., Thompson, A., van den Bergh, H., and Calpini B. “Ozone and water vapor measurements by Raman lidar in the planetary boundary layer: error sources and field measurements” in press, Applied Optics, (2001).

    Google Scholar 

  8. Melfi, S.H., Lawrence, J.D., and McCormick, “Observation of Raman Scattering by water vapor in the atmosphere”, Appl. Phys. Letters, 15(9), pp. 295–297 (1969).

    Article  Google Scholar 

  9. Whitemann, D.N., Melfi S.H., and Ferrare R. A., “ Raman lidar system for the measurement of the water vapor content and aerosols in the Earth’s atmosphere”, Appl.Opt. 31, 3068–3082 (1992).

    Article  Google Scholar 

  10. Keckhut, P., Hauchecorne, A., and Chanin, M. L. “A critical review of the database acquired for the long-term surveillance of the middle atmosphere of the French Rayleigh lidars,” J. Atm. Ocean. Techn., 10, 850–867, (1993).

    Article  Google Scholar 

  11. Platt, C. M. R., Scott, J. C., and Dilley, A. C. “Remote sensing of high clouds. Part VI: Optical properties of midlatitude and tropical cirrus,” J. Atm. Sci. 44, 729––747, (1987).

    Article  Google Scholar 

  12. Sherlock, V., et al. “Implementation and validation of a Raman lidar measurement of middle and upper tropospheric water-vapor”, Applied Optics, vol.38, No 27, (1999).

    Google Scholar 

  13. Kwon, S.A. et al., “Vertical distribution of atmospheric particles and water-vapor densities in the free troposphere”, Atmospheric Environment, vol.31, No. 10, (1997).

    Article  Google Scholar 

  14. Sherlock, V., et al. “Methodology for the independent calibration of Raman backscatter water-vapor lidar system”, Applied Optics, vol.38, No 27, (1999).

    Google Scholar 

  15. Hair, J.W. “A high spectral resolution Lidar at 532nm for simultaneous measurement of atmospheric state and aerosols profiles using iodine vapor filters”, thesis, (1999).

    Google Scholar 

  16. Lazzarotto B. , Simeonov V. , Quaglia P. , Larchevêque G. , van den Bergh H. , and Calpini B. “A Raman Differential Absorption Lidar for Ozone and Water-vapor Measurement in the Lower Troposphere”; Intern. J. of Env. An. Chem. , 74 (1–4), pp. 255–261, (1999).

    Article  Google Scholar 

  17. Quaglia, P., Balin, I., Larchevêque, G., Simeonov, V., van den Bergh, H., and. Calpini B. “A new LIDAR station at the Jungfraujoch alpine station for long term monitoring of aerosols, temperature and water vapor”, Proclim - 1st Global Swiss Change Day, Berne, (April, 2000).

    Google Scholar 

  18. Collis, R.T.H., and Russell, P.B., “Lidar measurement of particles and gases by elastic backscattering and differential absorption”, Laser monitoring of the atmosphere, E.D. Hinkley ed., Spinger-Verlag, 71–151, (1976).

    Chapter  Google Scholar 

  19. Baltensperger, U., Gäggeler, H.W., Jost, D.T., Lugauer, M., Schwikowski, M.., Weingartner, E., and Seibert, P., “Aerosol climatology at the high-alpine site Jungfraujoch, Switzerland”, J. Geo. Research, D102, pp. 19707–19715, (1997).

    Article  Google Scholar 

  20. Heimo et al. : “The Swiss atmospheric radiation monitoring network CHARM”, proc. WMO Technical Conference on Meteorological and Environmental Instruments and Methods of Observation (TECO-98), Casablanca, Morocco, (1998).

    Google Scholar 

  21. Delbouille L., Roland, G.:“ High resolution solar and atmospheric spectroscopy from the Jungfraujoch high altitude station”, Opt. Eng. , 34, pp. 2736–2739, (1995).

    Article  Google Scholar 

  22. De Mazière, M., van Roozendael, M., Hermans, C., Simon, P.C., Demoulin, P., Roland, G.: “Quantitative evaluation of the post-Pinatubo NO2 reduction and recovery, based on 10 years of FTIR and UV-visible spectroscopic measurements at the Jungfraujoch”, Journal of Geophysical. Research, Vol. 103, pp. 10.849–10.858, (1998).

    Article  Google Scholar 

  23. Siegenthaler A., Lezeaux O., Feist D.G., and Kämpfer N. : “First water vapor measurements at 183 GHz from the high alpine station Jungfraujoch”, in press, IEEE Transactions on Geoscience and Remote sensing.(2001).

    Google Scholar 

  24. Arshinov Y., Bobrovnikov, S.M.., Zuev, V. E., and Mitev, V. M. : “Atmospheric temperature measurements using a pure rotational raman lidar”, Applied Optics, 22, pp. 2984–2990, (1983).

    Article  Google Scholar 

  25. http://www.ndsc.ncep.noaa.gov/

  26. Schoulepnikoff, L., van den Bergh, H., Mitev, V., and Calpini, B. : “Tropospheric air pollution monitoring: Lidar”, Encyclopedia of Environmental Analysis and Remediation, John Wiley & Sons, Ed. Robert A. Meyers, Vol. 8, pp 4873–4909, (1998).

    Google Scholar 

  27. Newell, R.E., Thouret, V., Cho, J., Stoller, P., Marenco, A., and Smit, H.G.: “Ubiquity of quasi-horizonthal layers in the troposphere”, Nature, Vol 398, pp. 316–319, (1999).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Balin, I., Larchevêque, G., Quaglia, P., Simeonov, V., Van Den Bergh, H., Calpini, B. (2002). Water vapor vertical profile by Raman lidar in the free troposphere from the Jungfraujoch Alpine Station. In: Beniston, M. (eds) Climatic Change: Implications for the Hydrological Cycle and for Water Management. Advances in Global Change Research, vol 10. Springer, Dordrecht. https://doi.org/10.1007/0-306-47983-4_7

Download citation

  • DOI: https://doi.org/10.1007/0-306-47983-4_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5944-4

  • Online ISBN: 978-0-306-47983-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics