Skip to main content
  • 827 Accesses

Abstract

Frequency synthesizers are used to generate the local oscillator (LO) signal in transceiver systems. The frequency of the LO signal determines which RF channel will be received and to which RF channel the base-band information will be transferred, before being transmitted by the PA-antenna combination. In other words, the frequency synthesizer operates as the transceiver’s tuning system; in practice, the frequency synthesizer is based on a phase-locked loop (PLL) control system. Important design aspects which need to be taken into account are the spectral purity of the PLL output signal and the power dissipation of the PLL building blocks. This chapter focuses on the spectral purity performance of PLL frequency synthesizers, and on the circuit implementations of low-power programmable frequency dividers and high operation frequency phase-frequency detector/charge-pump combinations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F.M. Gardner, Phase-lock Techniques, Wiley, New York, 2nd. edition, 1979.

    Google Scholar 

  2. U.L. Rohde, RF and Microwave Digital Frequency Synthesizers, Wiley, New York, 1997.

    Google Scholar 

  3. B. Miller and B. Conley, “A Multi-modulator Fractional Divider,” in Annual Frequency Control Symposium, 1990, vol. 44, pp. 559–567.

    Google Scholar 

  4. B. Miller and R.J. Conley, “A Multiple Modulator Fractional Divider,” IEEE Transactions on Instrumentation and Measurement, vol. 40,no. 3, pp. 578–583, June 1991.

    Article  Google Scholar 

  5. T.A.D. Riley, M.A. Copeland and T.A. Kwasniewski, “Delta-Sigma Modulation in Fractional-N Frequency Synthesis,” IEEE Journal of Solid-State. Circuits, vol. 28,no. 5, pp. 553–559, May 1993.

    Article  Google Scholar 

  6. H. Adachi et al., “High-Speed Frequency-Switching Synthesizer Using Fractional N Phase-Locked Loop,” Electronics and Communication in. Japan (IEICE Transactions on Electronics), Part 2, vol. 77,no. 4, pp. 20–28, 1994.

    MathSciNet  Google Scholar 

  7. M.H. Perrot, T.L. Tewksbury III and C.G. Sodini, “A 27-mW CMOS Fractional-N Synthesizer Using Digital Compensation for 2.5-Mb/s GFSK Modulation,” IEEE Journal of Solid-State Circuits, vol. 32,no. 12, pp. 2048–2060, Dec. 1997.

    Google Scholar 

  8. N.M. Filiol et al., “An Agile ISM Band Frequency Synthesizer with Builtin GMSK Data Modulation,” IEEE Journal of Solid-State Circuits, vol. 33,no. 7, pp. 998–1008, July 1998.

    Article  Google Scholar 

  9. L. Sun et al., “Reduced Complexity, High Performance Digital Delta-Sigma Modulator for Fractional-N Frequency Synthesis,” in IEEE International. Symposium on Circuits and Systems (ISCAS), 1999, vol. 2, pp. 152–155.

    MATH  Google Scholar 

  10. C.S. Vaucher, “An Adaptive PLL Tuning System Architecture Combining High Spectral Purity and Fast Settling Time,” IEEE Journal of Solid-State. Circuits, vol. 35,no. 4, pp. 490–502, Apr. 2000.

    Article  Google Scholar 

  11. C.S. Vaucher, Architectures for RF Frequency Synthesizers, Ph.D. Thesis, University of Twente, The Netherlands, 2001.

    Google Scholar 

  12. C.S. Vaucher and K. Kianush, “A Global Car-radio IC with Inaudible Frequency Jumps,” in IEEE International Conf. on Consumer Electronics. (ICCE), 1998, vol. 17, pp. 218–219.

    Google Scholar 

  13. B. Razavi, “A 900MHz/1.8GHz CMOS Transmitter for Dual-Band Applications,” IEEE Journal of Solid-State Circuits, vol. 34,no. 5, pp. 573–579, May 1999.

    Article  Google Scholar 

  14. H. Taub and D.L. Schilling, Principles of Communication Systems, McGraw-Hill, New York, 2nd. edition, 1986.

    Google Scholar 

  15. W.P. Robins, Phase Noise in Signal Sources, 9. IEE Telecomm., London, 2nd edition, 1996.

    Google Scholar 

  16. B. Razavi, RF Microelectronics, Prentice Hall, New York, 1998.

    Google Scholar 

  17. Y. Sumi et al., “PLL Synthesizer with Multi-Programmable Divider and Multi-Phase Detector,” IEEE Transactions on Consumer Electronics, vol. 45,no. 3, pp. 950–955, Aug. 1999.

    Article  MathSciNet  Google Scholar 

  18. M. Soyuer and R.G. Meyer, “Frequency Limitations of a Conventional Phase-Frequency Detector,” IEEE Journal of Solid-State Circuits, vol. 25,no. 4, pp. 1019–1022, Aug. 1990.

    Article  Google Scholar 

  19. B. Razavi, Monolithic Phase-locked Loops and Clock Recovery Circuits, IEEE Press, New York, 1996.

    Google Scholar 

  20. F.M. Gardner, “Charge-Pump Phase-lock Loops,” IEEE Transactions on. Communications, vol. 28,no. 11, pp. 1849–1858, Nov. 1980.

    Article  Google Scholar 

  21. A.K. Hadjizada et al., “TV and TVSAT Mixer-oscillator PLL IC,” IEEE. Transactions on Consumer Electronics, vol. 41,no. 3, pp. 942–945, Aug. 1995.

    Article  Google Scholar 

  22. Philips Semiconductors, TSA5059 Datasheet — 2.7 GhzI2C-bus controlled. low phase noise frequency synthesizer, 2000.

    Google Scholar 

  23. D. Mijuskovic et al., “Cell-Based Fully Integrated CMOS Frequency Synthesizers,” IEEE Journal of Solid-State Circuits, vol. 29,no. 3, pp. 271–279, Mar. 1994.

    Article  Google Scholar 

  24. J. Craninckx and M. Steyaert, “A Fully Integrated CMOS DCS-1800 Frequency Synthesizer,” IEEE Journal of Solid-State Circuits, vol. 33,no. 12, pp. 2054–2065, Dec. 1998.

    Article  Google Scholar 

  25. W. Rhee, “Design of High-Performance CMOS Charge Pumps in Phase-Locked Loops,” in IEEE International Symposium on Circuits and Systems. (ISCAS), 1999, vol. 2, pp. 545–548.

    Google Scholar 

  26. C.S. Vaucher and D. Kasperkovitz, “A Wide-Band Tuning System for Fully Integrated Satellite receivers,” IEEE Journal of Solid-State Circuits, vol. 33,no. 7, pp. 987–997, July 1998.

    Article  Google Scholar 

  27. V. F. Kroupa, “Noise Properties of PLL systems,” IEEE Transactions on. Communications, vol. 30,no. 10, pp. 2244–2552, Oct. 1982.

    Article  Google Scholar 

  28. D.E. Phillips, “Ramdom Noise in Digital Gates and Dividers,” in Annual. Frequency Control Symposium, 1987, vol. 41, pp. 507–511.

    Google Scholar 

  29. W.F. Egan, “Modeling Phase Noise in Frequency Dividers,” IEEE Transactions. on Ultrasonics, Ferroelectrics and Frequency Control, vol. 37,no. 4, pp. 307–315, July 1990.

    Article  Google Scholar 

  30. M.R. McClure, “Residual Phase Noise of Digital Frequency Dividers,” Microwave Journal, vol. 35,no. 3, pp. 124–128, Mar. 1992.

    MathSciNet  Google Scholar 

  31. M.Q. Tavares, PLL frequency synthesizers: phase noise issues and wide. band loops, Ph.D. Thesis, Institut National des Sciences Appliquees de Lyon, France, 1999.

    Google Scholar 

  32. Philips Semiconductors, UMA1022M Datasheet — Low cost dual frequency. synthesizer for radio telephones, 1998.

    Google Scholar 

  33. Y. Kado et al., “An Ultralow Power CMOS/SIMOX Programmable Counter LSI,” IEEE Journal of Solid-State Circuits, vol. 32,no. 10, pp. 1582–1587, Oct. 1997.

    Article  Google Scholar 

  34. T. Senef et al., “A Sub-lmA 1.5GHz Silicon Bipolar Dual Modulus Prescaler,” IEEE Journal of Solid-State Circuits, vol. 29,no. 10, pp. 1206–1211, Oct. 1994.

    Google Scholar 

  35. J. Craninckx and M. Steyaert, “A 1.75GHz/3V Dual-modulus Divide-by-128/129 Prescaler in 0.7 µm CMOS,” IEEE Journal of Solid-State. Circuits, vol. 31,no. 7, pp. 890–897, July 1996.

    Article  Google Scholar 

  36. F. Piazza and Q. Huang, “A Low Power CMOS Dual Modulus Prescaler for Frequency Synthesizers,” IEICE Transactions on Electronics, vol. E80-C,no. 2, pp. 314–319, Feb. 1997.

    Google Scholar 

  37. N.-H. Sheng et al., “A High-Speed Multimodulus HBT Prescaler for Frequency Synthesizer Applications,” IEEE Journal of Solid-State Circuits, vol. 26,no. 10, pp. 1362–1367, Oct. 1991.

    Article  Google Scholar 

  38. C.S. Vaucher and Z. Wang, “A Low-power Truly-modular 1.8GHz Programmable Divider in Standard CMOS Technology,” in Proc. of the 25th. European Solid-State Circuits Conference (ESSCIRC), 1999, vol. 25, pp. 406–409.

    Google Scholar 

  39. C.S. Vaucher et al., “A Family of low power truly-modular Programmable Dividers in Standard 0.35 µm CMOS Technology,” IEEE Journal of Solid-State Circuits, vol. 35,no. 7, pp. 1039–1045, July 2000.

    Article  Google Scholar 

  40. S. Wu and B. Razavi, “A 900MHz/1.8GHz CMOS Receiver for Dual-Band Applications,” IEEE Journal of Solid-State Circuits, vol. 33,no. 12, pp. 2178–2185, Dec. 1998.

    Article  Google Scholar 

  41. S.G. Kwaaitaal, Preliminary Study of a Source-Coupled Logic Frequency. Divider for RF Applications, M.Sc. Thesis, University of Twente, The Netherlands, 1999.

    Google Scholar 

  42. M. Mizuno et al., “A GHz MOS Adaptive Pipeline Technique Using MOS Current-Mode Logic,” IEEE Journal of Solid-State Circuits, vol. 31,no. 6, pp. 784–791, June 1996.

    Article  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Kluwer Academic Publishers

About this chapter

Cite this chapter

(2003). Frequency Synthesizers. In: Circuit Design For RF Transceivers. Springer, Boston, MA. https://doi.org/10.1007/0-306-47978-8_7

Download citation

  • DOI: https://doi.org/10.1007/0-306-47978-8_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-7923-7551-7

  • Online ISBN: 978-0-306-47978-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics